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a b s t r a c t

Background: Tuberculosis (TB) is a disease with worldwide presence and a major cause of

death in several developing countries. Current diagnostic methodologies often lack spec-

ificity and sensitivity, whereas a long time is needed to obtain a conclusive result.

Methods: In an effort to develop better diagnostic methods, this study aimed at the dis-

covery of a biomarker signature for TB diagnosis using a Nuclear Magnetic Resonance

based metabolomics approach. In this study, we acquired 1H NMR spectra of blood serum

samples of groups of healthy subjects, individuals with latent TB and of patients with

pulmonary and extra-pulmonary TB. The resulting data were treated with uni- and

multivariate statistical analysis.

Results: Six metabolites (inosine, hypoxanthine, mannose, asparagine, aspartate and

glutamate) were validated by an independent cohort, all of them related with metabolic

processes described as associated with TB infection.

Conclusion: The findings of the study are according with the WHO Target Product Profile

recommendations for a triage test to rule-out active TB.
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At a glance of commentary

Scientific background on this subject

Tuberculosis is a disease with worldwide presence and a

major cause of death in developing countries. Current

diagnostic methodologies often lack specificity and

sensitivity, whereas a long time is needed to obtain a

conclusive result. Untargeted metabolomics is a suitable

strategy for a broad discovery of meaningful diagnosis

biomarkers.

What this study adds to this field?

A metabolite signature for tuberculosis diagnosis was

validated by an independent cohort. All metabolites are

related with metabolic processes described as associated

with TB infection. The findings of the study are according

with theWHOTargetProductProfile recommendations for

a triage test to rule-out active TB.
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Tuberculosis (TB), caused byMycobacterium tuberculosis (Mtb),

despite being completely curable, has reemerged as a global

pandemic. Failure of effective vaccine protection, lack of

early detection of the disease, emergence of drug resistance,

deadly synergism with HIV infection and increasing global

international migration flows have limited the success of TB

disease management. WHO estimated the occurrence of

around 10 million new TB cases in 2018 [1]. In order to

overcome these frightful numbers, the End TB Strategy

defined by this organization states as a priority the “early

diagnosis of TB (…), and systematic screening of latent and

high-risk groups” [1].

The diagnosis methods currently in use have major

drawbacks. Microbiological detection of Mtb in sputum smear

lacks sensitivity leading to late TB diagnosis [2]. Culture

methods, the gold standard for TB diagnosis, require several

weeks and developed laboratory capacity [3]. Most clinical

features of TB and abnormalities on chest X-ray or histology

results have low specificity, leading to false positive di-

agnoses. There are few rapid diagnostics recommended by

WHO, being Xpert MTB/RIF assay the most widespread [4].

However this test requires instrumentation not broadly

available in endemic settings [5].

As specified recently, the highest priorities in TB diagnosis

are a rapid biomarker-based, non-sputum test for detecting

active TBwith the purpose of initiating treatment (1). Active TB

patients, including HIV co-infected individuals and children,

often do not presentMtb positive sputum,with blood and urine

being the more convenient samples for diagnosis [4]. This may

be based on the quantification of Mtb and its products or on

biomarkers of the host's state [4]. Amongpathogen compounds,

thequantificationof lipoarabinomannan (LAM)hasbeenwidely

explored. However it suffers frompoor sensitivity [6]. The same

problem arises for Mtb DNA detection [4] and variability is

associated with detection of proteins showing mycolyl trans-

ferase activity [7]. On the side of thehost, several biomolecules
detected in pulmonary TB (PTB) patients (specific transcrip-

tional signature, micro-RNAs, antibodies and interferon induc-

ible protein)were tested, but the simultaneousmeasurement of

a large set of genes, variable accuracy, and the heterogeneity to

antibody response proved to be sub-optimal [5].

Lately, the urgent need for new non-DNA biomarkers has

been consistently advocated [2,4,7]. Besides, diagnostic per-

formance will be improved using multi-biomarker signatures

instead of a single biomarker [2,7,8]. Untargeted approaches,

like metabolomics, are the more suitable strategy for a broad

discovery and evaluation of meaningful biomarkers, contrib-

uting also to solve one of the major difficulties in establishing

an accurate TB diagnosis test, and the partial understanding

of the complex hostepathogen interaction [8e10]. Relevant

findings for TB diagnosis using these strategies are summa-

rized in recent reviews [8,9,11]. However, their importance is

diminished by cohort and methodological variabilities.

Moreover, though publications of new biomarkers are com-

mon, follow up studies on the refinement, validation and in-

dependent confirmation of themare not taken. A recent trans-

African metabolomic study involving different populations

determined a TBmetabolic biosignature prior to TB diagnostic

[10]. In another recent study, the authors determine 13 me-

tabolites in serum that were altered in multidrug-resistant TB

patients when compared with healthy controls and drug-

susceptible TB patients [12]. Recently, we conducted a serum

metabolomic study using an Indian TB cohort. The results

suggested significant alterations in serum metabolites from

TB patients when compared with healthy controls and

asymptomatic house-hold contacts of active TB patients [13].

Here, we present a serum untargeted metabolomic study

using Nuclear Magnetic Resonance (NMR) among Portuguese

population comprising of healthy subjects, individuals with

latent TB and patients with pulmonary and extra-pulmonary

TB that show the potentiality of metabolomics to find new

biomarkers for TB diagnosis.
Materials and methods

Ethical statement

The collection of human blood samples was approved by the

National Commission for Data Protection (Lisbon, Portugal) (N.

5985/2014) and the Heath Regional Administration of Lisbon

and Tagus Valley (ARSLTV) Ethical Commission (Lisbon,

Portugal) (Proc.057/CES/INV/2014). All subjects provided writ-

ten informed consent for participation in this study.

Cohort and collection of sera samples

Three experimental categories were established with a sub-

division of the patients group: 1)Patients with pulmonary and

extra-pulmonary primary diagnosed TB infection; 2)Latent TB

population: Healthy individuals, asymptomatic for TB infec-

tion with positive IGRA test; 3) Control population: Healthy

individuals with negative IGRA test. General inclusion criteria

were age �18 and �65 years, HIV negative and absence of

history of organ transplant, diabetes, chronic kidney failure or
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any other respiratory illness; patients were excluded if under

treatment with anti-TB therapy >1.5 months or if other co-

morbidity was detected during the study.

No fasting peripheral blood samples were collected, be-

tween 2014 and 2016, by venipuncture to clot activator tubes

containing silica microparticles at the Centres for Pneumo-

logical Diagnosis of Venda Nova and of Almada-Seixal (Lisbon

region, Portugal) and stored at 4 �C. Three hours after blood

collection, samples were centrifuged and passed through

0.2 mm filters for serum decontamination. All serum aliquots

were immediately frozen at �80 �C and never thawed until

assayed. Detection of latent TB was performed for samples

from asymptomatic subjects using the IGRA test (Quanti-

FERON®-TB Gold IT, QIAGEN). Samples showing hemolysis or

with undetermined IGRA results were excluded.
Sample preparation for NMR metabolomics analysis

Each serum sample was thawed for 1 h and passed through a

centrifugal filter with a 5 kDa cut-off to remove macromole-

culesshownto interferewith theNMRmetabolitesignals. First,

the centrifugal filters were washed four times with 100 mM

NaCl and twice with MiliQ water, prior to sample treatment to

remove glycerol. Filtered serumwas transferred to NMR tubes

and proportionally added to phosphate buffer prepared in D2O

containing an internal standard (4,4-dimethyl-4-silapentane-

1-sulfonic acid (DSS) 0.25 mM). The solution in the NMR tube

was homogenized by repeated inversions avoiding the for-

mation of air bubbles. This protocol was established after

optimization of several steps, namely serum thawing time,

sample stability and ultrafiltration conditions with the main

goal of improving reproducibility and minimizing time

dependent sample degradation. To evaluate sample stability

NMR spectra were acquired immediately after sample prepa-

rationandafter4, 9, 13, 16and27h.ComparisonofNMRspectra

profiles has shown deviations in chemical shifts, in particular

for histidine, due to changes in sample pH, which was mini-

mizedusing a phosphate buffer (50mMpH7.0) and keeping 3 h

timingbetween samplepreparation andNMRdata acquisition.
NMR data acquisition and processing

Proton (1H) spectroscopywas performed on an 800MHz Bruker

AvanceIIþ spectrometer equipped with a room temperature

triple resonance HCN Z-gradient probe at 298 K, at the Mag-

netic Resonance Centre Ant�onio Xavier at ITQB NOVA. 1D 1H

-NOESY spectra (spectral width: 30.04 ppm; mixing time:

0.01 s; relaxation delay: 4 s; acquisition time: 1.36 s and 128

repetitions) were collected for each serum sample using the

‘‘noesygppr1d’’pulse sequence. From each experimental

group one of the most concentrated samples was used for the

collection of 2D NMR spectra to assist with assignment,

namely J-resolved, 1He1H COSY, 1He1H TOCSY, and 1He13C

HSQC. The spectral acquisition conditions used were different

from those suggested by Chenomx NMR Suite 8.1 identifica-

tion and integration software (Chenomx). However, compar-

ison of the collected data with tests acquired under reference

conditions revealed no significant differences in the deter-

mination of metabolite concentrations and thus were used
without corrections. Spectra were processed and analysed

using TopSpin 3.2 software (Bruker).

Compound identification and quantification

Metabolite identification and quantification were performed

using Chenomx NMR Suite 8.1 software, using its internal

reference library (Version 10) and resorting to the information

available in the Human Metabolome Data Base (HMDB 3.6), in

the Biological Magnetic Resonance Bank (BMRB) and published

work. 2D 1he13c HSQC spectra, when applicable, were used to

aid metabolite identification. Determination of each metabo-

lite concentration was based on the known concentration of

the internal standard, DSS, considering its dilution in each

sample.

The NMR metabolomics data were deposited to the Metab-

oLights repository with the dataset identifier MTBLS2318.

Statistical analysis

From the set of metabolites assigned, potential sample con-

taminants (methanol, acetone and glycerol), urea and DSS

were excluded. Additionally,metabolites corresponding to the

anti-TB drugs were not considered for this analysis. Once the

complete set of metabolomic features has been generated,

univariate and multivariate data analysis methods were

applied to investigate: (a) the general structure of the metab-

olomicsdata in thedataset, and (b) howthedifferentmetabolic

features are related with the phenotypic data associated with

the samples. Shortly, a Principal Component Analysis (PCA)

analysis of metabolite concentrations is performed to identify

outliers. A normality test is performed for each metabolite by

Shapiro test. Metabolites concentrations that exceed 6 times

the interquantile range (IQR) were excluded and boxplot plots

were performed for the metabolites that showed statistical

significance determined using the two-tailed unpairedWilcox

test considering p< 0.05 to reject the null-hypothesis using the

adjusted p value for multiple testing (Benjamini-Hochberg).

Univariate analysis was performed using a home-made R

script.Multivariate analysiswas performed in SIMCA software

(PCA and Principal Least Square-Discriminant Analysis, PLS-

DA) and in Metaboanalyst [14] (receiver operating character-

istic curve (ROC) curves) using Vast and autoscaling methods

for data scaling, respectively. Metabolite amounts were

considered significantly different between experimental

groups if Variable Influence in Projection (VIP) > 1.5.

Indian validation cohort

An Indian cohort that was already object of a scientific publi-

cation [13]wasusedhereforvalidationoftheobtainedstatistical

model after profiling of their NMR spectra (cohort data in

Supplementary Table 1). The selection criteria of the study

participants, their categorization, the protocols for sample

treatment and NMR data processing were standardized ac-

cording with those used for the Portuguese cohort. For the

validation twelve healthy controls with negative Mantoux test

and an equal number of PTB patients were selected. Themodel

was builtwith 6metabolites that showedsignificant differences

in the Portuguese cohort and using ROC curves analysis

https://doi.org/10.1016/j.bj.2021.07.006
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implemented in Metaboanalyst [14]. Metabolite concentrations

were normalized by quantile and scaled by autoscaling.

Pathway analysis and biomarkers functional analysis

Pathway Analysis using all quantifiedmetabolites was carried

out using MetaboAnalyst [14], integrating pathway enrich-

ment analysis and pathway topology analysis. Metabolite

concentrations were normalized by quantile and scaled by

autoscaling. Selected pathways have negative logarithm of p-

value higher than 10 (y axis) and impact above 0, or pathway

impact higher than 0.5 (x axis).
Results

Cohort

Thirty-seven TB patients which includes 25 patients with PTB

and 12 with extra pulmonary TB (EPTB) were enrolled in the

study (EPTB, [Table 1]). Two other asymptomatic experimental

groups were considered: healthy controls (n ¼ 57) and latent

TB (n ¼ 10) including individuals with a negative or a positive

IGRA test, respectively. Gender, age, weight and smoking

habits which are describe to be important in TB were also

collected [15e19].

Evaluation of differential metabolic profiles between
experimental groups

Different serum sample preparation protocols were tested, and

the one that showed better results was with ultrafiltration (see

Supplementary Fig. S1). Therefore, although ultrafiltration is an

additional step in the sample preparation procedure it was

deemed necessary, as corroborated in previous studies [20,21].

Sixtymetaboliteswere assigned in the 1HNMRspectra using

2D NMR data. The signal intensity of 59 metabolites were

quantified and used for the metabolomics analysis. The con-

centration of five identified metabolites could be influenced by

sample handling (e.g. acetone, ethanol, which are volatile
Table 1 Cohort characterization.

Tuberculosis Patients Latent Controls

Pulmonary Extra-
pulmonary

Total

individuals (n)

25 12 10 57

Age (A/B/C) 10/12/2 3/2/7 2/5/3 23/28/7

Gender (F/M) 7/17 9/3 8/2 29/29

Body Mass Index

(BMI) (L/N/H)

9/14/1 0/5/6 0/7/3 3/41/12

Smoking habits

(Y/N/Ex)

6/8/5 0/8/0 0/4/0 11/32/5

Categorization for age is < 30 (A), 30e50 (B) and >50 years (C), for

BMI is low (L), normal (N) and high (H), and for present smoking

habits yes (Y), non (N), ex-smoker (Ex). A discrepancy between total

number of individuals for the several criteria is due to missing

information.
metabolites; glycerol, a preservative of ultrafiltration devices;

propylene glycol, a probable exogenous contaminant; and urea

whose ability to be quantified is incompatible with the data

acquisition protocol used) or by subject habits (as in the case of

caffeine). Beside these, p-methylhistidine was excluded from

the analysis as its assignment is not clear (see Supplementary

Table 2). The main metabolite classes assigned were amino

acids, organic acids, carbohydrates and nucleoside in-

termediates. An estimate of the extent of spectral assignment

was made from the ratio of the areas of the assigned and the

residual spectral lines, and was found to be 93.4% of the

observable spins.

The metabolite concentrations quantified for the patient

and control experimental groups are depicted in

Supplementary Table 2. According with The Human Metab-

olome Database (HMDB), all these metabolites have been

already detected in blood. The number of detected and

quantified metabolites was in accordance with previously

published results [22]. The mean concentration for each

metabolite from the control group was compared using a two-

tailed t-test with those reported in the literature, and for 26

metabolites similar concentrations were found with 95% sig-

nificance. Any discrepancies found was mainly attributed to

differences in blood sample treatment, in particular if the

analysis was performed in serum or plasma and to the pro-

tocol used for removing macromolecules.

From the quantified metabolites only three present a % of

occurrence below 100%, formate (98.2%), ascorbate (96.5%)

and fructose (31.6%). All the metabolites present in all control

individuals have also 100% occurrence in the TB patients’

group, except for trigonelline, compound with the lowest

determined concentration (See Supplementary Table 2).

PTB and EPTB groups were not discriminated by multi-

variate analysis (see Supplementary Fig. 2). Therefore,

further analysiswas carried outwith data involving TB patient

group comprising the two types of the disease.

In the PCA analysis considering the three groups (Control,

Latent and Patient), it was possible to observe a tendency for

the separation between Controls and Patients, being the La-

tents samples distributed between them [Fig. 1 A]. The

respective PLS-DA model was not discriminative, having a

Q2 ¼ 0.306 (see Supplementary Fig. 3). The pairwise PLSDA

analysis of the different groups, lead to discriminant models

for Controls vs Patients (see [Fig. 1B] and Supplementary

Fig. 4), Latent vs Patients and a no discriminant model in

the case of Controls vs Latent (see Supplementary Figs. 5 and

6). For Controls vs Patients, the metabolites more important

for the separation are mannose, hypoxanthine, glutamate,

inosine and aspartate that are increased in Patients, while

asparagine is decreased in this group [Fig. 1C]. For Latents vs

Patients, the levels of hypoxantine, inosine, valine and

fucose, citrate, creatine and fructose were significantly

elevated but less abundant in Patients (Supplementary

Fig. 5C).

Most discriminant metabolites in the PLS-DA models for

both pairwise comparisons were also found significantly

different by univariate analysis ([Fig. 2] and Supplementary

Table S2). For Controls versus Patients, besides mannose, hy-

poxanthine, glutamate, inosine and aspartate the levels of

lactate, ornithine, glucose, serine and cysteine were increased

https://doi.org/10.1016/j.bj.2021.07.006
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Fig. 1 Discrimination of TB Patients using quantified serum metabolites. (A) Principal Component Analysis score plot using

serum metabolites of the three groups: Control, Patient and Latent. In the lower panels is presented the PLS-DA model for the

Controls and Patients comparison; (B) score plot of the two first components (acc ¼ 94%, R2 ¼ 0,75, Q2 ¼ 0.51) and (C) loadings

plot with themetabolites colored by its variance importance in projection (VIP) in the first component. Node color changes from

blue to red with increasing VIP. Metabolites with VIP value > 1.5 are depicted in the plot.
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in patients serum, while asparagine, 3-hydroxyisobutyrate, 3-

hydroxybutyrate, citrate, methionine and threonine levels

were decreased. Between Latent and Patients, beside the me-

tabolites found significantly different by multivariate analysis,

mannose and 2-aminobutyrate are increased in patients.

Although no discrimination was obtained between Latents

and Controls by supervised multivariate analysis, 10 discrim-

inant metabolites were determined by theWilcox test, three of

them (acetate, malonate and cystine) only for this pairwise

comparison. The levels of 2-aminobutyrate, cysteine, fucose

and valine were lowest, while citrate, creatine and fructose

(Supplementary Table S2) were highest in Latents.
Metabolic pathways altered in patients

Concentrations determined for all metabolites were used to

perform Pathway Analysis between Control and Patient

groups, indicating what are the metabolic pathways affected

by TB [Fig. 3]. Amino acids are among the metabolites which

levels were more different between the two groups, then it is

not unexpected that pathways related with amino acid

metabolism are among themost altered, with special focus on

those related with glutamate, a key metabolite in several

pathways, as is the case of glutathione (GSH); alanine, aspar-

tate and glutamate; arginine and proline or D-glutamine and D-

glutamate metabolisms. Beside the alterations in amino-acid

metabolism, other show also relevant changes, like purine
metabolism, glyoxylate and dicarboxylate metabolism and

aminoacyl-tRNA biosynthesis.
Integrated analysis combining metabolomics profiles from
Indian and Portuguese cohorts

To validate our model, samples from a previous Indian cohort

[13] were used. In this case, 12 samples from healthy in-

dividuals and 12 from TB patients (information on samples is

depicted in Supplementary Table S1)were treated and analyzed

following the same protocol used for the Portuguese cohort.

Thirty three metabolites whose concentrations were found

differential in this study or in Albors-Vaquer [13] were assigned

to the NMR spectra. For the ROC curve were only selected the

metabolites found differentially abundant both by uni- and

multivariate analysis and with an area under the curve

(AUC) > 0.6 (hypoxanthine, asparagine, mannose, aspartate,

glutamate and inosine). ROC analysis using the Portuguese

cohort and the combination of the above metabolites gives a

good predictive value for a 95% confidence interval

(CI ¼ 0.79e0.95, AUC ¼ 0.88, accuracy ¼ 0.80, specificity ¼ 0.88,

sensitivity ¼ 0.68) using a PLS algorithm with one latent vari-

able [Fig. 4]. In the case of the Indian samples, the model pre-

dicts correctly 11 patients and 11 controls, for a total of 12

individuals per each group. Indian sampleswere predictedwith

an AUC and accuracy of 0.90 and 0.92 (95% CI) using the Por-

tuguese cohort (sensitivity ¼ 0.92, specificity ¼ 0.92).

https://doi.org/10.1016/j.bj.2021.07.006
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Fig. 2 Serummetabolite concentrations significantly different between Controls and Patients comparison. Boxplots fromWilcox

test (*p < 0.05; **p < 0.01; ***p < 0.001).
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Discussion

Characterization of the Portuguese cohort

A total of 37 patients were included in our cohort. From

those 32% were diagnosed with EPTB, value unexpectedly
high when compared with the percentage of this class of TB

patients in Eastern Mediterranean countries in 2015 (23%)

[23]. The distribution of patients by gender for both patient

groups is in accordance with several studies [15e17]. Garcia-

Rodriguez et al. [17] reported that the mean age for EPTB is

higher than that for PTB, in our cohort 58% of EPTB patients

are over 50 years, while 92% PTB patients have less than 50

https://doi.org/10.1016/j.bj.2021.07.006
https://doi.org/10.1016/j.bj.2021.07.006


Fig. 3 Amino acid metabolic pathways are among the most altered in TB patients. Differential pathway analysis between Controls

and TB Patients using metabolite levels by MetaboAnalyst. Depicted pathways have negative logarithm of p-value higher than 10

(y axis) and pathway impact above 0, or pathway impact higher than 0.5 (x axis). Node color changes from white to red with

decreasing p-value; and node radius correlates with pathway impact values. Pathways are ordered by their respective p-values.

Fig. 4 Receiver operating characteristic curve (ROC) curve and Indian samples prediction, considering hypoxanthine,

asparagine, mannose, aspartate, glutamate and inosine levels. (A) ROC analysis using Controls and Patients from the

Portuguese cohort. (B) Prediction of the samples from the Indian cohort. In black the Portuguese samples and in red the Indian

samples, filled and outline circles for Patients and Controls, respectively.
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years old. Leung et al. [24] concluded that obesity is asso-

ciated with a lower risk of PTB in the older Hong Kong

population. Consistently, in our study, only 4% of the PTB

patients present a high Body Mass Index (BMI). By opposi-

tion, this level was found in 55% of the extra-pulmonary

patients and in 21% of the control group. In this group, the

majority of the individuals (73%) have a normal BMI. Several

studies suggest the existence of an association between

tobacco smoking and PTB [25], in particular related to the

delay in diagnosis [26,27]. Fitly, in our PTB patients group,
74% were smokers or ex-smokers, contrasting with the

absence of EPTB patients smoking habits. Although our

cohort is not suitable for epidemiologic evaluations, it

shares several similarities with published epidemiologic

studies confirming its representativeness.

A metabolite biomarkers signature

Comparison of metabolites concentrations of Controls vs

Patients by uni- and multivariate analysis found sixteen

https://doi.org/10.1016/j.bj.2021.07.006
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metabolites with significant differential amounts. Glucose,

mannose, lactate, hypoxanthine, inosine, ornithine, gluta-

mate, aspartate and serine are increased in Patients, while 3-

hydroxyisobutyrate, 3-hydroxybutyrate, citrate, asparagine,

methionine, threonine and cysteine are decreased. Interest-

ingly, between Latent and Patients, for the metabolites

significantly different hypoxanthine, mannose, inosine and

citrate are common to the previous showing the same type of

variation. Moreover, 2-aminobutyrate, fucose and valine are

increased in patients and 2-fructose and creatine are

decreased. These results suggest the existence of some

similar affected biological/metabolic processes in individuals

with active and latent TB infection. By univariate analysis,

seven of the discriminant metabolites between patients and

each healthy group were also found discriminant between

both healthy groups. Creatine, fructose, lactate, citrate are

increased in Latents and 2-aminobutyrate, fucose, valine and

cysteine are decreased. Additionally, acetate is increased and

cystine and malonate are decreased.

Similar variations (metabolite increased/decreased

amount) of ten metabolites were reported for metabolome

comparison between TB patients and healthy controls. In one

study for citrate, hypoxanthine, inosine and ornithine, in two

studies for asparagine, aspartate, cysteine, mannose and

threonine, in three studies for glutamate and in five for lactate

differential amounts were determined [13,28e34]. Moreover,

glucose was found increased in infectedmice and guinea-pigs

relative to non-infected animals [35,36]. For the comparison

between TB patients and Latents it was determined byWeiner

et al. [28] changes similar to our data for creatine, hypoxan-

thine, inosine, mannose and citrate amounts. This last was

also reported by Albors-Vaquer et al. [13]. Metabolites differ-

ential amounts between Controls and Latents were evaluated

in few publications [13,28,29]. Only for acetate a match with

our results was found [13].

Functional analysis of potential biomarkers

Considering the defined acceptance criteria for Pathway

Analysis, thirty metabolites, including eighteen amino acids,

were assigned to eleven pathways as detailed in [Fig. 3].

Metabolomic studies reporting changes in amino acid meta-

bolism in TB infection are ubiquitously described in the liter-

ature [28,31,33,35,37] although some discrepancies were

found for six proteogenic amino acids, reasonable consistency

was determined for asparagine, aspartate, cysteine, glutamate

and threonine. In our work, only the proteogenic amino acids

aspartate, glutamate and serine have an increased concen-

tration in sera of TB patients. These results reproduce those

previously reported in Refs. [28,29,31,33] and agree with the

characteristic protein turnover pattern previously described.

TB infection is a chronic wasting disease that, by opposition to

undernutrition, results in a diversion of ingested amino acids

away from utilization for protein synthesis and thus towards

oxidation with consequent loss from the body protein pool,

suggesting the occurrence of an “anabolic block” [38]. Addi-

tionally, it was found in our study, as previously in Weiner

et al. [28], that the ratio glutamine/glutamate is lower in TB

patients compared with controls, which also indicates a risk

of loss of body mass [39].
The excess amount of free amino acids, in contrast with

glucose and fatty acids, cannot be stored or excreted. Rather

the a-amino group of the amino acids is removed and the

resulting carbon skeleton is converted into acetyl-CoA, ace-

toacetyl-CoA, pyruvate, or one of the intermediates of the

citric acid cycle. It follows that amino acids can originate

glucose, fatty acids and ketone bodies. In our results, four

amino acids decreased in TB patients corrocorate an increase

in amino acid oxidation during TB infection. The surplus of

amino acids is also converted into urea. In fact, ornithine, an

intermediate of the urea cycle, has its concentration signifi-

cantly increased in TB patients. 3-hydroxybutyrate and 3-

hydroxyisobutyrate are ketone bodies resulting from partial-

degradation products of branched-chain amino acids. Be-

sides, 3-hydroxybutyrate synthesis from acetoacetate also

occurs in human liver during a fasting state [40], we observed

its decrease, together with that of 3-hydroxyisobutyrate, in

Patients compared to Controls. However, Weiner et al. [10]

also detected a decrease of 3-hydroxybutyrate at the onset of

the disease. Surprisingly, comparing Patients with Latents,

valine, the only increased proteogenic amino acid, is the

metabolite with higher increment.

On the other hand, changes in amino acid concentrations

observed between healthy and infected individuals can also

be explained based on the virulence mechanisms of Mtb and

host immunometabolism [9]. This intracellular pathogen

thrives inside macrophages, where it has to face an acidic

environment with limited availability of essential nutrients. It

was hypothesized that asparagine retrieved by Mtb or indi-

rectly from the host could be used as a nitrogen source. Gouzy

et al. [41] reported thatMtb employs an asparagine transporter

and a secreted asparaginase to assimilate nitrogen and resist

acidic stress through asparagine hydrolysis and ammonia

release. In this context, results from a recent metabolomics

study in Mtb under microbicidal stresses suggested that high

levels of ammonia were released as an adaptive response to

acidic stress due to increased flux through L-asparaginase

rather than urease activity [42]. Additionally, the hydrolysis of

arginine to ornithine and urea by macrophages expressed

arginase in hypoxic and necrotic regions of TB granulomas,

plays a crucial role in controlling both Mtb growth and TB

pathology [43] and contributes for the increase of ornithine

levels in sera. In fact, our results show a decrease in aspara-

gine and an increase in ornithine concentrations in TB pa-

tients sera. Moreover, glutamine can be converted to a-

ketoglutarate through glutamate to fuel the tricarboxylic acid

cycle with carbon. Koeken et al. [44] concluded that this

pathway is implicated in effective host response against Mtb,

since involved genes are differentially expressed in Mtb-

infected macrophages and blood transcriptomic profiles of

individuals with latent or active TB infection. Else than

glutamate, glutaminolysis generates aspartate and lactate,

metabolites we found increased in Patients. Zhou et al. [33],

Zhou et al. [32], Weiner et al. [28], Jain et al. [34] and Albors-

Vaquer et al. [13] have also reported an increase of lactate

levels in sera of TB patients, that is consistent with increased

anaerobic glycolysis. It is known that TB infection induces

granulomatous inflammation in the lung with central necro-

sis and tissue hypoxia [45]. Therefore, the accumulation of

lactate could be an index of tissue hypoxia and extent of

https://doi.org/10.1016/j.bj.2021.07.006
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necrosis as the infection progresses. Shi et al. [46] hypothe-

sized that transition from acute to chronic TB infection in

mouse lungs is accompanied by a metabolic shift from

oxidative phosphorylation toward enhanced glucose uptake,

glycolysis and formation and secretion of lactate. This

pattern, known as the Warburg effect, is characteristic of

cancer cell metabolism and is facilitated by monocarboxylate

transporters. These transmembrane proteins allow main-

taining the optimal concentration of pyruvate, the substrate of

lactate dehydrogenase, while exporting lactate to keep cyto-

solic pH around physiological levels [46]. This assumption is

consistent with the fact that although lactate is systematically

found increased in TB patients blood, pyruvate is less

frequently detected. Moreover, the association of theWarburg

effect to TB infection explains the reduction of citrate levels

observed in our study and byWeiner et al. [28], since pyruvate

is mainly diverted to lactate production. Other metabolites, as

inosine and hypoxanthine, also found increased in TB active

and latent infection here, byWeiner et al. [28] and Huang et al.

[30], have been indicated as biomarkers of hypoxia associated

with cardiac ischemia [47]. At the onset of hypoxia, tissues are

rapidly depleted of ATP leading to the accumulation of its

catabolic by-products, namely inosine and hypoxanthine.

Furthermore, it is known that methionine adenosyltransfer-

ase, the enzyme that converts methionine to S-adenosylme-

thionine and subsequently to cysteine, is down regulated by

hypoxia [48]. Furthermore, cysteine could be consumed to

form GSH to overcome the oxidative stress produced by Mtb.

Allen et al., have shown that GSH has contributed in inhibiting

the growth of intracellular Mtb through bacteriostatic mech-

anisms [49]. The pathway that connects these several in-

termediates is depicted in [Fig. 5]. In opposition the levels of

serine, which condensates with homocysteine originating

cystathionine, an intermediate for cysteine synthesis, are

increased. These amino acid concentrations differences

matchwith those observed in our results and are corroborated

by Weiner et al. [10,28] and Albors-Vaquer et al. [13].
Fig. 5 Biological relevance of biomarkers. Metabolites with differen

the name define their increased or decreased levels in Tuberculo
In accordance with Weiner et al. [10,28], we detected an

increase of mannose in sera of TB patients and Latents. This

aldohexose is a critical component of the Mtb cell wall glycan

lipoarabinomannan. This finding together with an observed

increase of phosphatidylinositol and of the glycolipid treha-

lose-6-mycolate, a constituent of the mycolic acid layer of the

cell wall membranes [31] are consistent, suggesting they are

derived from cell walls of the infecting Mtb.

Two monosaccharides, fructose and fucose, although not

showing significant differences between Patients and Con-

trols, are, respectively decreased and increased in Patients

compared to Latents, being fructose the metabolite with

higher reduction. Although, we could not find an explanation

for these results, it is interesting to point that levels of fucose

in plasma-derived IgG are lower in individuals with latent

than in those with active TB [50].

Final remarks

This study results are according with theWHO Target Product

Profile recommendations for a triage test to rule-out active TB

[51], since it is the first to report a blood metabolite signature

with a minimal target sensitivity and specificity for the vali-

dation of an independent cohort. The determination of this

metabolite signature can be translated to a point-of-care

inexpensive assay.

Metabolites identifiedwith significant different levels in Tb

infection using metabolomic approaches [10,13,28e37,52],

besides showing several similarities also evidence some dis-

crepancies. These are either related with the set of metabo-

lites identified, eitherwith the type of variation, concentration

increase or decrease. These disparities can be easily explained

based on the diversity of the protocols used for sample

treatment, methodologies used for metabolite quantification

and characteristics of the cohorts. Anyhow, functional

metabolomics analysis has led to important common

conclusions.
tial amounts are underlined. The arrows on the right side of

sis infection.
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Variations in serum metabolome related to TB infection

with higher relevance are associated to amino acid catabolism

pathways, hypoxia and Mtb specific constituents, with some

of the processes superimposing to others for some metabo-

lites [Fig. 5]. Protein degradation associated to TB infection

generates a disturbance in sera levels of free amino acids.

Some were consistently found increased and others with

lower levels in Patients. Increase of the concentration levels of

the products related with amino acid catabolism (acetate,

acetoacetate, pyruvate, urea or ornithine) was unanimous.

Due to the known hypoxia conditions induced by granulo-

matous inflammation in the lungs, it was possible to explain

the accumulation of several metabolites associated with this

condition (lactate, inosine, hypoxanthine and serine) and the

depletion of others (cysteine, methionine and citrate). Com-

pounds found in sera and probably originated from the

mycobacterium, due to its biological processes or specific

biomolecular composition, if constantly detected should be

considered relevant biomarkers for TB diagnosis. This is the

case for mannose.

Based on others and our results, namely the validation of

a set of six discoveredmetabolites by an independent cohort,

all of them related with the metabolic processes associated

with TB infection, our proposed signature for TB diagnosis

includes inosine, hypoxanthine, mannose, asparagine,

aspartate and glutamate. As previously stated [28], most

likely a specific signature for TB diagnosis should include

several metabolites.

At this moment, a set of potential candidates for TB diag-

nosis biomarkers is already available. The next step will be to

extend the evaluation of their specificity and selectivity for TB,

namely in relation to other pulmonary infectious diseases.

Target experimental approaches will be the better choice at

this stage for the validation of these biomarkers. They should

be quantified for an extensive cohort, ideally including a

diversified population selected based on clear standardized

criteria.
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