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Abstract

We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune 

cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent 

manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon 

endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, 

demonstrating the potential for nanoparticle escape from intracellular vesicles. Competition 

with other glycosaminoglycan types inhibited the endocytosis of HEP-coated nanoparticles only 

partially. We further found that nanoparticle uptake into innate immune cells can be controlled 

by more than three orders of magnitude via systematically varying the HEP surface density. Our 

results suggest a substantial potential for HEP-coated nanoparticles to target innate immune cells 

for efficient intracellular delivery, including into the cytoplasm. This HEP nanoparticle surface 

engineering technology may be broadly used to develop efficient nanoscale devices for drug and 

gene delivery as well as gene editing and immuno-engineering applications.
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Nanoparticles can deliver biomolecular and other payloads to cells of the innate immune 

system1–3. Upon entry into the body, antigen-presenting cells of the innate immune system 

can recognize foreign entities, such as pathogens, to elicit immune responses3–6. In addition, 

immune responses can be initiated and boosted through interactions between engineered 

nanoparticles and immune cells to bridge the gap between innate and adaptive immune 

systems7–11. Therefore, understanding the nanoparticles’ interaction with the innate immune 

system is critical for developing safe and effective nanoparticle-based immunotherapeutics.

In the last decade, multiple nanoparticle surface engineering strategies have been used to 

target cells of the innate immune system5,12–14. However, the observed levels of nanoparticle 

uptake are not always appropriate for clinical use and may cause cellular or systemic 

toxicity15,16. There is a need to develop methods to control nanoparticle uptake into innate 

immune cells to elicit desired immune responses8,13,17–20. This approach can minimize 

undesirable side effects of nanomedicines, enabling the development of new nanoparticle-

based applications for immunomodulation, immunotherapy, and vaccination8,13,17–20.

We demonstrated that heparosan (HEP) is an effective surface engineering technology 

to create nanoparticles that exhibit reduced protein corona formation with favorable 

interactions with antigen-presenting cells13. This study investigated the interactions between 

HEP-modified nanoparticles and innate immune cells mechanistically by determining 

the nanoparticle cellular uptake characteristics and associated endocytosis pathways. 

Considering that nanoparticle surface properties govern cellular interactions15,16,21–23, 

we investigated the nanoparticle uptake efficiency using competition assays of various 

HEP structural analogs, i.e. polymers of the glycosaminoglycan (GAG) family, and by 

systematically varying the HEP surface coating density. Our results show that nanoparticle 

uptake in innate immune cells can be controlled over three orders of magnitude by varying 

the HEP surface coating density. These findings may enable the development of safe 

and effective nanomedicines for applications in immunomodulation, immunotherapy, and 

vaccine research.
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In Figure S1, we demonstrated that HEP-coated gold nanoparticles (HEP-AuNPs) efficiently 

target antigen-presenting cells, such as macrophages and dendritic cells, consistent with 

our previous findings13. This study used RAW 264.7 macrophages and DC 2.4 dendritic 

cells as model immune cells. As shown under the light micrographs in Figures 1A and S2, 

HEP-AuNPs exhibit a time-dependent nanoparticle uptake behavior when incubated with 

RAW 264.7 macrophages or DC 2.4 dendritic cells. The progressively darker cell coloration 

(due to the reddish AuNPs) upon brightfield imaging over time suggests an increase in 

nanoparticle uptake. We quantified the nanoparticle cellular uptake in RAW 264.7 (Figure 

1B) and DC 2.4 (Figure S3) cells by inductively coupled plasma mass spectrometry (ICP-

MS). We observed that the nanoparticle uptake per cell increased over time, plateauing at 

~12 h post-incubation. These results show that innate immune cells exhibit a time-dependent 

cellular uptake process to internalize HEP-coated nanoparticles.

To further validate the time-dependent cellular internalization, we performed confocal laser 

scanning microscopy (CLSM) to monitor the nanoparticle uptake behavior in real-time 

in RAW 264.7 macrophages up to 7 h post-incubation (Figure 1C–D, Figure S4). The 

HEP-AuNPs were imaged label-free via nanoparticle light scattering and were mainly 

present surrounding the cell membrane after 1 h of incubation13,24. We observed strong 

intracellular nanoparticle signals at 4.5 h, 5 h, and 7 h time points post-incubation. 

To corroborate the intracellular and localization, we subsequently visualized the spatial 

distribution of nanoparticles in RAW 264.7 macrophages at 3 h, 6 h, and 24 h (Figure 1E 

and Figure S5) and DC 2.4 dendritic cells at 3 h and 24 h (Figure S6) post-incubation by 

transmission electron microscopy (TEM). We observed that the HEP-AuNPs were present 

in intracellular vesicles and discovered that some nanoparticles could escape from these 

intracellular vesicles to access the cytoplasm (Figure 1E and S7). Furthermore, we detected 

some HEP-nanoparticles in lysosomes after 3 h incubation by CLSM via a LysoTracker™ 

Deep Red staining, a red fluorescent dye that accumulates in lysosomes (Figure S8). Our 

findings reveal that the cellular uptake of HEP-AuNPs in RAW 264.7 macrophages and DC 

2.4 dendritic cells is time-dependent, with a majority of internalized nanoparticles present in 

intracellular vesicles and a smaller fraction of nanoparticles accessing the cytoplasm.

Since we observed HEP-AuNPs in intracellular vesicles, we hypothesized that these 

nanoparticles might enter cells via endocytosis by one or more energy-dependent uptake 

pathways25,26. We carried out a systematic endocytosis inhibition study to discern which 

uptake pathways were involved. First, we confirmed that energy-dependent endocytosis 

facilitated the observed nanoparticle uptake by exposing the RAW 264.7 macrophages to 

known non-specific endocytosis inhibition conditions, i.e low temperature (4°C) or 0.1% 

w/v sodium azide 27–29. We found that the cellular uptake of HEP-AuNPs was reduced by 

~89% and ~22% when the cells were incubated with nanoparticles at 4°C (Figure 2B and 

Figure S9) or treated with sodium azide, respectively (Figure 2C and Figure S9), confirming 

an energy-dependent nanoparticle uptake process.

Next, we screened specific endocytosis pathways using established chemical inhibitors 

(Table 1) that more selectively block endocytosis using inhibitor concentrations from 

published literature (Figure 2A). First, we pre-incubated the innate immune cells for 1 

h with the endocytosis inhibitors. Then we added the nanoparticles and incubated them 
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with the cells for 1.5 h. We imaged the cells with a light microscope and quantified the 

nanoparticle uptake by ICP-MS (Figure 2D and Figure S9–10). The ICP-MS results revealed 

that nanoparticle cellular uptake inhibition efficiencies were ~73%, 12%, 24%, or 8% for 

chlorpromazine, chloroquine, cytochalasin D, or imipramine, respectively (Figure 2D).

Under our study conditions, the chlorpromazine inhibitor was the most effective agent. 

As shown in Figures 2D and S9–10, the endocytosis inhibitors N-ethylmaleimide (NEM), 

Filipin, Dynasore, and 5-(N-ethyl-N-isopropyl) amiloride (EIPA) did not reduce the 

nanoparticle cellular uptake. It is known that the cellular uptake machinery and cellular 

metabolic processes are inter-connected and thus, uptake and transport mechanisms in the 

context of nanoparticles are difficult to completely define30. However, our findings suggest 

that HEP-AuNPs primarily enter the model innate immune cells through clathrin-mediated 

endocytosis and macropinocytosis pathways with some possibility of phagocytosis.

As schematically shown in Figure 3A, chlorpromazine inhibits clathrin-mediated 

endocytosis while cytochalasin D inhibits macropinocytosis/phygocytosis51,53. In our 

screening experiments, these agents were the most effective HEP-AuNP uptake inhibitors 

(Figure 2). We performed systematic dose escalation studies to assess the dose-response of 

the inhibitory effect and the cell toxicity of these two agents. Based on the previous dose 

screening experiments and published cell viability data30,54,55, the dose ranges were 0–31.4 

μM and 0–3.9 μM for chlorpromazine and cytochalasin D, respectively. The cell viability 

assays confirmed that these inhibitor doses were not cytotoxic under the tested conditions 

(Figure 3B–C). Using ICP-MS analysis, we quantified the inhibitory effects for nanoparticle 

uptake in RAW264.7 macrophages to be ~70% (chlorpromazine) and ~51% (cytochalasin 

D), respectively (Figure 3B–C). Furthermore, the cell light micrographs showed an apparent 

reduction in light extinction, consistent with a decrease in nanoparticle cellular uptake 

(Figure S11–12). The notably reduced cellular uptake levels upon chlorpromazine (23.5 μM) 

and Cytochalasin D (3.0 μM) incubation with RAW 264.7 macrophages were confirmed 

qualitatively by CLSM imaging (Figure 3D). Reduced nanoparticle intensity signals were 

observed in the cell groups treated with the inhibitors compared to those without the 

inhibitors (Figure 3D).

To test whether the HEP-coated nanoparticles could enter cells through clathrin-mediated 

endocytosis and macropinocytosis/phagocytosis in another immune cell line, we conducted 

similar inhibition experiments in DC 2.4 dendritic cells. As shown in Figure S13, both 

chlorpromazine and cytochalasin D reduced HEP-AuNP uptake by ~77% in DC 2.4 

dendritic cells. Additionally, we co-incubated chlorpromazine and cytochalasin D inhibitors 

with cells to test if there was any additive endocytosis inhibitory effect. Upon co-incubation 

of these two inhibitors, we quantified an ~71% inhibitory effect. Thus, significant additive 

endocytosis inhibition was not observed with this inhibitor combination. We corroborated 

this finding by co-incubating RAW 264.7 macrophages with both inhibitors (Figure S14). 

We observed no significant cytotoxicity of the inhibitors at these tested doses (Figure S15).

To investigate the role of phagocytosis on the HEP-AuNPs cellular uptake, we conducted a 

systematic set of experiments involving inhibition of the process via: (i) physical saturation 

with 3-μm polymeric microspheres, and (ii) chemical inhibition by the compounds Cdc42/
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Rac1 and NSC 23766 (Table 1) in RAW 264.7 and DC 2.4 cells. As shown in Figures S16–

19, there was no significant reduction of HEP-nanoparticle cellular uptake suggesting only a 

potentially minor role of phagocytosis. We additionally did not observe an inhibitory effect 

on nanoparticle cellular uptake in RAW 264.7 upon using Annexin V (Figure S20). Our 

results indicate that the cell uptake of HEP-AuNPs occurs in a time-dependent facilitated 

primarily by clathrin-mediated endocytosis and macropinocytosis.

Our experiments showed that clathrin-mediated endocytosis plays an important role in the 

cellular uptake of HEP-AuNPs, indicating that specific cell surface receptors may facilitate 

nanoparticle cell uptake. Since these cell surface receptors are unknown, we wondered 

whether various structural analogs of HEP polysaccharides, the glycosaminoglycans 

including heparin, hyaluronan (HA), chondroitin sulfates (CS), could be used as competitors 

and thereby reduce the uptake of HEP-AuNPs (Figure 4A).

To address this question, we pre-incubated RAW 264.7 macrophages systematically with 

a library of relevant HEP structural analogs (Table 2) and then added HEP-AuNPs to 

the cells. To quantify the nanoparticles’ cellular interactions, we performed quantitative 

ICP-MS (Figure 4B and Figures S21–22) and corroborated the results qualitatively with 

light microscopy (Figure 4C–E, Figures S21 and S23). The ICP-MS and microscopy data 

both revealed that CS A (i.e. CS with mostly C4-sulfo isomers) was most effective at 

reducing the cellular uptake (~43%) of HEP-AuNPs compared with the ‘no-competitor’ 

group. We observed ~15% inhibition by CS C (i.e. CS with mostly C6-sulfo isomers) and 

~18% inhibition by heparin (i.e. the anticoagulant drug that is a highly sulfated HEP); 

no significant competition with the remaining structural analogs was observed (Figure 4B, 

Figures S21–22). Heparosan itself was not a good competitor (either the high molecular 

weight 169-kDa HEP or the 13-kDa HEP used for the nanoparticle coating). We speculate 

that the multivalent interactions of the HEP-AuNPs with cells were too strong to be 

effectively competed by a ‘monovalent’ free HEP chain.

We next investigated whether the CS A inhibitory effect of HEP-AuNP uptake was due to 

a potential toxicity effect of the CS A preparation, which was extracted from a mammalian 

source. We observed that the CS A material did not affect cell viability at the working 

concentrations employed in this study (Figures 4C–E, S21, S23–25).

Next, we expanded the structural analog competition study to DC 2.4 dendritic cells. Since 

the previous study demonstrated that CS A significantly reduced uptake of the HEP-AuNPs 

in RAW 264.7 macrophages, we pre-incubated CS A with the DC 2.4 cells for 1 h, then 

added the nanoparticles for an additional 2.5-h incubation. We quantified the competition 

efficiency by ICP-MS and corroborated the results with light microscopy (Figures S25–26). 

Non-cytotoxic doses of CS A resulted in a lower nanoparticle uptake as quantified by 

ICP-MS, and we observed a reduced nanoparticle signal compared to the no-competitor 

group using light microscopy (Figures S25–26).

We further assessed the competition effect of CS A as a function of time and concentration 

at non-cytotoxic levels. The CS A agent significantly lowered the cell uptake of HEP-

AuNPs, as confirmed by light microscopy and ICP-MS quantification (Figures S27–30 and 
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Figures 4F–G). The inhibitory effect of 1 mg/mL CS A persisted throughout time (Figure 

4F). At 2 mg/mL, CS A suppressed cellular uptake of HEP-AuNPs up to 9-fold, according 

to our inhibitor dose-response results (IC50 of 0.5 mg/mL, Figure 4G). These competition 

experiments with GAG structural analog polymers imply that CS A can substitute as a 

ligand for HEP for the internalization receptor(s). However, the receptor identity remains 

unknown.

Next, we investigated whether the observed substantial cellular uptake of HEP-AuNPs 

was due to multivalent nanoparticle/receptor interactions by evaluating the effect of the 

HEP surface coating density on internalization. Since uncoated nanoparticles are prone 

to colloidal instability and substantial protein corona formation that may affect cellular 

interactions70–75, we first coated the nanoparticles with various amounts of HEP polymers. 

We then used a backfilling strategy to cover any uncoated surface with methoxy-terminated 

poly(ethylene glycol), PEG, thereby enhancing nanoparticle colloidal stability (Figure 5A 

and Figure S1). PEG is known to minimize non-specific protein adsorption on nanoparticle 

surfaces, and it is used in the clinic13,76. We characterized the coating process by measuring 

the hydrodynamic diameter and zeta potential with DLS. The data show that with HEP 

added at ≥0.5 HEP/nm2, there was no significant difference in the hydrodynamic diameter or 

the zeta potential values after PEG backfilling. At the added densities of <0.5 HEP/nm2, the 

hydrodynamic diameter and the zeta potential increased with the addition of PEG, indicating 

that the nanoparticles were successfully backfilled (Figure S31 and S33A–B). These results 

confirm that fully surface-coated nanoparticles with various HEP densities were generated 

successfully.

Next, we exposed the nanoparticles with various HEP surface coating densities to RAW 

264.7 macrophages and evaluated the corresponding uptake efficiencies qualitatively by 

light microscopy and quantitatively by ICP-MS (Figure 5B–E and Figure S33C–D). We 

observed that the interaction between the nanoparticles and the cells increased in a HEP 

surface coating density-dependent manner using light microscopy (Figure 5C–E and Figures 

S32–33D). We corroborated this observation quantitatively by ICP-MS. Our quantitative 

results demonstrate that the nanoparticle cellular uptake can be controlled by more than 

three orders of magnitude via varying the HEP surface coating density (Figure 5B and 

Figure S33C). Overall, our results suggest that the multivalent interactions strengthen 

with increased HEP surface coating density, leading to higher HEP-AuNP cell uptake. 

Manipulating the surface HEP coating density could provide a strategy for the controlled 

delivery of nanoparticles to innate immune cells.

In the current work, we studied the cellular uptake behavior and endocytosis pathways of 

HEP-AuNPs in innate immune cells, e.g., macrophages and dendritic cells, that are antigen-

presenting cells. Our results demonstrate that HEP-coated nanoparticles are endocytosed 

by cells in a time-dependent manner and internalized into intracellular vesicles through 

clathrin-mediated endocytosis and macropinocytosis. We found that some fraction of 

internalized nanoparticles could access the cytoplasm. The nanoparticle cellular uptake is 

strongly affected by the HEP surface coating density. This nanoparticle uptake can be 

controlled over three orders of magnitude through HEP surface coating density engineering. 

The ability to control the uptake of HEP-coated nanoparticles in innate immune cells 
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could enable the future development of safe, effective, and efficient nanoparticle-based 

immunotherapies and vaccines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The cellular uptake of heparosan (HEP) modified gold nanoparticles (AuNPs) is 
time-dependent.
(A) Representative brightfield light micrographs of HEP-AuNPs internalization in RAW 

264.7 macrophages at 0 h, 1 h, 3 h, and 9 h. Scale bar: 50 μm. (B) ICP-MS results of 55-nm 

HEP-AuNPs uptake in RAW 264.7 macrophages over time. The data points indicate mean 

values and standard deviation (n=3–4). (C) Real-time confocal laser scanning microscopy 

(CLSM) imaging of HEP-AuNP internalization in live RAW 264.7 macrophages. Scale bars: 

20 μm. (D) A representative individual cell image was selected from panel C. The right 

panel shows the AuNPs channel. Scale bars: 10 μm. (E) Transmission electron micrographs 

of 55-nm HEP-AuNP internalization in RAW 264.7 after 3 h, 6 h, and 24 h incubation. The 

insert at the bottom right corner of each micrograph shows a higher magnification view of 

the selected field of view sections. Scale bars: 500 nm.
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Figure 2: HEP-coated nanoparticles enter innate immune cells through endocytosis.
(A) Schematic representation of the uptake pathway study: (i) non-specific endocytosis 

inhibition to determine whether nanoparticle cellular uptake is energy-dependent. (ii-iv) 

Specific endocytosis inhibitors for studying (ii) caveolae-mediated endocytosis, (iii) clathrin-

mediated endocytosis, and (iv) macropinocytosis. (B-D) ICP-MS quantification of the 

nanoparticle cellular uptake in RAW 264.7 macrophages at 4°C (B), in the presence of 

ATPase inhibitor sodium azide (C), or chemical endocytosis inhibitors of caveolae-mediated 

endocytosis, clathrin-mediated endocytosis, and macropinocytosis (D). AuNPs modified 

with 13-kDa HEP (at 0.2 nM) were used as control without inhibitors at 37°C. Bars indicate 

mean ± SD (n=3–4); statistical tests used one-way ANOVA (p<0.0001 (****); p<0.0021 

(**); p<0.0332 (*).
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Figure 3: HEP-coated nanoparticles enter cells primarily through clathrin-mediated endocytosis 
and macropinocytosis.
(A) Schematic representation of HEP-AuNPs uptake through clathrin-mediated endocytosis 

or macropinocytosis. (B-C) ICP-MS was used to quantify the nanoparticle cellular uptake 

in RAW 264.7 macrophages upon inhibition with different concentrations of chlorpromazine 

(B; clathrin-mediated endocytosis) and cytochalasin D (C; macropinocytosis). Bars indicate 

mean values ± SD (n=3–4). The statistical analysis of groups with competitors showed 

p<0.0001 compared to the no-competitor group using one-way ANOVA. (D) Confocal 
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laser scanning micrographs of nanoparticle uptake in the presence of endocytosis inhibitors 

chlorpromazine or cytochalasin D along with non-inhibition control. Scale bar: 20 μm.
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Figure 4: Evaluation of structural HEP analog polymers as competitors for HEP-coated 
nanoparticle uptake.
(A) Schematic illustration of the experimental design. (B) ICP-MS was used to quantify 

the cellular uptake of HEP-AuNPs in the presence of HEP structural analogs: 0.1 mg/mL 

1,000-kDa HA, 160-kDa HA, 169-kDa HEP, heparin sulfate (HS), or heparin, and 1 mg/mL 

chondroitin sulfate A (CS A) or chondroitin sulfate C (CS C). The bars indicate mean values 

± SD (n=3–4). Statistical tests were performed using one-way ANOVA (p<0.0001 (****); 

p<0.0021 (**); p<0.0332 (*); n.s. indicates no statistically significant differences). (C-E) 

Representative brightfield light micrographs of HEP-AuNPs cell uptake in the presence of 

competitors. The inserted bar graphs represent the quantitative ICP-MS results. The bars 

indicate mean values ± SD (n=3–4). Scale bar: 50 μm. (F-G) ICP-MS was used to quantify 

the CS A competition efficiency to reduce HEP-AuNPs cellular uptake over time (F; 1 

mg/mL CS A was used) and various CS A concentrations (G). The graphs indicate mean 

values ± SD (n=3–4).
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Figure 5: Nanoparticle surface coating with HEP promotes multivalent interactions with innate 
immune cells.
(A) Schematic representation of the surface coating process. (i) The HEP polymers were 

added to the AuNPs with theoretical surface coating densities ranging from 0 to 14 

HEP/nm2. (ii) Backfilling of the nanoparticle surface was achieved by adding a constant 

saturating amount of PEG (adding the equivalent of 7 PEG/nm2) to generate HEP/PEG-

AuNPs. (B) The uptake efficiency was measured as a function of surface HEP density 

by ICP-MS. The data points indicate mean values ± SD (n=3–4). (C-E) Representative 

brightfield light micrographs of HEP/PEG-AuNPs in cells. The dark spots within cells 

indicate nanoparticle accumulation. The inserted bar graphs display the quantitative ICP-MS 

results of nanoparticle cell uptake. The data points indicate mean values ± SD (n=3–4). 

Scale bar: 50 μm.
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Table 1:

Summary of Endocytosis Inhibition Conditions used this Study.

Inhibitor Mechanism of Action* Function/Pathway* Condition/Concentration Ref.

Low temperature Lowers metabolism Non-specific endocytosis 4°C 27 

Sodium Azide (NaN3) Decreases ATP by inhibiting glycolysis Non-specific endocytosis 0.1% w/v 31 

N-ethylmaleimide 
(NEM)

Inactivates the ATPase Caveolae-mediated 
endocytosis

0.3 μg/mL 32–34

Indomethacin Increases [arachidonate] to prevent 
plasmalemmal vesicle formation

Caveolae-mediated 
and clathrin-dependent 
endocytosis

10 μg/mL 35 

Filipin Removes cholesterol from the plasma 
membrane

Caveolae-mediated and 
clathrin-independent 
endocytosis

5 μg/mL 36 

Chlorpromazine (CPZ) Unknown (AP2 inhibition?) Clathrin-mediated 
endocytosis

10 μg/mL 35,36

Chloroquine Rho GTPase inhibition Clathrin-mediated 
endocytosis

30 μg/mL 37 

Dynasore Blocks GTPase activity of dynamin Clathrin-mediated 
endocytosis

25 μg/mL 38 

Cytochalasin D (CD) Depolymerizes F-actin Macropinocytosis and 
phagocytosis

1 μg/mL 38,39

Imipramine Inhibits the ruffling of plasma 
membranes

Macropinocytosis 10 μg/mL 40 

Amiloride (EIPA) Inhibits Na+ channels and Na+/H+ 

exchange, F-action reorganization, 
pseudopodia retraction

Macropinocytosis and 
phagocytosis

10 or 20 μg/mL 41 

Cdc42/Rac1 Inhibits Cdc42 and Rac1 involved 
regulation of actin cytoskeleton 
organization

Phagocytosis 1.2 – 40 μg/mL 42,43

NSC23766 Inhibits the activity of Rac1 Phagocytosis 1.6 – 106 μg/mL 44–46

3-μm Polymeric 
Microspheres

Saturation of phagocytosis capacity Phagocytosis Microsphere to cell ratio of 
20:1

47 

Annexin V Masks exposed phosphatidylserine Phagocytosis 750 μg/mL 48–50

*
Information on the mechanisms of action and functions/pathways was adopted in part from reviews by Sheth et al., Rennick et al., and Almeida et 

al. 41,51,52.
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