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Abstract

cal modulation.

as a target for immunotherapy.

Background: Upregulation of Stathmin 1 (STMN1), a cytoplasmic phosphoprotein that controls the dynamics of
cellular microtubules, is linked to malignant behavior and poor prognosis in a range of malignancies. However, little
research has been done on STMN1's potential role in HCC as a single factor in DNA methylation, m°A, or immunologi-

Results: STMN1 is overexpressed in hepatocellular carcinoma, where it is related to clinicopathological param-
eters and affects the prognosis of HCC patients. STMN1 overexpression plays an important role in the diagnosis and
prognosis of hepatocellular carcinoma. Meanwhile, methylation of 7 CpG sites of STMN1 in HCC was correlated with
prognosis, and STMN1 expression was closely related to m®A modification. In addition, STMN1 expression is associ-
ated with immune cell infiltration, immune molecules, and immune checkpoints in HCC.

Conclusion: STMNT1 has a significant role in hepatocellular carcinoma diagnosis and prediction. STMN1 is implicated
not just in the onset and course but also in the immunological modulation of the disease. DNA methylation and m°A
are both linked to STMN1. Therefore, STMN1 could be used as a diagnostic and prognostic biomarker for HCC, as well
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Background

The most common type of primary liver cancer is hepa-
tocellular carcinoma (HCC) [1]. Every vyear, about
854,000 new instances of liver cancer are identified, with
hepatocellular carcinoma accounting for 85-90% of these
cases, making it the world’s sixth most prevalent disease
[2]. The majority of people with liver cancer are detected
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when it has progressed to a late stage. Due to the aggres-
sive nature of hepatocellular carcinoma and its end-stage
symptoms, most patients die within 1 year of diagnosis
[1, 3]. Surgery, radiation, chemotherapy, immunotherapy,
and targeted therapy are now the most common thera-
pies for liver cancer [4]. Although these treatment meth-
ods have achieved some clinical success, the prognosis
and survival rate of patients with liver cancer are still very
poor due to problems such as tumor drug resistance and
drug side effects [5]. However, few biomarkers can accu-
rately diagnose liver cancer in the early stage. As a result,
finding new therapeutic targets and sensitive tumor bio-
markers to identify and treat liver cancer is critical [6].
STMN1 is an oncogene that encodes a highly con-
served cytoplasmic phosphorylated protein of 18 kDa
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[7]. STMN1 protein plays a key role in regulating micro-
tubule dynamics. STMNI1 has a tubulin-binding domain,
which can sequester o/ Tubulin heterodimers and pro-
mote the instability of microtubules [8]. STMN1 pro-
motes cell differentiation, proliferation, and migration,
and it is increased in numerous malignancies, including
non-small cell lung cancer, breast cancer, and gastric
cancer [9]. STMNI regulates cell proliferation, migra-
tion, drug resistance, cancer stem cell characteristics,
and tumor growth in vitro and triggers the complex cross
talk between liver cells, and the hepatocyte growth fac-
tor (HGF)/MET signaling pathway is triggered in hepatic
stellate cells (HSC) and hepatic stellate cells (HSC) [8].
In individuals with liver cancer, STMN1 expression was
significantly correlated with E2F1/TFPD1 and KPNA2
expression and was associated with poor prognosis in
patients with hepatocellular carcinoma [10]. The tran-
scription of STMNT1 in the liver is downregulated by T3,
suggesting that the lack of normal THR function will lead
to the increased expression of STMN1 and the malignant
growth of liver cancer [11]. Upregulation of the E2F1
and STMNI1 proteins has been linked to poor outcomes
in liver cancer patients [12]. In high-expression groups,
STMN1 expression is an independent risk factor for mul-
ticenter (MC) recurrence [13]. STMNI1 affects the epi-
thelial-mesenchymal transformation (EMT) of HCC cells
by regulating the dynamic equilibrium of microtubules
via the “STMNI1 microtubule EMT” axis signal, suggest-
ing that STMN1 might be a viable therapeutic target for
limiting liver cancer metastasis [14]. Overexpression of
STMNT1 has been linked to a poor prognosis in several of
the studies mentioned above. However, no research has
been done on STMNT’s possible function in DNA meth-
ylation, m®A, immune cell infiltration, immunological
molecules, or immune checkpoints as a single factor.

We investigate the significance of STMNI in diagnos-
ing and predicting the prognosis of liver cancer, as well
as its association with immune cell infiltration, immune
cell biomarkers, immunological chemicals, and immune
checkpoints, using data from a public scientific database.
We examined DNA methylation, m°A, and the develop-
ment and progression of liver cancer.

Results

STMN1 expression is higher in cancer than in non-cancer
tissues

To investigate STMNT1’s potential role in cancer, we first
searched for its expression in 33 human cancers (Fig. 1A).
STMNI expression was considerably higher in 19 cancer
tissues compared to normal tissues: bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
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colonic adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC) (KIRC), lung adeno-
carcinoma (LUAD), prostate adenocarcinoma (PRAD),
lung squamous cell carcinoma (LUSC), hepatocellular
carcinoma (HCC), stomach adenocarcinoma (STAD),
thyroid carcinoma (THCA), and uterine corpus endome-
trial carcinoma (UCEC).

Following that, we discovered that STMN1 was statis-
tically significantly over-expressed in liver cancer tissues
relative to noncancer tissues in six HCC datasets from
the GEO and TCGA databases (Fig. 1B). To get reliable
results, we validated using the GEPIA2 database and got
the same results (Fig. 1C). This result remained consist-
ent in the TCGA database of 50 pairs of HCC samples
and matched noncancerous tissues (Fig. 1D). Meanwhile,
differences in STMNT1 expression between HCC and nor-
mal tissues were mirrored in protein expression levels
(Fig. 1E). These findings imply that STMN1 may play a
role in HCC.

STMN1 expression is associated with clinicopathological
parameters and poor prognosis in HCC patients

Because STMNI1 is highly expressed in liver cancer,
we utilized the TCGA database to investigate the link
between STMNT1 expression and HCC clinicopathologi-
cal features. We found that high expression of STMN1
was related to the age, weight, AFP level, tumor sta-
tus, pathological stage, and histological grade of HCC
patients (Fig. 2A-F).

Then, using an Internet database, we looked at
STMNT1’s prognosis in HCC. High expression of STMN1
was linked with poor overall survival (OS, p < 0.001), dis-
ease-free survival (RFS, p < 0.001), disease-specific sur-
vival (DSS, p < 0.001), and progression-free survival (PES,
p < 0.001) (Fig. 2G-]J), according to the Kaplan-Meier
survival curve.

High STMNI1 expression was shown to be related
with a poorer overall survival rate (HR = 1.785, 95% CI
= 1.256-2.536, p = 0.001) in a univariate Cox analysis.
STMNI gene expression was found to be an independ-
ent risk factor for overall survival in HCC patients (HR =
2.009, 95% CI = 1.164—3.466, p = 0.012) in a multivariate
Cox analysis (Table 1).

STMN1 overexpression’s significance in HCC diagnosis

and prognosis

According to the ROC diagnostic curve, STMN1
expression was able to distinguish cancers from normal
tissues with high accuracy (AUC = 0.972) (Fig. 3A).
To predict 1-, 3-, and 5-year survival, we built a time-
dependent ROC survival curve for STMN1. The AUC
values for the 1-year, 3-year, and 5-year survival curves
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Fig. 1 Expression status of STMNT1 in cancer. A The expression level of STMNT in 33 cancer tissues and normal tissues (TCGA cancer data compared
with TCGA and GTEx normal data). B In GSE112790, GSE121248, GSE45267, GSE62232, GSE54236, and TCGA databases, the expression of STMNT1 in

liver cancer tissues was higher than that in normal tissues. C The expression of STMN1 in liver cancer tissues was higher than that in normal tissues

in GEPIA2 database (p < 0.05). D In TCGA database

50 pairs of HCC tissues and their matched adjacent normal liver tissues, STMN1 expression was

q

higher in HCC tissues (p < 0.001). E Immunohistochemical staining of clinical liver cancer samples from the HPA database confirmed that STMN1

expression level in tumor tissues was higher than that in normal liver tissues

5-year survival probability of patients in clinical prac-
tice by combining clinicopathological parameters

were all greater than 0.6, indicating that these data

were adequate for prediction (Fig. 3B). We developed
a nomogram model to predict the 1-year, 3-year, and

(including stages T, N, and M) and STMNI1 levels

(Fig. 3C). STMN1 expression has a high capacity to
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Fig. 2 STMN1 expression and clinicopathological parameters and prognosis in HCC patients. The expression level of STMNT was significantly
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Table 1 Clinical features associated with overall survival by univariate and multivariate cox regression analysis
Characteristics Total (N) Univariate analysis Multivariate analysis
Hazard ratio (95% Cl) p-value Hazard ratio (95% Cl) p-value
Age (< =60 vs. > 60) 373 1.205 (0.850-1.708) 0.295 1.327 (0.811-2.170) 0.260
Tumor status 354 2317 (1.590-3.376) <0.001 1.883(1.105-3.210) 0.020
Tstage (T1 &T2vs. T3 &T4) 370 2.598 (1.826-3.697) <0.001 2.728 (0.153-48.666) 0495
N stage (NO vs. N1) 258 2.029 (0.497-8.281) 0.324 2.721(0.355-20.857) 0.335
M stage (MO vs. M1) 272 4.077 (1.281-12.973) 0.017 1.874 (0410-8.572) 0418
Pathologic stage (stage 1 & stage 2 vs.stage 349 2.504 (1.727-3.631) < 0.001 0.882 (0.049-16.023) 0.933
3 &stage IV)
Histologic grade (G1 & G2 vs. G3 & G4) 368 1.091 (0.761-1.564) 0.636 1.092 (0.669-1.782) 0.726
STMNT (low vs. high) 373 1.785 (1.256-2.536) 0.001 2.009 (1.164-3.466) 0.012
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Fig. 3 ROC analysis of STMN1 and nomogram model. A ROC curve for diagnosis to distinguish tumor from normal tissue. B ROC curve analysis of
time-dependent survival to predict 1-, 3-, and 5-year survival. C A nomogram model combining clinicopathological factors and STMN1 expression
levels to predict 1-year, 3-year, and 5-year survival
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predict 1-, 3-, and 5-year survival rates, according to
the findings.

Correlation analysis of STMN1 with methylation and méA
genes in HCC patients

The DNA methylation level of STMN1 with a predictive
value of CpG was investigated using the MethSurv tool.
MethSurv showed 29 CpG methylation sites, among
which CG21216015, CG06453691, and CG07501506
had the highest DNA methylation (Fig. 4A). The meth-
ylation levels of seven CpG sites were correlated
with prognosis, namely CG07501506, CG09796501,
CG13793178, CG21216015, CG23079732, CG24809011,
and CG26314868 (p < 0.05) (Table 2). Patients with high
STMNI1 methylation at these CpG loci had a lower sur-
vival rate than those with low STMN1 methylation.

MO®A mutations have a key role in the incidence and
progression of HCC. Therefore, we conducted a correla-
tion analysis of STMN1 and m®A-related genes. Using the
TCGA database, we looked at the relationship between
the expression of 20 m6A-related genes in liver cancer,
and the results indicated that when compared to nor-
mal liver tissue, the expression of 20 m®A-related genes
was higher in liver cancer, IGF2BP3, IGF2BP1, IGF2BP2,
YTHDC1, YTHDC2, FTO, ALKBH5, VIRMA, YTHDEFS3,
RBM15B, YTHDF1, METTL3, HNRNPA2B1, HNRNPC,
RBMX, WTAP, RBM15, and YTHDF2; the expression
of these m°A-related genes was significantly increased
(Fig. 4B). Subsequently, we continued to analyze the
expression differences of these m°A genes increased in
liver cancer between the high-expression STMN1 group
and the low-expression STMN1 group to determine
whether the m®A modifications were different between
the high-expression STMN1 and the low-expression
STMNI1 group. We were surprised to find that in the
STMN1 high-expression group, IGF2BP3, IGF2BPI,
IGF2BP2, YTHDCI1, YTHDC2, FTO, ALKBH5, VIRMA,
RBM15B, YTHDF1, METTL3, HNRNPA2B1, HNRNPC,
RBMX, WTAP, RBM15, and YTHDF2 were significantly
expressed upregulated (p < 0.001) (Fig. 4C). Therefore,
these results suggest that STMNT1 is closely related to
m®A modification in HCC.

Correlation between STMN1 and immune cell infiltration

We subsequently looked at the immune cell infiltration
status in HCC to see if there was a link between STMN1
expression and immune cell infiltration. The immune
infiltration of the STMNI high-expression group and the
STMN1 low expression group was compared using 187
HCC samples from the TCGA database. We performed
analysis using the ssGSEA technique and found that
STMNI expression was strongly associated with the level
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of infiltration of pDC, NK CD56 bright cells, neutrophils,
DC, TFH, and Th2 cells (Fig. 5A, p < 0.01).

STMNI1 expression was strongly linked with tumor
purity (Rho = 0.176, p = 9.98E-04) in the TIMER 2.0
database. In addition, we found that STMN1 expression
was linked to immune cell infiltration, particularly T-cell
CD8+ T cells (r = 0.177, p = 9.53E-04), T-cell CD4+ (r
= 0.213, p = 6.49E-05), B cell (r =0.403, p = 6.77E-15),
neutrophil (» = 0.156, p = 3.65E-03), macrophage (r =
0.536, p = 4.88E-27), monocyte (r = 0.386, p = 1.08E-13)
(Fig. 5B).

Finally, we examined the cumulative survival rate of
immune cells with high and low STMN1 expression lev-
els under various immune cell infiltration settings. CD8-+
T cells and B cells with high STMN1 expression had a
better prognosis, while CD4+ T cells with low STMN1
expression had a worse prognosis, according to the find-
ings. Low STMNI1 expression was associated with a bet-
ter prognosis in neutrophils and monocytes, whereas
high STMNI1 expression was associated with a worse
prognosis in macrophages (Fig. 5C).

We utilized the TIMER database to investigate the rela-
tionship between STMN1 expression and liver cancer
immune cell biomarkers in order to learn more about
STMNT’s function in the tumor immune microenviron-
ment (Table 3). The results showed that STMNI1 was
associated with CD8+ B-cell biomarkers (CD19, CD27,
CD38, and CD79A) and T-cell biomarkers (CD3D, CD3E,
and CD2) in HCC T-cell biomarkers (CD8A, CD8B);
other T-cell subsets (Tth, Th1, Th2, Th9, Th22, and Treg),
exhausted T cell, M1 macrophage biomarkers (IRF5,
PTGS2), M2 macrophage biomarkers (CD163, VSIG4,
MS4A4A), TAM biomarkers (PDCD1LG2, CD80, CD40,
TLR7, CCL2, and IL10), monocytes (CD86, CSFIR)),
natural killer cell biomarkers (NCAMI1, KIR2DL3,
KIR2DL4, KIR3DL2, KIR2DS4, CD314, CD7, and XCL1),
neutrophil biomarkers (ITGAM, FUT4, and MPO), and
dendritic cell biomarkers (CD1C, HLA-DPB1, HLA-
DQB1, HLA-DRA, HLA-DPA1, NRP1, and ITGAX) were
significantly positively correlated. As a result, these find-
ings show that STMNT1 is closely linked with immune cell
infiltration.

Correlation between STMN1 and immune molecules

We next examined the association between STMN1
expression and a variety of immunological-related mark-
ers, such as immune modulators and chemokines, to
learn more about the link between STMNI1 and immune
infiltration. The TCGA database was used to determine
the connection between STMN1 expression and other
immune-related markers. Immunomodulators are fur-
ther divided into immunostimulants, immune inhibitors,
and major histocompatibility complex (MHC) molecules.
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Table 2 Effect of hypermethylation level on prognosis in HCC

CpG HR p-value
3'UTR-Open_Sea-cg07501506 1.897 0.0063
TSS1500-Island-cg09796501 0.668 0.0426
TSS200-Island-cg13793178 1.751 0.0016
Body-N_Shore-cg21216015 1.545 0.0140
5/UTR-Island-cg23079732 0.609 0.0057
Body-Open_Sea-cg24809011 0.673 0.0421

STMNI1 expression was shown to associate well with
most immunomodulators and chemokines (Fig. 6A-D).

Therefore, it was confirmed that STMNI1 is exten-
sively involved in the regulation of various immune
molecules in HCC to influence immune invasion in the
tumor microenvironment.

The relationship between STMN1 expression and immune
checkpoint in HCC

CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
TIGIT, and SIGLEC15 are genes associated with the
immune checkpoint. Considering the potential carcino-
genic role of STMNI in liver cancer, STMNI1 and these 8
immune checkpoint-related genes in HCC were investi-
gated using the TIMER database. We found that STMN]1,
CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
and TIGIT were significantly positively correlated in
HCC (Fig. 7A-H).

Identification and validation of PPl network and Hub genes
Based on the STRING database, the top ten most rel-
evant functional partner genes were selected to con-
struct the PPI network of STMNI1 (Fig. 8A). These
genes are AURKB, CAMK2G, CAMK4, CCNB1, CDK1,
CDKNI1B, STAT3, TUBA1A, TUBA1C, and TUBA4A
(Fig. 8B). We constructed a gene-gene interaction net-
work for these genes using the GeneMANIA database
to analyze the function of these genes. The central node
representing the above genes is surrounded by 20 gene
nodes significantly associated with the above genes
(Fig. 8C). GO and KEGG were used to investigate these
genes. The results of a GO enrichment study revealed
that there were significant differences in “regulation of
G2/M transition of the mitotic cell cycle,” “regulation of
mitotic cell cycle phase transition,” “G2/M transition of
mitotic cell cycle,” “microtubule,” “condensed nuclear
chromosome, centromeric region,” “histone kinase
activity,” “structural constituent of cytoskeleton,” and
“protein serine/threonine kinase activity” According
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to KEGG pathway analysis, these genes are mostly
engaged in “gap junction,” “cell cycle,” “fox-O signal-
ing pathway,” “apoptosis,” and “phagosome” (Fig. 8D,

Table 4).

Discussion

STMNI affects cell cycle progression and microtubule
dynamics [15]. It is an oncogene that is highly expressed
in a variety of human tumors and has been linked to
malignant behavior and a bad prognosis in a number of
them. STMN1 overexpression in liver cancer has previ-
ously been linked to invasion on the local level, early
recurrence, and a bad prognosis, as well as facilitating
the polyploid formation and other biological functions
[9]. However, the studies related to STMN1 in HCC are
currently inadequate. In the present study, we explored
the relationship between STMNT1 in liver cancer function
enrichment, immune infiltration, DNA methylation, and
m®A, providing new evidence that STMNI is a prognos-
tic marker that can be exploited as a therapy target for
HCC.

In this research, we discovered that HCC had consid-
erably higher STMNI1 expression than normal tissues,
and that this difference was mirrored at the protein level.
Furthermore, increased STMN1 expression was linked to
HCC patients’ age, gender, AFP level, tumor status, clini-
cal stage, and histological grade. These findings suggest
that STMNI is involved in the initiation and/or devel-
opment of HCC. Meanwhile, survival analysis revealed
that elevated STMNI1 expression was linked to a poor
prognosis in HCC patients, with poor OS, RES, DSS,
and PFS. Nomogram model results demonstrate that
STMNI1 expression can predict 1-, 3-, and 5-year sur-
vival rates, suggesting that STMNI1 has the potential to
be a useful diagnostic and prognostic biomarker in liver
cancer. STMNI1 expression is now connected to a poor
prognosis in a number of cancers [16—18], as well as can-
cer curability, recurrence, and resistance to adjunctive
chemotherapy. STMN1 stimulates the formation, growth,
and proliferation of HCC cells through upregulation by
FoxM1, and the combination of STMN1 and FoxM1
could become a more accurate predictive biomarker [19].
Current studies suggest that upregulation of STMN1 can
accelerate the formation and/or progression of hepato-
cellular carcinoma by activating the YAP1 signaling path-
way, and overexpression of STMN1 may be a precursor
of hepatocellular carcinoma and can be used as a marker
for diagnosis and treatment [20].

Aberrant DNA methylation is an epigenetic mecha-
nism that can be observed in all types of cancer. We
looked at the link between STMN1 DNA methylation
levels and HCC patient prognosis. Methylation levels at
seven CpG sites, including CG07501506, CG13793178,
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Table 3 Correlation analysis between STMNTlexpression and
immune cell markers in HCC

Immune cells Biomarkers None Purity
Cor P Cor P
B cell D19 0.309 rx 0.375 oxx
CD27 0.262 Fex 0.390 Fex
CD38 0.239 o 0.343 wxx
CD79A 0.163 xxx 0.278 xex
T cell (general) CD3D 0.271 Frx 0.390 o
CD3E 0.209 orx 0.365 oxx
CcD2 0.209 Fex 0.351 Fex
CD8+T cell CD8A 0.238 o 0351 o
CD8B 0.231 Fxx 0336 xex
Tth CXCR3 0.269 xx 0.385 ox
CXCR5 0.191 o 0.300 o
BCL6 0.131 ** 0.119 **
ICOS 0.283 o 0.400 o
Thi IFN-y (IFNG) 0.296 Fxx 0376 xex
TNF-a (TNF) 0.230 xx 0.347 xxx
IL12RB2 0215 o 0.247 e
STAT4 0.240 Frx 0.304 Fex
STAT1 0333 o 0370 o
CD94 (KLRD1) 0.098 ** 0.178 Fxx
BET (TBX21) 0.123 *x 0.224 rx
Th2 STAT6 0.150 o 0.129 **
CCR3 0.262 Fex 0329 Fex
D4 0.274 e 0.365 o
STAT5A 0.291 Fxx 0337 Fex
Tho IRF4 0.221 o 0.337 e
SPI 0337 o 0.499 e
Th22 CCR10 0.446 Fex 0479 Fex
Treg CD25 (IL2RA) 0.247 o 0.383 e
CCR8 0313 Fxx 0.392 Fex
FOXP3 0.146 rx 0217 Hrx
Exhausted T cell ~ PD-1 (PDCD1) 0.301 e 0.403 o
Tim-3 (HAVCR2) 0319 Fex 0470 Frx
CTLA4 0327 Hex 0.441 Hex
LAG3 0328 Fxx 0376 Fex
GZMB 0.156 xxx 0.220 xx
M1 macrophage  INOS (NOS2) —-0.019 0712 —=0012 0.829
IRF5 0.354 o 0338 Fex
COX2 (PTGS2) 0.080 0.125 0202 orx
M2 macrophage CD163 0.111 xxx 0216 *xx
ARG1 —0.164 *** —-0.162
VSIG4 0.131 ** 0.239 xex
MS4A4A 0.146 xex 0278 Frx
TAM D80 0336 e 0443 e
PDCD1LG2 0.128 ** 0.241 Fex
CD40 0.299 o 0312 xxx
TLR7 0.248 xxx 0.362 xex
CCL2 0.097 ** 0.208 o
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Table 3 (continued)
Immune cells Biomarkers None Purity
Cor P Cor P
IL10 0.201 xx 0.302 xx
Monocyte CD86 0316 Hx 0468 o
CD115 (CSF1R) 0.194 xx 0334 Frx
NK cell NCAM1 0.234 xxx 0315 xxx
KIR2DL1 0.008 0871 —0025 0.649
KIR2DL3 0.209 o 0.255 e
KIR2DL4 0.268 Hx 0.294 orx
KIR3DL1 0.070 0176  0.076 0.158
KIR3DL2 0.135 xxx 0.180 xxx
KIR2DS4 0.116 ** 0.105 **
CD314 (KLRKT) ~ 0.153 *xx 0.263 xxx
Ccb7 0.279 Hx 0.369 o
XCL1 0.392 X 0433 Frx
Neutrophil CD11b (ITGAM)  0.287 xxx 0370 xxx
CD15 (FUT4) 0.338 Frx 0372 Frx
MPO 0.112 o 0.160 e
Dendritic cell Ccb1C 0.100 ** 0.198 e
HLA-DPB1 0.220 X 0337 Frx
HLA-DQB1 0.188 Hx 0.294 o

*p < 0.05; **p < 0.01; **p < 0.001

and CG21216015, which had the greatest levels of DNA
methylation, were linked to a worse prognosis. M6A
regulates RNA transcription, splicing, processing, trans-
lation, and degradation through RNA methylation. It
plays a role in the occurrence and spread of a range of
malignant tumors, acting as an oncogene or anticancer
gene [21]. As a result, the connection between STMN1
expression and RNA methylation in HCC was also stud-
ied. We discovered that in the STMN1 high-expression
group, RNA methylation-related gene expression was
dramatically increased, indicating that STMNI1 expres-
sion in HCC is linked to m6A alteration. Studies have
shown that DNA methylation of STMNI has a potential
relationship with cancer recurrence and prognosis [22].
There is mounting evidence that methylation plays a crit-
ical role in cancer through a variety of processes, open-
ing up new avenues for cancer detection and therapy. The
immune system plays a crucial role in the origin and pro-
gression of malignant tumors [23]. Understanding how
tumors and immune cells interact will aid in the predic-
tion of immunotherapy responses and the development
of new immunotherapy targets [24]. HCC is an inflam-
matory malignancy in which the immune system has
a role in its development, progression, metastasis, and
recurrence [25]. As a result, we looked at how STMN1
correlated with immune cell infiltration, immunological
molecules, and immune checkpoints. STMN1 expression
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was shown to be largely associated with immune cell
infiltration, including CD8+ T cells, CD4+ T cells,

cells, neutrophils, macrophages, and monocytes, in our
research. Simultaneously, we discovered that STMNI1
expression was associated with immune modulators
and chemokines, indicating that STMNI is engaged in
regulating a variety of immune components in HCC to
influence immunological invasion of the tumor microen-
vironment. Immune checkpoint molecules are immune
system inhibitory regulatory molecules that are necessary
for maintaining tolerance, avoiding autoimmune reac-
tions, and modulating the timing and severity of immune

responses [26]. Cancer cells manipulate immunological
checkpoint molecules to elude immune monitoring dur-
ing immune editing [27]. Previous research has demon-
strated that checkpoint blocking cancer immunotherapy
works by inhibiting tumor cells with antibodies produced
by the checkpoint inhibitor PD-L1, activating the immune
system, and infiltrating the tumor with immunoactive
T lymphocytes [28]. The immunological checkpoint
molecules CD274, CTLA4, HAVCR2, LAG3, PDCD],
PDCDI1LG2, and TIGIT were discovered to have a sub-
stantial positive correlation with STMN1 expression.
Immunotherapy targeting immunological checkpoints
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Fig. 7 Correlation between STMN1 expression and immune checkpoint-related gene expression in HCC

such CTLA4, PDCD1 (PD-1), and PDCDI1LG2 (PD-L2)
has revolutionized the treatment of many solid cancers,
according to previous research [29]. TIL burden is related
with upregulation of important immunological check-
point genes (e.g., CTLA4, PDCD1, PDCD1LG2, CD274),
which suppresses T-cell activation [30]. These results
suggest that STMNI1 affects immune invasion in the
tumor microenvironment and may provide a new direc-
tion and target for immunotherapy of liver cancer.

STMNI1 and Hub genes were shown to be involved in
mitotic cell cycle regulation, microtubules, gap junction,
FoxO signaling pathway, and apoptosis, according to GO
and KEGG enrichment analysis. The mitotic index is an
additional prognostic parameter that could provide addi-
tional information for patients’ outcomes [31]. Knocking
down STMNT1 in cancer cells leads to cell cycle stagna-
tion in the G2/M phase, thereby increasing tumor sen-
sitivity to paclitaxel and vincristine [32]. Vincristine
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A CDKN1B B
Gene symbol  Annotation Score
AURKB Aurora kinase B 0.964
i I in- in kinase type Il subunit .
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Fig. 8 Protein-protein interaction (PPI) networks of hub genes. A PPl network of the first 10 hub genes created by STRING. B Annotation of 10
functional partner genes of STMN1. C PPl networks and function analyses of the 11 upregulated hub genes. Inner circles represent the input genes,
and outer circles correspond to gene mania proposed by hub genes; the size of the circles indicates the correlation with the input genes. D GO and
KEGG enrichment analyses of STMN1 and functional partner genes in HCC

is now utilized in the treatment of liver cancer in clini-
cal trials. As a result, it needs to be seen if the STMNI1
gene is linked to chemotherapeutic medications like vin-
cristine in the treatment of liver cancer. STMNI is con-
trolled by KPNA2 via E2F1/TFDP1, establishing a new
functional and prognostic relationship between HCC
nuclear transport and microtubule (MT) interaction
proteins [10]. The current study showed that STMNI is
a prognostic predictor of esophageal squamous cell car-
cinoma and a marker of PI3K pathway activation [33].
Furthermore, STMN1 overexpression is associated with
upregulation of FOXM1 in patients with advanced non-
small cell lung cancer, and STMN1/FOXM1 upregulation
leads to poor prognosis [34]. Also, STMN1 expression
was an independent prognostic factor in patients with
early-stage lung adenocarcinoma but only in patients
with early-stage cancer [35]. These findings confirm that

STMNI has a role in the progression of human cancers.
Meanwhile, these findings also expand new thinking and
direction for the mechanism studies of STMNT1 in hepa-
tocellular carcinoma.

Although we performed a comprehensive and system-
atic analysis of STMNI1 and validated it using different
databases, our study still has some limitations. First, the
microarray and sequencing data from different databases
have differences and lack specificity, leading to systematic
errors. Second, we need to perform ex vivo experiments
to validate the potential biological functions of STMNI,
which will improve the credibility of our results, which
is our next upcoming step. Third, although our results
suggest that STMNI is closely associated with immune
cell infiltration in hepatocellular carcinoma, we do not
have direct evidence that STMNI is directly involved
in immune regulation. Finally, we do not have complete
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Table 4 GO and KEGG enrichment analyses of STMN1 and functional partner genes in HCC

Ontology ID Description p-value
BP GO:0010389 Regulation of G2/M transition of mitotic cell cycle 2.93e-08
BP GO:1901990 Regulation of mitotic cell cycle phase transition 3.39e-08
BP GO:0000086 G2/M transition of mitotic cell cycle 9.29e-08
BP G0:0007093 Mitotic cell cycle checkpoint 1.19e-06
BP G0:1903580 Positive regulation of ATP metabolic process 1.77e-06
BP GO:0006977 DNA damage response, signal transduction by p53 class mediator resulting  3.02e-06

in cell cycle arrest

BP GO:1901991 Negative regulation of mitotic cell cycle phase transition 5.99¢e-06
BP GO:0018105 Peptidyl-serine phosphorylation 1.25e-05
CcC GO:0005874 Microtubule 943e-07
CcC GO:0000780 Condensed nuclear chromosome, centromeric region 7.48e-05
MF GO:0035173 Histone kinase activity 8.80e-08
MF G0:0005200 Structural constituent of cytoskeleton 2.17e-05
MF GO:0004674 Protein serine/threonine kinase activity 6.97e-05
MF GO:0004683 Calmodulin-dependent protein kinase activity 1.08e-04
KEGG hsa04540 Gap junction 1.59e-06
KEGG hsa04110 Cell cycle 2.77e-04
KEGG hsa04068 FoxO signaling pathway 3.26e-04
KEGG hsa04210 Apoptosis 3.64e-04
KEGG hsa04145 Phagosome 5.05e-04
KEGG hsa04530 Tight junction 6.89e-04
KEGG hsa05130 Pathogenic Escherichia coli infection 0.001
KEGG hsa05203 Viral carcinogenesis 0.001
KEGG hsa05206 MicroRNAs in cancer 0.044

cases and data to show the effectiveness of targeted
drugs against STMNI in liver cancer treatment, but in
the future, we will conduct further series of experiments
to improve the shortcomings of our above studies and
develop novel immunotherapeutic drugs for the manifes-
tation of STMNT1 in liver cancer.

Conclusion

STMN1 expression was greater in HCC tissues than
in normal tissues, and it was linked to clinicopatho-
logical variables. Upregulation of STMNI1 expression
is related with a poor prognosis in patients, suggesting
that it might be a useful biomarker for HCC diagnosis
and prognosis. The methylation of STMN1 is linked
to the prognosis of HCC, and STMN1 expression is
tightly linked to the alteration of m6A. STMN1 was
found to be linked with B cells, CD8+ T cells, CD4-+
T cells, macrophages, neutrophils, and monocytes in
tumor immune infiltration. STMN1 expression levels
are linked to immune modulators and chemokines,
and it is implicated in the regulation of a variety of
immunological components in HCC. STMN1 expres-
sion is favorably linked with important immune check-
point molecules, suggesting that it might be a potential

target for liver cancer immunotherapy. Because there
are few studies on STMN1’s immune microenviron-
ment in HCC, more research on STMNI1 in HCC is
needed to progressively explain the biological activi-
ties of STMNI1 in the immune microenvironment and
HCC patients’ prognosis.

Methods

TCGA database

The Cancer Genome Atlas (TCGA) (https://genome-
cancer.ucsc.edu/) is a large, free reference database for
cancer research. From the TCGA database, we collected
RNA seq data in level 3 HTS eq-FPKM format as well as
clinical data on HCC patients. TCGA provided 374 HCC
samples with prognostic information and 50 normal liver
tissue samples.

GEO database

The GEO database (https://www.ncbi.nlm.nih.gov/
gds) is a free storage database for second-generation
sequencing and other high-throughput sequencing data.
It offers tools to enable users query and download the
gene expression profiles. We downloaded five data sets
(GSE112790, GSE121248, GSE45267, GSE62232, and
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GSE54236) from the GEO database for gene expression
analysis.

GEPIA2

Gene expression profile interaction analysis (GEPIA?2) is
a database for gene expression and interaction analysis
in cancer and normal tissues (http://gepia2.cancer-pku.
cn/#index). There were 369 HCC tissue samples and 160
normal tissue samples in the GEPIA database. The gene
expression differential analysis was validated using the
GEPIA database.

HPA (Human Protein Atlas) database

The HPA (Human Protein Atlas) (https://www.proteinatl
as.org/) is based on immunohistochemistry data in the
database’s proteomics, transcriptome, and system biol-
ogy data. The HPA database was used to investigate the
amount of STMNI1 protein expression in liver tissue.

Database of Kaplan-Meier plotters

The Kaplan and Meier plotter (http://kmplot.com/analy
sis/) is a free, user-friendly online survival analysis tool
that includes 54,675 genes and 18,674 cancer samples.
In HCC patients, the Kaplan-Meier plotter database was
utilized to assess the connection between clinical survival
prognosis and STMN1 expression.

MethSurv database

The MethSurv database (https://biit.cs.ut.ee/meths
urv/) is a network based on CpG methylation patterns
for survival analysis tools, including 25 distinct forms of
methylation in human cancer data utilizing Cox propor-
tional hazards models. The DNA methylation locations
of STMN1 in the TCGA database were analyzed using
the MethSurv database. CpG methylation in STMN1 was
also evaluated for its predictive significance.

The TIMER database

The TIMER (https://cistrome.shinyapps.io/timer/) is
an RNA-seq expression profile data analysis of immune
cells in the tumor tissue infiltration database using high-
throughput sequencing. B cells, CD4+ T cells, CD8+
T cells, neutrophils, macrophages, and monocytes are
the primary infiltrating cells. In many kinds of cancer,
TIMER may also be used to investigate gene expression
in tumor tissue and normal tissue. The relationship of
STMNI1 with biomarkers of tumor immune infiltrating
cells and liver cancer immune cells was investigated using
the TIMER database.

The STRING database
The STRING database (https://string-db.org/) is
an online database that searches for known protein
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interactions, including both direct physical interac-
tions and indirect functional connections. The STRING
database not only generates elegant protein-protein
interaction (PPI) diagrams but also provides functional
enrichment analysis of common proteins, reference pub-
lications, etc. The STRING database was used to investi-
gate STMNT1’s protein-protein interaction (PPI) network.

The GeneMANIA database

The GeneMANIA database (http://genemania.org/search/)
is used to generate hypotheses about gene function, analyze
gene lists, and prioritize genes for functional analysis. We
used the GeneMANIA database to construct gene-gene
interaction networks for genes associated with STMN1
function to assess the functions of these genes.

GO and KEGG database

Gene Ontology (GO) (http://geneontology.org) is a data-
base that defines and describes the functions of genes
and proteins. The GO database has three categories in
total. Biological process (BP), cellular component (CC),
and molecular function (MF) are the terms used to define
the molecular tasks that gene products can perform as
well as the cellular environment in which they live. The
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(https://www.kegg.jp) is a database that may be employed
to anticipate protein interaction networks for physi-
ological activities as well as to comprehend the roles and
routes of genetic variants. The functionality and route of
10 genes having the strongest association with STMN1
were investigated using the GO and KEGG databases.
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