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•  Background and Aims  Plant performance is enhanced by balancing above- and below-ground resource uptake 
through the intraspecific adjustment of leaf and root traits. It is assumed that these organ adjustments are at least 
partly coordinated, so that analogous leaf and root traits broadly covary. Understanding the extent of such intra-
specific leaf–root trait covariation would strongly contribute to our understanding of how plants match above- and 
below-ground resource use strategies as their environment changes, but comprehensive studies are lacking.
•  Methods  We measured analogous leaf and root traits from 11 species, as well as climate, soil and vegetation 
properties along a 1000-m elevation gradient in the French Alps. We determined how traits varied along the gra-
dient, to what extent this variation was determined by the way different traits respond to environmental cues acting 
at different spatial scales (i.e. within and between elevations), and whether trait pairs covaried within species.
•  Key Results  Leaf and root trait patterns strongly diverged: across the 11 species along the gradient, intraspe-
cific leaf trait patterns were largely consistent, whereas root trait patterns were highly idiosyncratic. We also ob-
served that, when compared with leaves, intraspecific variation was greater in root traits, due to the strong effects 
of the local environment (i.e. at the same elevation), while landscape-level effects (i.e. at different elevations) were 
minor. Overall, intraspecific trait correlations between analogous leaf and root traits were nearly absent.
•  Conclusions  Our study suggests that environmental gradients at the landscape level, as well as local heterogeneity 
in soil properties, are the drivers of a strong decoupling between analogous leaf and root traits within species. This 
decoupling of plant resource acquisition strategies highlights how plants can exhibit diverse whole-plant acclimation 
strategies to modify above- and below-ground resource uptake, improving their resilience to environmental change.

Key words: Elevation gradient, intraspecific trait variation, leaf traits, root traits, trait correlations, trait 
covariation.

INTRODUCTION

Plants can regulate the use and uptake of light, carbon, water 
and nutrients to grow and survive (Cannell and Dewar, 1994) 
via an adjustment of functional traits (Sultan, 2000). To better 
understand this balance in resource use and uptake, several 
studies examined above- and below-ground trait covariation 
across species, based on the assumptions that plants adopt the 
same acquisitive or conservative resource strategy both above- 
and below-ground, and that analogous traits of leaves and ab-
sorptive roots are similarly involved in resource acquisition 
strategies (Mommer and Weemstra, 2012; Reich, 2014). For ex-
ample, species with an acquisitive resource strategy need to ef-
ficiently intercept both above- and below-ground resources via 
large, thin leaves with a high specific leaf area (SLA, leaf area 
per dry mass) and long, thin roots of high specific root length 
(SRL, root length per root dry mass, i.e. the below-ground ana-
logue of SLA). In contrast, species with a conservative strategy 
would need both robust and long-lived (e.g. thick, dense) leaves 
and roots to retain plant resources above- and below-ground 
(Reich, 2014), leading to interspecific covariation between 

SLA and SRL, leaf and root thickness, and leaf and root tissue 
density (RTD, root mass per unit root volume) (Liu et  al., 
2010). As plants need both above- and below-ground resources, 
determining whether leaf and root traits are coordinated along 
this acquisitive–conservative continuum would lead to a better 
understanding of whole-plant functioning across environments, 
compared with examining leaves and roots in isolation (De 
Kroon et al., 2005).

Several studies have shown that across species these ac-
quisitive–conservative strategies are generally not coordinated 
above- and below-ground (Fortunel et  al., 2012; Valverde-
Barrantes et al., 2015; Medeiros et al., 2017; Carmona et al., 
2021; Vleminckx et al., 2021; Weigelt et al., 2021). A recent 
global meta-analysis showed that some analogous leaf and root 
trait pairs [e.g. leaf and root nitrogen (N) concentration] are 
correlated but others are not (e.g. SLA and SRL) (Weigelt et al., 
2021). A  likely explanation of this decoupling is that, while 
species generally adjust a single syndrome of covarying leaf 
traits to improve the acquisition of above-ground resources (i.e. 
high SLA, high leaf N concentration, high photosynthetic rates 
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and short leaf lifespans), they may adjust a variety of root traits 
to enhance below-ground resource uptake, e.g. by  increasing 
SRL and decreasing root diameter to enhance soil exploration 
and exploitation by roots, or decreasing SRL and increasing 
root diameter to acquire nutrients via the mycorrhizal pathway 
(Weemstra et al., 2016; Bergmann et al., 2020), so that analo-
gous traits do not correlate (Weigelt et al., 2021). Such recent 
insights on leaf–root trait covariation (or lack thereof) are pri-
marily established across species (e.g. Weigelt et  al., 2021), 
but traits also vary within species. This intraspecific trait vari-
ation allows individuals of the same species to acquire and 
conserve resources across resource gradients and cope with en-
vironmental changes (Sultan, 2000; Hoffmann and Sgrò, 2011; 
Liancourt et al., 2015; Stotz et al., 2021). 

The degree of intraspecific positive covariation between 
analogous leaf and root traits (i.e. analogous traits changing in 
the same direction) depends on how and to what extent these 
traits vary with the environment, and whether this occurs in the 
same direction. In general, patterns in intraspecific trait vari-
ation along environmental gradients are predicted based on 
plant resource economics (Grime, 1977). Following these prin-
ciples, as environments become colder, drier and/or less fer-
tile, leaves generally become more conservative (i.e. thicker, 
denser and with lower SLA), resulting in reduced leaf turnover 
rates but maintaining resources invested in plant tissue. On 
more productive sites, leaf traits become more acquisitive (with 
opposite trait values), so that readily available resources can 
be rapidly acquired (Grime, 1977; Ordoñez et al., 2009). For 
root traits, similar hypotheses have been formulated, predicting 
that root trait expressions shift from conservative (i.e. thicker, 
denser roots with lower SRL) to acquisitive (i.e. thin, less dense 
and high-SRL roots) as resource availability increases (Ryser, 
1996; Eissenstat, 2000). As resource availability decreases, 
plants would therefore have lower SLA and SRL and thicker 
and denser leaves and roots to conserve resources, and on more 
productive sites opposite traits would be displayed that improve 
resource acquisition, leading to positive intraspecific trait co-
variation along resource gradients. Despite these hypotheses, 
however, the degree of such intraspecific covariation between 
analogous leaf and root traits remains largely untested, espe-
cially among large numbers of species. For example, several 
studies reported no intraspecific relationships between analo-
gous leaf and root traits (e.g. SRL and SLA; root N and leaf 
N; leaf tissue density and RTD) along environmental gradients 
(Freschet et al., 2013; Isaac et al., 2017) or between conspecific 
plants with different provenances (Hajek et al., 2013), but these 
studies tested plants from only one (Hajek et al., 2013; Isaac 
et al., 2017; Martin et al., 2019; Borden et al., 2020) or three 
(Freschet et al., 2013) woody and non-woody species.

There are several possible reasons behind a lack of intraspe-
cific leaf–root trait covariation. Firstly, it may result from dif-
ferent environmental drivers of variation in analogous leaf and 
root traits, and if these drivers vary in opposite directions along 
the same environmental gradient this may decouple the intra-
specific covariation between leaf and root traits (Freschet et al., 
2013; Isaac et  al., 2017; Westerband et  al., 2021). Secondly, 
intraspecific root trait variation along environmental gradients 
often does not follow the patterns predicted by plant resource 
economics (but see Hajek et al., 2013; Isaac et al., 2017) and 

is usually highly idiosyncratic among species (Kumordzi et al., 
2019; Zhou et al., 2019; Weemstra et al., 2021). This disparity 
in responses is potentially because many root traits can be ad-
justed to acquire resources depending on the local (biotic and 
abiotic) soil environment (Freschet et  al., 2018; Weemstra 
et  al., 2021). For example, in contrast to leaves, which are 
mostly optimized for light interception while controlling water 
loss, roots acquire various nutrients and water, which differ in 
their mobility and spatial distribution in the soil matrix, which 
will in turn select for different trait expressions, depending 
on the most limiting resource (Weemstra et  al., 2016). Also, 
interactions with soil biota, in particular mycorrhizal fungi, fur-
ther complicate our understanding of below-ground resource 
uptake and the root traits involved. As a result of this below-
ground multidimensionality, a wide range of viable root trait 
combinations, combined with more consistent and less variable 
patterns in leaf trait variation, would in turn weaken intraspe-
cific leaf–root trait relationships across environments. Thirdly, 
intraspecific correlations between leaf and root traits could be 
reduced further if leaves and roots respond to environmental 
variations at different spatial or temporal scales but were quan-
tified at the same scales (Read et al., 2017). Spatially, for ex-
ample, root traits often vary strongly locally (Defrenne et al., 
2019; Weemstra et al., 2021), probably because the soil envir-
onment can be highly heterogeneous at very small spatial scales 
(Ettema and Wardle, 2002). If drivers at such a small scale have 
strong effects on root trait expression, trait patterns can be-
come unclear along larger spatial scales. In a previous study we 
showed that, along an elevation gradient, intraspecific root trait 
variation was more strongly determined locally (i.e. between 
conspecific plants at the same altitude) than at the landscape 
scale (i.e. between conspecifics at different altitudes), thereby 
weakening the elevation effect on root traits (Weemstra et al., 
2021). In comparison, the drivers of intraspecific leaf trait vari-
ation (e.g. temperature, water availability; Poorter et al., 2009) 
vary more strongly at larger spatial scales, so that intraspecific 
leaf trait variation might be more consistent across species at 
the landscape level. Therefore, we hypothesize that along the 
same environmental gradient, root trait variation displays a 
strong response to the local environment, but a weak response 
to landscape-level environmental variables, and vice versa for 
leaves, which should reduce intraspecific leaf–root trait correl-
ations along a common gradient.

By quantifying intraspecific covariation between analo-
gous leaf and root traits along an elevation gradient, this 
study seeks to improve our understanding of how plants of 
the same species balance above- and below-ground resource 
uptake and to what extent this coupling or decoupling is de-
termined by different leaf and root trait responses to environ-
mental variation. Elevation gradients are considered valuable 
systems to examine plant responses to environmental change 
(Sundqvist et  al., 2013), because with elevation a multitude 
of climate and soil variables that impact plant performance 
change within a relatively small distance. For example, high 
altitudes are colder, and their soils usually have more hetero-
geneous nutrient distributions (Holtmeier and Broll, 2005) and 
are less fertile than soils at lower altitudes (Sveinbjornsson 
et al., 1995), as cooler temperatures slow down microbial ac-
tivity (Loomis et al., 2006; Mayor et al., 2017), mineralization 
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rates (Sveinbjornsson et  al., 1995) and litter decomposition 
(Moore, 1986; Loomis et al., 2006; See et al., 2019). Along 
a 1000-m elevation gradient, we test three hypotheses related 
to intra- and interspecific covariation between morphological 
leaf traits and analogous root traits [SLA and SRL, leaf thick-
ness and root diameter, leaf dry matter content (LDMC, leaf 
dry mass/leaf fresh mass) and RTD], across 11 species. First, 
we hypothesize (H1) that within species, leaf traits vary more 
predictably and consistently along the elevation gradient and 
with associated climatic changes (e.g. temperature and precipi-
tation) than root traits. We expect that leaf trait adjustments 
mostly align along a single axis of acquisitive–conservative 
resource strategies, so that, with increasing elevation (and 
lower temperatures), SLA decreases, while leaf thickness and 
LDMC increase, as opposed to root traits showing variable re-
sponses among species along the same environmental gradient 
(Weemstra et  al., 2021). Second, we hypothesize (H2) that, 
overall, leaf traits display lower local variation (i.e. at the same 
elevation) and greater variation at the landscape scale (i.e. be-
tween elevations) than root traits. Third, we hypothesize (H3) 
that, following on from H1 and H2, analogous leaf and root 
trait pairs will not be significantly correlated within species 
along the gradient.

MATERIALS AND METHODS

Study site characterization and sampling

Our study site was situated along an elevation gradient be-
tween 1400 and 2400 m a.s.l. on a south-west-facing slope, lo-
cated in the Belledonne Massif in the French Alps (45°7′1″N, 
5°53′35″E). Bedrock along the gradient was composed of 
Variscan metamorphic rocks and ophiolitic complexes (Ménot, 
1988; Guillot et al., 1992). Climatic data [mean annual tempera-
ture (MAT) and mean annual precipitation (MAP), including 
snow] were obtained from the Digitalis database (Laboratoire 
SILVA, Université de Lorraine-AgroParisTech-INRAE). Mean 
annual temperature and MAP were modelled and mapped using 
the Aurelhy model, which estimates climate data to a resolution 
of 1 km2 based on spatially distributed variables that charac-
terize the geography, topography (altitude, slope, exposure, dis-
tance to the sea) and land use at our study site (Bertrand et al., 
2011; Piedallu et al., 2013, 2016, 2019; Stokes et al., 2021). 
From 1400 to 2400 m a.s.l., MAT decreased from 8.5 to 5.7 °C, 
MAP increased from 1024 to 1187 mm, and the length of the 
growing season (i.e. number of months when the mean monthly 
temperature exceeded 5 °C; Jones and Briffa, 1995) decreased 
from 7.7 to 6.5 months (Supplementary Data Table S1) and was 
highly correlated with MAT (Pearson r = 1, P < 0.001, n = 11). 
Sites at 2400 m a.s.l. were slightly warmer and received less 
rainfall than the sites at 2200 and 2300 m a.s.l. (Stokes et al., 
2021); this is counterintuitive and may be caused by the reso-
lution of the climate models used, but these differences were 
small. The treeline lies between 2000 and 2100  m a.s.l. and 
is defined by the replacement of acidophilous Picea abies 
forests (Vaccinio myrtilli-Piceetea abietis) and codominant 
Pinus uncinata and P. cembra trees (Petitcolas et al., 1997) by 
arctico-alpine heath and grasslands dominated by Vaccinium 
spp., Juniperus communis, and graminoids including Carex 

sempervirens, Festuca spp. and Nardus stricta (Bardat et  al., 
2004; F. Anthelme, pers. obs.).

Along the elevation gradient (between 1400 and 2400  m 
a.s.l.), five 20 × 20 m replicate plots were established every 
100 m (Stokes et al., 2021). These plots were similar in slope 
(17.5 ± 5.6°) and aspect (south-west) and were located at an 
average distance of 100 m from each other below the treeline 
and 50 m between plots above the treeline. A botanical survey 
was performed on each plot and vascular plants were identified 
at the species level following the Flora Helvetica (Lauber et al., 
2018). The ground cover of trees, shrubs, herbs, bryophytes, 
rocks and bare soil was estimated, and vegetation ground cover 
(i.e. the percentage of ground surface covered by vegetation 
versus bare soil) significantly decreased with increasing ele-
vation (Stokes et  al., 2021; Weemstra et  al., 2021). Ten soil 
samples were collected from the top 10 cm of soil below the 
litter layer in each plot because, in general, most nutrients are 
concentrated in the topsoil and because at high elevations soils 
were shallow, making soil samples more comparable across 
altitudes. Samples were pooled per elevation, air-dried and 
sieved to 2 mm, and their soil texture (sand, loam and clay con-
tent; g kg−1), total soil organic carbon (soil C; g kg−1), nitrogen 
(soil N; g kg−1) and phosphorus (soil P; g kg−1) contents, soil 
pH and cation exchange capacity (CEC; cmol+ kg−1) were de-
termined as described by Weemstra et al. (2021).

Trait measurements

In June and July 2018, we sampled mature plants from 11 
vascular species (Table 1). Species were selected to comprise 
different growth forms (grasses, forbs, shrubs and trees) and 
to occur across a range of consecutive elevations; the number 
of species sampled per elevation ranged from five to 11 (Table 
1). To only sample exposed leaves, understorey plants (grasses, 
forbs and shrubs) were mostly sampled from gaps where 
they were not (fully) covered by trees. For each elevation, we 
aimed to sample one plant per species in each of the five rep-
licate plots, leading to five individuals per species per altitude. 
However, not all species were present at all elevations, and we 
only found three or four individuals of some species per eleva-
tion, resulting in a total of 434 plants measured (Table 1).

Collected plants (herbaceous species) or branches (woody 
species) with leaves attached were stored cooled in moist 
plastic bags during the field work and were rehydrated over-
night in water at 4 °C until further analysis (Cruz-Maldonado 
et al., 2021). Within 24 h of collection in the field, we selected 
between 5 and 25 healthy, fully expanded leaves without peti-
oles from each individual. The number of leaves depended 
on leaf size (Gentiana acaulis and Homogyne alpina, five 
leaves; Peucedanum ostruthium, six leaves; four grass species, 
Vaccinium myrtillus and Sorbus aucuparia, ten leaves; Picea 
abies and Juniperus communis, 25 needles). Selected leaves 
were weighed to determine fresh weight and the flat leaf sur-
face area was scanned with a flatbed scanner at 300 dpi (Canon 
MG3010 PIXMA). The total area of the scanned leaves was 
determined using ImageJ software (http://rsbweb.nih.gov/ij/). 
For most species, leaf thickness was measured on the scanned 
leaves and on one (J. communis), two (Anthoxanthum odoratum, 
V. myrtillus), or three locations on the leaf lamina using a digital 
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micrometer (QuantuMike-IP65, Mitutoyo, Japan) and averaged 
at the individual level, with the number of measurements de-
pending on the leaf size. For species with small, round leaves 
(Deschampsia flexuosa, Nardus stricta and P. abies), we could 
not accurately measure leaf thickness with the micrometer, so 
we calculated leaf thickness as 1/SLA  ×  LDMC (Vile et  al., 
2005). For all other plants, the strong correlation between 
measured and calculated leaf thickness (Pearson r = 0.95, 
P < 0.001) demonstrates that this equation predicts thickness 
accurately. Leaves were then oven-dried (48 h at 60 °C), and 
their dry weight was determined. For each plant, SLA was cal-
culated as the total area divided by the total dry weight of the 
sampled leaves, and LDMC was calculated as leaf dry weight 
divided by the leaf fresh weight.

Root trait data were obtained from Weemstra et al. (2021). 
In short, roots were collected from the same individuals as the 
leaves, and carefully dug out from the top 15-cm soil horizon 
and below the litter layer. For herbaceous species, the whole 
root system was dug up, while for woody species we col-
lected three to five coarse roots with fine roots attached. From 
the sampled roots, we selected a subset of healthy absorptive 
(i.e. first- to third-order) roots with largely intact tips that were 
representative of the whole absorptive root system of a plant. 
The selected roots were washed and scanned at 800 dpi using a 
flatbed scanner (Epson Perfection V800 Photo); for grasses and 
forbs, roots were stained with methyl violet (5 g L−1) prior to 
scanning to improve contrast. After root samples were scanned, 
they were oven-dried (60 °C, 48 h) and their dry mass was de-
termined. Root scans were analysed with WinRhizo Pro (ver-
sion 2009c; Regent Instruments, Canada) to obtain data on the 
root length and root volume in different diameter classes (from 
0 to 2 mm diameter with 0.1 mm bin size). From these data, 
we determined SRL, mean root diameter and RTD (root dry 
mass/total root fresh volume in diameter classes) (Rose, 2017; 
Freschet et al., 2021).

Statistical analyses

All statistical tests described were conducted here for leaf 
traits. Root trait analyses were carried out with the same stat-
istical approaches and models as those described by Weemstra 
et al. (2021), to test our hypotheses and compare intraspecific 
leaf and root trait (co)variation. All analyses were carried out in 
R Statistical Software (R Core Team, 2021).

For our first hypothesis (H1), we tested intraspecific rela-
tionships between leaf traits and elevation, or environmental 
properties, with a linear regression model with the trait as de-
pendent, and elevation, or a single environmental property, 
as independent variable. We were unable to apply multiple 
regression models within non-linear effects, as we lacked a 
priori predictions and information regarding non-linear trait–
environment relationships. We applied linear or second-degree 
polynomial models for each leaf trait and each species de-
pending on their Akaike information criterion (AIC; Akaike, 
1974). The environmental variables tested included MAT, 
MAP, CEC, soil N content, pH, sand content and vegetation 
ground cover, which all reflect different elements of the plant’s 
environment (e.g. temperature, water and nutrient supply, and 
the degree of resource competition among plants). Regarding 
soil texture, we only included sand content in our analyses, 
because this was strongly and negatively correlated to soil 
clay and loam content (Pearson r = −0.85, P = 0.001 for both 
sand–clay, and sand–loam correlations across 11 elevations). 
We also tested the relationships between leaf traits and eleva-
tion and environmental variables across all plants of all spe-
cies (n = 427 plants). For these tests, we ran mixed-effects 
models using the lme4 package (Bates et al., 2015) with trait 
as dependent variable, and elevation or an environmental prop-
erty as independent fixed factor, and species identity nested in 
growth form as random intercepts to account for the depend-
ence between plants of the same species and/or growth form 
(grasses, forbs, shrubs and trees). We tested the significance of 
the slopes but not of the intercept.

To test whether leaves and roots responded to environmental 
variations at different spatial scales  (i.e. H2), we partitioned 
the overall variance (i.e. across all plants) within each trait 

Table 1.  Study species, occurrence and sampling range along elevations.

Species Species abbreviation MF Family Growth form Elevation (m a.s.l.) Sampling range (m a.s.l.) n per trait 

Anthoxanthum odoratum AODOR AMa Poaceae Grass 0–3100 1400–2000 34
Carex sempervirens CSEMP AM + NMa,b Cyperaceae Grass 1500–2400 1800–2400 35
Deschampsia flexuosa DFLEX AMa Poaceae Grass 300–2800 1400–2400 53
Nardus stricta NSTRI AMa Poaceae Grass 400–3000 1700–2400 39
Gentiana acaulis GACAU AMb Gentianaceae Forb 1400–3000 1700–2400 27
Homogyne alpina HALPI AM + EcMb Asteraceae Forb 0–3000 1700–2400 40
Peucedanum ostruthium POSTR AMb Apiaceae Forb 1000–2900 1500–2400 40
Juniperus communis JCOMM AMa Cupressaceae Shrub 0–2500 1700–2400 40
Vaccinium myrtillus VMYRT ErMa Ericaceae Shrub 0–2800 1400–2400 54
Picea abies PABIE EcMa Pinaceae Tree 0–2200 1400–2000 35
Sorbus aucuparia SAUCU AMa Rosaceae Tree 0–2000 1400–1900 30

aAkhmetzhanova et al. (2012).
bHempel et al. (2013).
MF, mycorrhizal association (AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; ErM, ericoid mycorrhizal; NM, non-mycorrhizal).
Elevation (m a.s.l.): elevation at which a species occurs in the French Alps (www.FloreAlpes.com, 2019).
Sampling range (m a.s.l.): range of elevations at which each species was sampled.
n per trait: number of observations per species per trait.

https://www.FloreAlpes.com
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across four hierarchical levels: growth form, species, conspe-
cific plants at different elevations (representing the landscape 
level), and conspecific plants sampled at the same elevations 
(i.e. the local scale). To this end, we applied a linear mixed 
model to partition the variance in traits with a given trait as the 
dependent factor and only random effects (‘elevation’ (i.e. con-
specific plants between elevations) nested in ‘species’ nested in 
‘growth form’). The remaining variance was partly explained 
by trait differences between conspecific plants growing in dif-
ferent replicate plots at the same elevation (Albert et al., 2010; 
Weemstra et al., 2021) and partly by unexplained variation in 
data. To determine whether hierarchical levels had different ef-
fects on leaf versus root traits, we ran Welch’s t-test to compare 
the mean percentage of root and leaf trait variance explained by 
growth form, species, conspecifics at different elevation, and 
conspecifics at the same elevation.

For our third hypothesis (H3), we tested bivariate intra-
specific relationships between the trait pairs of interest, that 
is, leaf–root trait correlation. Therefore, we ran standardized 
major axis (SMA) regression using the sma function in the 
smatr package (Warton et al., 2012) across the mean trait values 
per elevation for each individual species [i.e. averaged among 
replicate plants at the same elevation, n = 5–11, depending on 
the number of elevations at which a species was sampled (Table 
1)]. Furthermore, we used SMA regression to test intraspecific 
leaf–root trait covariation within elevations across conspecific 
replicate plants (i.e. sampled at the five replicate plots) at the 
same altitude. We used SMA regressions because, unlike simple 
linear regressions, they do not assume a unidirectional effect of 
one parameter over the other; as we focus on the direction and 

strength of trait covariation, we tested only the significance of 
the slope of this relationship. We also tested interspecific leaf–
root trait correlations across species’ trait means across all alti-
tudes (n = 11) and within altitudes (n depending on the number 
of species per elevation; Table 1) using SMA regression.

RESULTS

Intraspecific trait variation with elevation and environment

Within species, leaf traits varied significantly with elevation 
for most species (Fig. 1A–C; Supplementary Data Table S2). 
With increasing elevation, SLA most often decreased (seven 
species), and leaf thickness (five species) and LDMC (six spe-
cies) mostly increased, but within some species certain leaf traits 
had non-linear or non-significant relationships with elevation. 
Elevation explained on average 37, 25 and 21 % of the intraspe-
cific variation in SLA, leaf thickness and LDMC across all spe-
cies, respectively (Supplementary Data Table S2). Intraspecific 
leaf trait patterns were also related to environmental properties. 
For more than half of the species, leaf trait variation was sig-
nificantly related to MAT, MAP and vegetation cover (Table 
2; Supplementary Data Fig. S1), explaining on average 18, 25 
and 25  % of their variation (Supplementary Data Table S2). 
For fewer species, leaf traits were significantly related to soil 
properties (CEC, soil N, soil pH and sand content), explaining 
10–15 % of the intraspecific leaf trait variation averaged across 
all species. These intraspecific leaf trait patterns were largely 
consistent among species: SLA increased and leaf thickness and 
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Fig. 1.  Across (black line)- and within (coloured lines)-species variation in (A–C) leaf and (D–F) root traits with elevation. Points indicate trait data of indi-
vidual plants along the elevation gradient, and regression lines indicate significant relationships (P < 0.05) between a trait and elevation. Different colours mark 
different species and different colour hues indicate functional types (light green, grasses; purple, forbs; dark green, shrubs; blue, trees). The black line represents 
relationships between traits of individuals of all species and all elevations. Non-significant relationships are not shown. Test statistics for leaves are presented in 
Supplementary Data Table S2, and those for roots were obtained from Weemstra et al. (2021). AODOR, Anthoxanthum odoratum; CSEMP, Carex sempervirens; 
DFLEX, Deschampsia flexuosa; NSTRI, Nardus stricta; GACAU, Gentiana acaulis; HALPI, Homogyne alpine; POSTR, Peucedanum ostruthium; JCOMM, 
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LDMC decreased, especially with higher temperatures, lower 
rainfall and greater vegetation cover (Table 2; Supplementary 
Data Table S2, Supplementary Data Fig. S1). The same trait 
patterns were observed in relation to soil properties that reflect 
greater nutrient availability (i.e. higher CEC, lower soil pH and 
sand content), but these relationships were significant for only 
one to four species.

Intraspecific variation in root traits was less consistent than 
in leaf traits: it was significantly related to elevation for six to 
eight species, depending on the root trait, but among species 
these patterns differed strongly in direction and were often 
non-linear (Fig. 1D–F). Relative to leaf traits, elevation ex-
plained less of the intraspecific variation in SRL, root diam-
eter and RTD: on average 17, 15 and 13 %, respectively, across 
all species (Weemstra et al., 2021). Within species, root traits 
most frequently varied with the same environmental properties 
as leaf traits, i.e. MAT, MAP and vegetation cover, but these 
relationships were weaker, explaining on average 12, 14 and 
11 %, respectively, across all species (Table 2; Supplementary 
Data Fig. S1; Weemstra et al., 2021). Like leaves, root traits 
were significantly related to soil properties within only a few 
species, and soil variables explained 5–9 % of the intraspecific 
variation in root traits across all species. Compared with leaf 
traits, patterns in intraspecific root trait variation with environ-
mental variation were highly variable across species: all root 
traits showed differential responses to the same environmental 
properties depending on the species.

Variation in leaf and root traits across hierarchical levels

Overall intraspecific differences (i.e. between conspecific 
plants both across and within elevations) tended to have a 

smaller impact on overall leaf trait variation than on root trait 
variation (Fig. 2). Intraspecific trait variation between conspe-
cifics at different (i.e. ITVbetween in Fig. 2) and at the same eleva-
tions (ITVwithin in Fig. 2) together explained 12–20 % of the leaf 
trait variation versus 22–48 % of the root trait variation (mean 
across leaf traits, 15 %; mean across root traits, 36 %; t = −2.55, 
d.f. = 2.4, P = 0.10). For each of the individual leaf and root 
traits, the relative effect of local trait differences (i.e. within ele-
vations) on overall trait variation was 2–4 times larger than the 
contribution of landscape-level (i.e. between elevations) trait 
differences (Fig. 2: mean leaf ITVbetween, 4.8  % versus mean 
leaf ITVwithin, 10.3 %, t = −2.9, d.f. = 3.4, P = 0.05; mean root 
ITVbetween, 7.4 % versus mean root ITVwithin 28.2 %, t = −3.3, 
d.f. = 2.4, P = 0.06). The strength of the effects of intraspe-
cific variation at the landscape level did not differ significantly 
between leaf and root traits (Fig. 2: mean ITVbetween of leaves 
versus roots, t = −1.1, P = 0.35). Intraspecific variation at the 
local scale tended to have a larger impact on root traits than leaf 
traits (Fig. 2: mean ITVwithin of leaves versus roots, t = −2.9, 
P = 0.09).

The overall variation in leaf and root traits (i.e. across all 
plants of all species, represented by coefficients of trait vari-
ation in Fig. 2) was highest for SRL, SLA and leaf thickness, 
and lower for LDMC, root diameter and RTD. It was also pre-
dominantly explained by species’ identity, but more so for 
leaves (explaining 44–87 % of overall leaf trait variation, and 
the mean across leaf traits = 70 %) than roots (23–69 %, with 
the mean across root traits = 50%) (Fig. 2). Growth form iden-
tity explained no variation in SLA and leaf thickness and played 
only a small role in the variation of SRL and root diameter, but 
was one of the major sources of overall trait variation in both 
LDMC and RTD, explaining 44 and 29 % of their variation, 
respectively.

Table 2.  Significant intraspecific relationships between leaf (green lines) and root traits (brown lines) and environmental variables. 
Line directions indicate the shape of the relationship between traits and environmental properties; line widths indicate the number of 
species that showed the respective response, as explained in the key. MAT, mean annual temperature; MAP, mean annual precipitation; 
CEC, cation exchange capacity; Sand, soil sand content; pH, soil pH; Soil N, soil nitrogen concentration; Cover, vegetation cover; SLA, 
specific leaf area; SRL, specific root length; LTh, leaf thickness; RD, root diameter; LDMC, leaf dry matter content; RTD, root tissue 
density. Statistics for leaf trait regressions are presented in Supplementary Data Table S2, and data points and regression lines for indi-

vidual plants in Supplementary Data Fig. S1, and for roots they were obtained from Weemstra et al. (2021).
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Intra- and interspecific trait covariation

Within our 11 study species, analogous leaf and root traits 
covaried significantly for few species and trait pairs: across ele-
vations, we found significant, positive intraspecific covariations 
between SLA and SRL for A. odoratum and D. flexuosa, and 
between LDMC and RTD for A. odoratum but not for any other 
species, and not for relationships between leaf thickness and 
root diameter (Fig. 3; Supplementary Data Table S3). Within 
elevations (i.e. across conspecific replicate plants at the same 
altitude), we found eight instances of significant, positive trait 
covariations, and they occurred for all three analogous traits 
pairs, at five different elevations (1500, 1600, 1900, 2000 and 
2200 m a.s.l.), and within five different species (A. odoratum, 

C.  sempervirens, G.  acaulis, P.  ostruthium and V.  myrtillus) 
(Supplementary Data Table S4). Another five correlations were 
significant and negative, and these were observed across all 
three trait pairs, at four altitudes (1800, 1900, 2100 and 2400 m 
a.s.l.), and within five species (C.  sempervirens, D.  flexuosa, 
N. stricta, P. ostruthium and J. communis).

Interspecific covariation between analogous leaf and root 
traits was overall (i.e. across elevations) significant and posi-
tive for SLA and SRL, and for leaf thickness and root diam-
eter, and marginally significant for LDMC and RTD (Fig. 3; 
Supplementary Data Table S3). Interspecific leaf–root trait 
covariation within elevations was also (close to) significant 
and positive within all altitudes for SLA–SRL, and for leaf 
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thickness–root diameter, but significant and positive within 
only two elevations for LDMC–RTD (Supplementary Data 
Table S5). On average, across species, intra-elevational co-
variation was similar in direction (positive), strength and ex-
planatory power (i.e. mean slope = 0.25, 1.72 and 1.14; mean 
R2 = 0.70, 0.69 and 0.26 for covariations between SLA–SRL, 
leaf thickness–root diameter, and LDMC–RTD, respectively; 
Supplementary Data Table S5) to inter-elevation covariation 
(Supplementary Data Table S3). Across species, SLA was 
negatively correlated with leaf thickness and LDMC (leaf 
thickness and LDMC were not significantly correlated), and 
SRL negatively correlated with root diameter, but not with 
RTD (root diameter and RTD did not correlate significantly) 
(Supplementary Data Table S6).

DISCUSSION

Within species, leaf traits varied more consistently than root traits 
along the elevation gradient

In line with H1, intraspecific trait patterns along the 1000-m 
elevation gradient were far more consistent for leaves than roots 
across the 11 species. Whereas root trait patterns were highly 
idiosyncratic between elevations, leaf traits generally varied as 
hypothesized, with plants having lower SLA and denser and 
thicker leaves at higher elevations. Similar and largely consistent 
intraspecific relationships between leaf traits and elevation were 
also observed for the majority of species by Cruz-Maldonado 
et al. (2021) and Kichenin et al. (2013). Albert et al. (2010), 
however, reported more diverse intraspecific leaf trait patterns 
across 15 species along a 300- to 1000-m gradient in the French 
Alps. These authors argued that these variable leaf trait re-
sponses to elevation can be attributed to species being sampled 
at different positions along their distribution range. Assuming 
that the trait variation of a given species follows a bell-shaped 
curve along its distribution range, with the highest trait values 
at the species’ environmental optimum, sampling this species 
at the lower or higher end of its environmental range would 
thus show a positive or negative trait–environment relationship, 
respectively (Albert et al., 2010). While our study species have 
also been sampled at different parts of their elevational distri-
bution range (Table 1), the intraspecific leaf trait patterns ob-
served here were highly similar across species, as we expected.

The patterns that we observed with changing elevation likely 
reflect leaf trait adjustments to environmental changes along 
the gradient. For example, plants of almost all species pro-
duced thicker, denser and smaller leaves in response to lower 
temperatures at higher altitudes, which may be associated with 
the construction of leaves with thicker cell walls (Körner et al., 
1989) and a reduction in leaf size to reduce the risk of frost 
damage (Wright et  al., 2017). Such cold-tolerant leaves can 
reflect a more conservative resource strategy to reduce tissue 
turnover and thus retain plant resources, but may also result 
from physiological constraints, as leaf cell division may be 
temperature-limited (Körner et al., 1989). However, other re-
lationships between leaf traits and environmental properties 
were not in line with resource economics theory. Leaf resource 
economics predicts conservative leaf traits on dry sites (Poorter 
et al., 2009) to reduce water loss through transpiration, and to 

lower the risk of wilting (Wright et al., 2001; Ackerly, 2004), 
and on soils with low nutrient availability (reflected here by low 
CEC, high soil pH, high sand content and low soil N concentra-
tion at high-elevation sites) (Freschet et al., 2015). In contrast, 
we observed more conservative leaf traits on sites with greater 
precipitation, and only a few species possessed more conser-
vative leaves on less fertile soils, which supports results from 
previous studies (Poorter et  al., 2009; Walters and Gerlach, 
2013). Possibly, along our elevation gradient, temperature ef-
fects offset the impacts of the other (a)biotic variables (such as 
precipitation and soil fertility) on leaf traits since it is generally 
a stronger driver of intraspecific leaf trait variation than water 
or nutrient availability (Körner et al., 1989; Poorter et al., 2009; 
Stotz et al., 2021).

The environmental drivers of leaf and root traits did not ex-
plain the consistent versus variable intraspecific leaf and root 
trait patterns along the gradient as proposed by Westerband 
et al. (2021), because roots varied mostly with the same envir-
onmental variables as leaves (i.e. MAT, MAP and vegetation 
cover). However, compared with leaf traits, fewer species had 
altered root traits in response to these environmental variables 
and these relationships were weaker and far more variable. 
For example, the effect of precipitation on leaf thickness was 
positive (six species) or U-shaped (one species), while on root 
diameter it was positive (two species), negative (one species), 
U-shaped (one species) or bell-shaped (three species). Other 
studies also reported highly variable root trait patterns along 
environmental gradients (Kumordzi et  al., 2019; Roybal and 
Butterfield, 2019; Zhou et al., 2019; but see Isaac et al., 2017), 
and this may result from the various ways in which roots respond 
to the below-ground environment. Across species, a far greater 
variety of viable root trait combinations exists (Kramer-Walter 
et al., 2016), including mycorrhizal symbiosis, compared with 
leaf traits, which generally covary in tight syndromes (Reich 
et al., 1997; Wright et al., 2004). This phenomenon may also 
occur within species, as suggested by our and previous studies 
in natural and agro-ecological systems (Roybal and Butterfield, 
2019; Kumordzi et al., 2019; Zhou et al., 2019; Borden et al., 
2020), leading to a variety of intraspecific below-ground adjust-
ments combined with more similar leaf trait responses across 
elevations with different environments.

Root and leaf traits vary at different spatial scales, leading to 
divergent trait patterns along an elevation gradient

We hypothesized (H2) that within species, leaf traits display 
less variability at a local level (i.e. at the same elevation) but 
greater variability at the landscape scale (i.e. between eleva-
tions), compared with root traits. This variability was expected 
to be due to drivers of leaf trait variation such as temperature 
varying predominantly at larger spatial scales, while soil-
related drivers of root trait variation are highly heterogeneous 
at small spatial scales. This hypothesis was only partly sup-
ported by our data. In contrast to H2, the degree of trait vari-
ation at the landscape level was similar for leaves and roots, 
even though trait patterns along the gradient were far more con-
sistent for leaves than for roots. In line with H2, however, local 
effects were stronger for roots than for leaves, which may be 
associated with the small-scale environmental heterogeneity 
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of soils, owing to micro-topography and plant–soil feedbacks 
(Ettema and Wardle, 2002; Hutchings et al., 2003; Lü et al., 
2012), which affect roots more directly than leaves (Read et al., 
2017). Across elevations, the idiosyncratic versus consistent 
root and leaf trait patterns, respectively, may result more from 
strong local environmental effects on roots than from strong 
landscape-level environmental effects on leaf trait variation.

We found that intraspecific leaf trait variation was larger lo-
cally (i.e. at the same elevation) than at the landscape level (i.e. 
across elevations). As observed in previous studies, environ-
mental variations at a local scale, such as heterogeneity in soil 
nutrients or water availability, may not only be relevant for roots 
(as we expected), but may also have influenced leaf trait vari-
ation within species (Poorter et al., 2009; Messier et al., 2010; 
Freschet et al., 2013; Wellstein et al., 2017; Kumordzi et al., 
2019), which may explain why the local intraspecific variation 
in leaf traits that we observed here was larger than we expected. 
For example, while our sampling protocol aimed to control 
for variation in light conditions affecting leaf traits, plants in 
the forest understorey at lower altitudes might be exposed to 
both lower light availability and greater heterogeneity in light 
levels throughout the day, compared with fully exposed plants 
above the treeline, leading to greater leaf trait variation within 
than between elevations. Nonetheless, in our study, these local 
environmental effects on leaf traits were not strong enough to 
confound the strong and consistent above-ground trait patterns 
associated with changes in temperature and precipitation that 
we observed along the elevation gradient. Our results therefore 
suggest that although the strength of landscape-level environ-
mental effects on leaf and root traits was similar, local (soil) 
environmental influences acted also on leaf but more strongly 
on root traits, contributing to the divergent above- and below-
ground trait patterns observed between elevations.

Across the 11 species studied, overall intraspecific vari-
ation (i.e. both within and between elevations) was greater for 
roots than for leaves, which may also be related to the different 
scales at which environmental drivers influence leaf and root 
traits. Read et al. (2017) also found greater intraspecific vari-
ation in root than leaf traits along a climate gradient and they 
suggested two potential explanations. Firstly, stronger below- 
than above-ground competition between individuals may lead 
to niche differentiation and thus greater root trait variation 
(Read et al., 2017), but our results do not support this explan-
ation since vegetation cover – which may reflect the degree of 
plant competition – had a greater influence on leaf than root 
traits. Secondly, intraspecific trait variation may be greater for 
roots than for leaves due to the relatively large variability in 
soil properties that drive root trait expressions. In our study, 
variation in the soil properties measured (i.e. CEC, sand con-
tent, soil pH and soil N percentage) between elevations affected 
leaf trait variation more strongly than root trait variation (i.e. 
more significant trait relationships and stronger relationships), 
which contradicts this explanation. However, the greater intra-
specific variation in roots compared with leaves mostly resulted 
from trait differences between conspecific plants at the same 
rather than at different elevations. As a result, soil heterogen-
eity may still be larger locally than at the landscape level, and 
therefore cause greater intraspecific variation in roots than in 
leaves. Characterizing the soil environment of roots at smaller 

spatial scales than we did in our study, e.g. even at the rhizo-
sphere level, would likely provide stronger connections be-
tween roots and edaphic factors. Evidence that root and leaf 
trait adjustments are modulated by environmental variations 
that predominantly occur at contrasting spatial scales has im-
portant implications for our understanding of how plants and 
plant communities respond to environmental changes. For ex-
ample, there cannot be one simple picture of when intraspecific 
variation should be most important across scales, as this will 
strongly depend on the (leaf or root) trait considered (Albert 
et al., 2011). Thus, different plant traits, both above- and below-
ground, will likely play different roles in the capacity of plant 
species to survive in a community experiencing environmental 
changes, depending on the spatial scale at which these changes 
occur (e.g. Saar et al., 2017).

Environmental effects decouple leaf and root trait variation 
within species along the elevation gradient

In line with H3, intraspecific analogous leaf–root traits were 
almost never correlated across or within elevations across 
the 11 species studied here. The species that did show intra-
specific covariation across elevations (i.e. A.  odoratum and 
D. flexuosa) also did not show consistent or explanatory pat-
terns in trait covariation within elevations. As discussed above, 
this lack of (positive) covariation within species at least partly 
results from the consistent leaf trait patterns, and idiosyncratic 
root trait patterns (H1), so that along the gradient, leaf and 
root trait patterns diverge, rather than converge, as expected 
from a resource economics perspective. To some extent, the 
lack of intraspecific leaf–root trait coordination may result 
from different functions associated with different traits. For 
example, having thick roots may be considered a resource-
conservative strategy, as thick roots may have longer lifespans 
(McCormack et al., 2012; Weemstra et al., 2016), but can also 
be considered as resource-acquisitive as they generally have a 
greater cortex area and higher (arbuscular) mycorrhizal colon-
ization rates (Kong et al., 2014). Similarly, thick leaves may 
be more cold-tolerant and thus resource-conservative (Körner 
et  al., 1989; Wright et  al., 2017), but they may also be ac-
quisitive as they have more mesophyll layers packed together 
(de la Riva et al., 2016), contributing to higher photosynthetic 
rates (Niinemets 2007). Especially root diameter and leaf 
thickness may therefore not be perfectly functionally analo-
gous. Unravelling the (lack of) coordination among leaf and 
root traits therefore requires further quantification of their ac-
tual functioning, for example, by using anatomical traits that 
underlie organ morphology.

In this study, the different patterns in intraspecific leaf and 
root trait variation were in turn, at least partially, attributed to 
the different scales at which environmental variables influence 
leaf and root traits within species (H2). As roots responded 
more strongly to local soil environmental drivers than leaves, 
they did not clearly vary across the elevation gradient, contrib-
uting to the divergence of leaf and root trait patterns along the 
gradient. In contrast to the absence of intraspecific trait covari-
ation, however, analogous leaf and root traits covaried posi-
tively across species, both along the elevation gradient and at 
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the same elevation, although these relationships were weaker 
for LDMC–RTD than for the other trait pairs. Our study sug-
gests that environmental variation (at different spatial scales) 
and the various ways through which roots can adjust to this, 
decouple intraspecific leaf and root trait variation.

Conclusions

This study provides, across a substantial number of species, 
further evidence of a decoupling between intraspecific leaf and 
root trait variation, previously observed among a few species 
only. This decoupling resulted from largely consistent intra-
specific leaf trait variation versus highly idiosyncratic root trait 
variation along an environmental gradient. These below-ground 
idiosyncrasies complicate the prediction of plant community 
responses and composition in a changing environment, at least 
at a local or landscape scale. It has recently been demonstrated 
that interspecific relationships between root traits and envir-
onmental variables contribute to explaining species’ distribu-
tion and hence community composition, and that the positive 
relationship between root diameter and minimum temperature 
across species suggests that thick roots are beneficial as tem-
perature increases (Laughlin et al., 2021). Our study shows that 
intraspecific root trait–environment relationships are not gen-
eral at smaller spatial scales. Therefore, beneficial root traits 
for greater species abundance under given site conditions may 
be species-specific, and so do not predict well community 
composition along (landscape-level) environmental gradients. 
To unravel how traits underlie community composition, fu-
ture work should therefore ideally (1) account for both inter- 
and intraspecific variation in above- and below-ground traits, 
(2) include a large number of species to identify the different 
adaptive below-ground strategies of the plant community as a 
whole, (3) quantify a large number of traits (such as mycor-
rhizal or anatomical traits) that may also predict plant fitness 
but that are less frequently quantified, and (4) measure environ-
mental variation at various spatial scales.

Above-/below-ground decoupling indicates that plants 
possess diverse whole-plant strategies when an environment 
changes, potentially explaining further how species can oc-
cupy different environmental niches. Trait-based models that 
simulate plant performance, species interactions, community 
assembly or (agro-)ecosystem functioning across environments 
therefore cannot be used to extrapolate the mechanisms that 
drive leaf trait patterns to roots. Instead, the variety of below-
ground trait adjustments needs to be modelled independently 
from above-ground trait adjustments, and the environmental 
drivers of root adjustments would need to be modelled at 
smaller spatial scales than those of leaves.

Our results also contribute to improving conceptual plant-
ecological models. Intraspecific trait adjustments at the local 
scale may obscure global, interspecific patterns in leaf and root 
trait covariation, but the extent of this intraspecific impact is 
uncertain due to limited data (Weigelt et al., 2021). Studies like 
ours, where above- and below-ground trait variation is quanti-
fied within relatively large species sets, can therefore lead to 
better predictions of interspecific variation in plant resource 
strategies, and consequently, of species abundance (Laughlin 

et al., 2021). From a more applied perspective, these insights 
are relevant for agro-ecological systems where above- and 
below-ground trait information is increasingly used to predict 
and improve crop responses along often steep environmental 
gradients at small spatial scales (e.g. in agroforestry; Isaac and 
Borden, 2019)

Finally, the species-specific patterns observed here result in 
a daunting prospect in our search for generalizable mechanisms 
that underlie plant responses to a changing world. However, 
such a diversity of plant responses to the local environment 
is encouraging in terms of the propensity of communities that 
show multiple ways to adjust to climate change.
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