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The will is infinite and the execution confined…the desire is
boundless and the act a slave to limit

Shakespere W. Troilus and Cressida. Act III, Scene ii.

Discovery consists of seeing what everyone has seen and thinking
what nobody has thought

Anonymous

I
t has been over 30 yrs since the modern era of lung
transplantation commenced and what was then the ‘‘new
frontier and exceptional’’ has now become ‘‘routine and

expected’’. Strong vision, bold action and creative thinking
have led to outstanding progress in the management of end-
stage lung and pulmonary vascular disease. The purpose of
this article is to highlight what has been achieved, critically
assess where we are in terms of a ‘‘cure’’ for severe lung
disease, and (re)stimulate the creative thinking, action and
vision that are still very much required to solve the ongoing
impediments to achieving a durable lung allograft and long-
term recipient survival following the life-giving procedure that
lung transplantation is, and can be.

PROGRAMMES: MULTIDISCIPLINARY TEAMS
Where did we come from: where are we now?

History and programme evolution: from cottage industry to
just expected
Lung transplantation has evolved over the last 60 yrs from a
series of remarkable animal experiments to an established
treatment of severe end-stage lung and pulmonary vascular
disease fully funded in many jurisdictions. In its infancy it was
swept along by the determination and drive of surgical
pioneers. Amongst them the names Demikhov, Hardy,
Schumway, Cooley, Reitz, Cooper and Patterson have exem-
plified the surgeons’ drive to bring lung transplantation to
clinical fruition. With long-term survivors of heart–lung
transplantation (HLTx) from 1981 [1], single lung transplanta-
tion (SLT) from 1983 [2] and bilateral lung transplantation

(BLTx) from 1985 [3], this decade saw the true genesis of
clinical lung transplant programmes.

HLTx became the early option for lung replacement with
Stanford University (Stanford, CA, USA) leading the way
under the leadership of Bruce Reitz. A second key US centre in
Pittsburgh was also active. Europe, under the leadership of
Magdi Yacoub at Harefield Hospital (London, UK) and John
Wallwork at Papworth Hospital (Cambridge, UK), developed
very active HLTx programmes utilising donors from through-
out the UK and the continent. Isolated lung transplantation
(SLT and BLTx) grew initially out of the Toronto programme
and with the move of Cooper and Patterson to St Louis (Barnes
Hospital, Washington University, St Louis, MO, USA) by the
end of the 1980’s these were the dominant programmes. All
these programmes in their infancy had a small nucleus of
surgeons, physicians and co-ordinators who made transplan-
tation happen, often without well-defined resources.

The most recent report of the International Society for Heart
and Lung Transplantation (ISHLT) registry gives a clear view
of the changes in lung transplant activity over 20 yrs [4]. From
the mid-1980s, HLTx numbers reported to the ISHLT registry
increased rapidly to a peak in 1990 of 276 HLTx in that year.
This dropped steadily such that by the late 2000s, 85–100 HLTx
are reported to the registry annually. SLT numbers rose
rapidly from 1987, reaching a plateau by 1995. Since this time,
SLT numbers have been relatively static (700–850) as outlined
in the ISHLT registry reports. BLTx procedures have increased
every year since 1985. This is now the most commonly
performed lung transplant procedure. In 2009, approximately
2,300 BLTx were reported to the ISHLT registry; the greatest
number to date. The number of centres now transplanting and
reporting to the ISHLT registry is 158 for isolated lung
transplants. For HLTx, 114 centres report activity to the
ISHLT registry; however 95 centres report two or less HLTx
per year [4].

It is fair to say that survival following lung transplantation
started at a low base. More than 40 attempts were undertaken
over a period of almost 18 yrs before the first long-term
survivor was achieved. In 1988–1994, the ISHLT registry
reported 1-, 2- and 5-yrs survival of 72%, 65% and 49%,
respectively. In the most recent reported era, 2000–2009, this
had improved to 80%, 72% and 54%, respectively [4]. The
substantial improvement in survival is almost completely
attributable to improved early survival post-lung transplant.
Despite a concerted effort in multidisciplinary team-led care of
transplant survivors little impact has been evident on survival
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beyond the first year [5]. The ISHLT registry reports survival
contingent on surviving the first year. What is evident is that
patients who had cystic fibrosis (CF) and pulmonary vascular
disease have better survival after the first year compared to
those with chronic obstructive pulmonary disease (COPD) or
pulmonary fibrosis. Presumably this reflects the latter being
older patients with more comorbidities. Overall, however, the
ISHLT registry does not show any significant improvement in
survival in patients having survived the first year post-lung
transplant in more recent eras [4].

Surgical/anaesthetic/intensive care unit management

Surgical innovations
Incisions

There have been relatively minor changes in the surgical
approach to lung replacement procedures since the original
description of these procedures. HLTx is now a very
uncommon procedure but midline sternotomy is still utilised.
SLT is generally performed via a standard lateral thoracotomy;
however, it is sometimes performed via a midline sternotomy
facilitating surgical repair or revascularisation of the heart
when this is simultaneously performed.

Double lung replacement was initially performed via a midline
sternotomy utilizing a tracheal anastomosis. A high rate of
tracheal anastomotic breakdown led to a redesign of the
procedure to the ‘‘bilateral sequential’’ BLTx. In this proce-
dure, a bilateral thoracotomy with transaction of the lower
sternum (the so called ‘‘clam shell incision’’) is most often
utilised. The clam shell incision can be particularly problematic
in terms of post-operative pain control (generally mandating
prolonged epidural anaesthesia) and its impact on respiratory
muscle function. Variants that have evolved include bilateral
thoracotomy with sternal sparing, as well as a reversion to the
use of a midline sternotomy (especially where revascularisa-
tion of the bronchial anastomosis with an internal mammary
artery pedicle is performed) [6].

BLTx versus SLT versus HLTx

As noted previously, HLTx remained the predominant
technique for lung replacement into the early 1990s. From that
time the number of SLT procedures grew until 2000, and from
then onwards, BLTx became and remains the dominant
procedure in lung replacement. Other innovations over the
years include cut down lung transplant procedures (to over-
come donor and recipient size discrepancies) where the lung
volume is reduced (usually by lobectomy) in situ or on the back
table [7, 8], and lobar transplant techniques that have been
developed to allow either transplantation from live donors [9,
10] or splitting of a single large lung allowing bilateral
replacement in a smaller recipient [11].

Anastomotic techniques

From the first successful HLTx procedure, anxiety was high
regarding the viability of the airway anastomosis in the setting
of a lack of bronchial arterial revascularisation. In reality this
did not prove to be a major issue in en bloc HLTx procedures
where collaterals from the coronary arteries via the posterior
pericardium were thought sufficient to prevent major airway
anastomotic breakdown. In isolated lung transplantation,
wrapping of the anastomosis with the greater omentum was

initially performed to expedite revascularisation and anasto-
motic healing. This proved to be unnecessary in SLT and BLTx.
As noted previously, BLTx was initially performed as an en
bloc procedure with a tracheal anastomosis but, unfortunately,
the death rate due to anastomotic breakdown was unaccep-
tably high [12]. The procedure was subsequently modified to
the bilateral sequential lung transplant procedure with fash-
ioning of the two telescoped bronchial anastomoses [13].
Airway complications have been commonly seen in up to 20%
of anastomoses, although technical innovations seem to be
reducing this incidence [14–16].

Post-operative care

The marked improvements in outcome from lung transplanta-
tion that have been seen in the last 30 yrs have predominantly
been driven by improvements in early (3-month) survival.
Better recipient selection and surgical improvements have
contributed to this, but much of this improved survival
appears attributable to the evolution of improved intensive
care management [17, 18].

Fluid/inotropes

A clear understanding of the pathophysiology of the newly
transplanted lung is crucial in developing post-operative fluid
and inotrope strategies. An injured lung is prone to alveolar
capillary leak and this situation is confounded by lack of
lymphatic drainage of the newly transplanted lung allograft (due
to cutting of lymphatics without re-anastomosis), low oncotic
pressure (due to low serum albumin) and sometimes an elevated
pulmonary capillary wedge pressure and a high cardiac output
state (e.g. in the setting of left ventricle diastolic dysfunction).
Thus, a rise in hydrostatic pressure readily produces pulmonary
oedema, which, when present, can be very slow to resolve.
Careful management of fluid and inotropes, as well as routine
monitoring of the circulation utilising a central venous catheter,
an arterial line and a Swan–Ganz catheter, is therefore needed to
help minimise early allograft dysfunction syndromes [19, 20].
Echocardiography has also proven valuable in guiding appro-
priate setting of fluid input and ionotrope support and to assess
post-transplant complications [21].

Ventilation

The continuing evolution of ventilator technology has allowed
patients to be increasingly mechanically supported without deep
sedation and paralysis in most cases. In addition, the improve-
ments in noninvasive ventilation now allow for the extubation of
patients who may still require a degree of ventilatory support.

ECMO

The availability of modern heparin bonded extracorporeal
membrane oxygenation (ECMO) has allowed an unprecedented
ability to support severe early graft dysfunction. Central and
peripheral canulation techniques can be employed. For support
of oxygenation and carbon dioxide clearance veno-venous
ECMO can be utilised. In some patients veno-arterial ECMO
may be required. Use of ECMO for early graft dysfunction
seems to result in acceptable outcome, although the use of
ECMO for late graft failure seems more questionable [22]. Some
author’s advocate a slow wean from veno-arterial ECMO post-
operatively in all transplants with severe pulmonary hyperten-
sion to reduce early graft dysfunction but this has not been
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systematically assessed. These patients often have a high cardiac
output state with a stiff left ventricle compounding the alveolar
capillary leak and lack of lymphatic drainage in the newly
implanted lung allograft.

Recipient selection: waiting list issues
Recipient selection criteria have evolved greatly over the last
30 yrs as lung transplantation has matured from an experi-
mental procedure to a standard approach in end-stage lung
disease management (as evidenced by third party insurance
funding). This has also seen a steady increase in recipient age
and increasing medical comorbidities. To date, this has not
resulted in a detectable adverse effect on transplant survival.

Several attempts have been made to develop international
recipient selection guidelines [23, 24]. Due to quite large variation
in donor rates, as well as quite marked differences in who may get
access to lung transplantation from one country to another (e.g.
lack of universal healthcare access/insurance in many countries),
tailoring of these guidelines at national level has generally
occurred. The purpose of the recipient selection criteria does
differ depending on the approach to organ allocation. In some
jurisdictions all patients who qualify (usually medically and
financially) will be wait-listed for transplantation, often resulting
in large lists with high rates of death on the waiting list. Another
approach is to set up the selection process so that the most
‘‘suitable’’ patients get onto the waiting list, still ensuring that all
suitable organs are utilised, but limiting transplantation to only
those who will realistically be transplanted. This second pragmatic
approach accepts that the number of potential recipients is many
orders of magnitude greater than all available donors.

The major changes that have occurred over the last 20 yrs are
liberalisation of recipient age, routine acceptance of patients
with manageable comorbidities including diabetes, and accep-
tance of patients who have had previous surgery (including
prior lung transplantation). The development of antiviral
therapies (including highly active antiviral therapy and
therapies for hepatitis B/C) have led some programmes to
now no longer regard HIV and hepatitis B and C as absolute
contraindications to solid organ transplantation. However, the
decision for listing based on the recipient’s underlying disease
has not substantially changed. What is clear is that COPD
patients without chronic hypercapnea are not survival advan-
taged, and thus lung transplantation (LTx) is only indicated to
improve quality of life (QoL) where this indication can be
accommodated. Bronchoalveolar cell carcinoma was pre-
viously regarded as the only primary lung malignancy where
lung transplantation could be considered as a potentially
curative procedure. Despite reports of high rates of recurrence
post-transplantation, leading to many centres no longer
accepting such patients, a recent report shows that there is
no impact on 5-yr survival rates [25].

Donor selection/management issues
Donor networks
The desire to allow anonymity of donor and recipient has led to
the development of independent organ procurement agencies
servicing at regional, national and even multi-national levels.
They generally commenced as renal donor networks but with
the development of other organ transplants have extended their
role as multi-organ and tissue donation agencies. Their role

generally involves promotion of organ transplantation, initial
assessment of potential organ donors, detailed further testing,
confirmation of and/or obtaining consent from the next of kin
and local jurisdictions (including the coroner if required). They
are also responsible for contacting the recipient teams and co-
ordinating the manpower and facilities required for multi-organ
donation.

Increasingly greater resources have been invested as more
borderline donors are evaluated. The demands of this irregular
hour job, a desire to identify and utilise all suitable donor
organs, as well as the increased requirements for auditing and
reporting have led to much larger Organ Procurement
Organisations (OPOs).

Donor organ allocation
Considerable differences are apparent in the approach to organ
allocation both comparing contemporary OPOs and changes
over time. The largest of these is the United Network of Organ
Sharing (UNOS) in the USA. Initially, time on the waiting list
was a key determinant of organ allocation once blood group
and size compatibility were confirmed. However, this ser-
iously disadvantaged patients with a rapidly progressive
course (e.g. usual interstitial pneumonia (UIP)). Thus, recently
allocation utilising a lung allocation score (LAS) has been
instituted. This score tries to assess the utility of the transplant
based on the likelihood of survival with and without lung
transplantation [26, 27]. It does, however, strongly favour
patients on mechanical ventilation or ECMO support and, as
such, might be predicted to lead to a worsening of post-
transplant survival and increasing cost [28, 29]. Other jurisdic-
tions allocate the organ(s) to the transplant programme that
internally decides on the best recipient [30]. These systems give
greater flexibility and may assist the use of more marginal
donors should circumstances dictate, but may be more difficult
to defend if the allocation is challenged.

Cross-matching/virtual cross-matching
The role of an existing immunity directed against the human
leukocyte antigen (HLA) in graft survival is well demonstrated
in the classic study of TERASAKI et al. [31]. Even in an era
utilising calcineurin inhibitor-based immunosuppression, the
degree of HLA mismatch for both class I and class II antigens
still has an impact on lung allograft and patient survival;
although, this is difficult to predict at the individual level [32].

New nuclear and flow cytometry technology has provided a
marked increase in sensitivity with the presence of a donor-
specific antibody, which appears to impact on both short- and
long-term survival [33]. Key questions remain as to what
degree the quantitation and HLA specificity of these assays
and/or their coupling with a functional readout will impact on
recipient outcomes. Answers to these questions should allow a
much greater understanding of the clinical relevance and role
of these newer assays in organ allocation, as well monitoring
post-transplantation.

Extending donor indications
Extended donors
At the outset, brain death donor criteria have been utilised for
HLTx and LTx. The criteria for acceptable donors were initially
very restrictive leading to ,10% of all multi-organ donors being
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used as lung donors. As well as standard multi-organ criteria,
specific criteria such as cold ischemic time ,5 h, age ,45 yrs,
non-smoker, no history of respiratory disease, no sputum on
suctioning, clear chest radiograph, arterial oxygen tension
(Pa,O2) .300 mmHg on 100% and 5 cmH2O positive end-
expiratory pressure (PEEP) had been used to select suitable
lung donors. Low donor numbers were the single major
impediment to lung transplantation and slowly, liberalisation
of these criteria has occurred. Donors falling outside these strict
criteria have been referred to as ‘‘marginal’’ or ‘‘extended
indication’’. Liberalisation of donor criteria, particularly in
relation to donor age and smoking status [34], have seen
substantial increases in lung transplant numbers and, while
perhaps slightly impacting on the individual recipient’s prob-
able survival [35], this needs to be considered in the context of
an overall increase in transplants performed [30].

Donation after cardiac death

Extension of the 5-h cold ischaemic time in lung transplanta-
tion well beyond the ‘‘accepted’’ 5 h limit did not seem to
impact substantially on early graft function or longer term
outcome. This led to an increasing understanding that the lung
may be more resistant to the effects of warm ischaemia when
contrasted to a highly metabolically active organ such as the
heart. Animal and subsequent clinical work by STEEN et al. [36]
has led to more widespread use of donation after cardiac death
(DCD) [37, 38]. Recent reports from Australia show outcomes
from ‘‘controlled’’ (Maastricht III) DCD donors that are at least
comparable to donation after brain death [39, 40]. DCD from
‘‘uncontrolled’’ (out of hospital cardiac arrest) donors also
appears feasible [41]. An increase in overall lung transplant
numbers of 15–25% is reported with the development of DCD.

Donor management
Basic

As noted, very narrow initial criteria led to ,10% of donor
organs being utilised for lung transplantation. Liberalisation of
donor criteria has led to increased lung transplant numbers.
Complementary to this approach is the use of simple strategies
which may convert potential donors to donors falling within
standard criteria. Approaches such as bronchoscopic toilet,
antibiotic strategies, physiotherapy and ventilation strategies
are all reported [42, 43].

Ex vivo perfusion

Ex vivo perfusion of donor lungs in the clinical setting was first
reported by STEEN et al. [36] in an attempt to assess the
suitability of DCD lungs for transplantation. The concept has
been extended to include assessment and management of
‘‘borderline’’ DCD lungs [44, 45] with lungs previously
thought to be unusable being successfully transplanted [46].
One estimate is that 46% of lungs may be ‘‘converted’’ by ex
vivo perfusion and management [47]. Outcomes including
hospital length of stay seem comparable to conventional brain
dead donors [48]. The still small experience, as well as the lack
of data in using such organs without ex vivo reconditioning,
makes it still very difficult to judge the true benefit of what is
expensive and resource consumptive technology.

‘‘Treatments’’ to the donor lungs may include manipulation of
ventilation, lung inflation, attempts to reduce lung water and

also use of supra-pharmacological doses of antibiotic to resolve
infection more rapidly. The initial lung function and response
to therapy can be measured by the effects on oxygenation of
the perfusate. Recognising that the perfusate has a low
haematocrit is perhaps, at best, a crude measure at present.
As the perfusion pump rate is fixed, pressure changes within
the perfused lungs can be used to assess effects on pulmonary
vascular resistance.

Donor procedure
En bloc versus individual organs

As noted earlier, lung transplantation was initially performed
almost exclusively as an en bloc HLTx procedure. YACOUB et al.
[49] described an approach to use the explanted HLTx recipient
heart in a second recipient (the so called ‘‘domino procedure’’).
With the development and proliferation of isolated lung
transplant procedure, splitting of the heart–lung block into the
heart and two separate lungs is almost universally the approach.
The long standing urgent classification for cardiac allograft
recipients in most jurisdictions has been a major factor in this
change.

Perfusion solutions

As with much of LTx, lung allograft preservation evolved from
preservation of the heart–lung block. An array of extracellular
solutions (Eurocollins, low potassium dextran, University of
Wisconsin, Perfedex) has been used with local additives and
variations. The exact constituents were often based on a large
number of animal experiments but limited human data; however
it is a field that continues to generate studies [50]. Other groups
have used more ‘‘physiological’’ approaches including blood
products such as packed red blood cells (Cambridge solution).
The various solutions have a lot of in vitro data as to their
effectiveness but in vivo human data is uncommon. A recent
study reported superiority of Perfedex solution over others [51]
with respect to early graft dysfunction, but methodological
issues make it difficult to come to a firm conclusion.

Donor/recipient matching: information versus decision
making

Protocolised lung allocation score versus physician weighted
priority/utility decision making

The decision to use a donor for lung transplantation has, to
some degree, always presented a dilemma as to what is the
‘‘optimum’’ use of a heart–lung block. At one extreme is to
perform HLTx in a single recipient and at the other extreme is to
perform a heart transplant and two SLTs in three recipients. The
factors determining what is the actual transplant(s) performed
may depend on a strict formulaic approach to organ allocation
through to systems giving substantial autonomy to transplant
programmes which may have a more pragmatic approach. To
some degree, however, the system is a spectrum that from one
end reflects a strong societal individual rights view (a right to be
transplanted) in an orderly fashion, with the other extreme
being a utilitarian approach of ‘‘doing the most good’’ with the
available donors. In most countries the availability of HLTx is
severely limited as hearts are usually allocated on clinical
urgency and lungs only are offered for lung transplantation.

As different countries and regions have a different position
within the above spectrum, the system of lung allocation differs
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substantially around the world. In the USA, for many years, once
basic compatibility was confirmed (with priority given to
transplant programmes in closer proximity to the donor) the
UNOS system allocated based primarily on the length of time on
the waiting list. In 2005, UNOS adopted a new system based
primarily on the incremental effect of lung transplantation on
survival. The LAS takes into account the likelihood of sur-
vival without a lung transplant relative to the likelihood of
survival with a lung transplant over a 12-month horizon. A score
of 0–100 is generated with scores .50 likely to be allocated an
organ within weeks. Since implementing the system a change in
the recipient mix has occurred with more acutely ill patients
(including mechanically ventilated patients), often with inter-
stitial lung disease being transplanted and fewer pulmonary
hypertension patients being transplanted. A fall in time on the
waiting list has occurred but this is probably mostly due to
patients with low LAS not being listed until they deteriorate.
Potential problems with the LAS include poorer overall survival
rates as much sicker patients are transplanted. Furthermore,
there may be a disincentive to utilise marginal donors where a
high LAS means a high chance of a standard donor. The LAS
approach has been adopted by other jurisdictions including
Eurotransplant where out of country allocations are made
according to LAS. All allocations within Germany are performed
according to LAS but in other countries within Eurotransplant
priority is determined by clinical urgency, balancing numbers
and waiting time.

The Eurotransplant system does, however, also take into
account other considerations. Equitable distribution of organs
between Eurotransplant countries will affect the allocation of
organs. Other parts of the world tend to leave the allocation to
a specific transplant programme. In the UK and Australia, the
closest transplant programme is offered the heart and lungs
first; if they were unable to utilise organs they would be
‘‘passed on’’ according to a rotational system. Such systems
allow considerable flexibility, in which transplants are per-
formed, encouraging the referral of marginal organ where a
risk benefit assessment can be made directly by physicians
caring for the recipient. In Australia, such a system has led to
very high rates of lung transplantation despite low donor
numbers. Nevertheless, this approach may be viewed as
arbitrary and is probably untenable in countries where
individual rights and freedoms are seen as paramount.

End-stage lung disease and advances in management
options

Management of severe lung disease
New therapies

The availability of new therapies over the last 30 yrs has
impacted on the indication and timing of lung transplantation.
In the commonest indication, COPD, surgical approaches
including lung volume reduction surgery (LVRS) have been
offered in patients who are severely symptomatic without lung
transplantation offering a clear survival advantage [52]. A
large randomised controlled trial of LVRS failed to show an
overall effect on survival despite many patients having
significant physiological and functional benefits. Many less
invasive approaches to LVRS are reported [53, 54], but as yet
they have not become standard therapy and have impacted
minimally on the need for lung transplantation in COPD.

The increased availability of specific therapies for pulmonary
arterial hypertension (PAH) combined with the generally poor
outcomes from LTx and HLTx has seen some reduction in the
proportion of patients receiving LTx with PAH. Combination
oral therapy with or without the addition of parental prosta-
noids (epoprostenol, treprostenol or iloprost) are the mainstay
of advanced disease treatment and are now recommended in
major international guidelines [55]. The indication for trans-
plantation has become the failure of these therapies to at least
stabilise the condition.

The commonest form of interstitial lung disease presenting for
transplantation is the UIP form of idiopathic interstitial
pneumonia. Although nomenclature has changed over the
years, very few patients appear to show favourable responses
to immunosuppressing therapy. Indeed, a recent randomised
controlled trial (RCT) of combination prednisolone, azathiopr-
ine and N-acetyl cysteine has been stopped prematurely
because of inferior survival in patients on this combination
therapy [56]. Some efficacy has recently been reported using
the anti-fibrotic agent pifenidone [57] but this has not impacted
on the need or timing of lung transplantation to date.

Continuing incremental improvements in CF management (e.g.
nutritional, antibiotic therapies and strategies, airway clear-
ance with DNAse and hypertonic saline) have led to an
improved outlook for CF patients. However, LTx remains an
important option in the care of CF patients with end-stage lung
disease. Gene therapies and CF transmembrane conductance
regulator (CFTR) modulators have been much anticipated in
their application to reverse the core gene defect. To date, only
one product, ivacaftor (modulates the effects of the G55ID
mutation which is present in ,4% of CF patients), has moved
into clinical practice [58]. It is hoped that this breakthrough
will herald a new era of CFTR modulating therapies which, in
turn, may dramatically change timing, and perhaps one day
even the need, for LTx in these patients.

Current ethical framework for difficult decisions
Increasing activity versus limited resources
The move to utilise more ‘‘marginal donors’’, the increase in
donors by DCD and the potential to ‘‘resuscitate’’ donor lungs
utilising ex vivo perfusion all have impacted on the number of
lung transplants performed. Despite this, the number of
patients receiving lung transplantation is but a small fraction
of those with end-stage pulmonary and pulmonary vascular
disease who might benefit.

The imbalance between donor organ availability and potential
recipient need continues to challenge programmes as to how to
prioritise those requiring HLTx, those requiring re-transplan-
tation and even those patients who may need true multi-organ
transplantation (e.g. lung–kidney or lung–liver). Even at a
simpler level, the dilemma is illustrated by the potential to
perform SLT in many patients with interstitial lung disease or
emphysema. Double lung transplantation undoubtedly results
in better physiological outcomes, but not universally superior
survival [59, 60]. However, the overall utility is better if SLT is
performed where possible (most years of survival from the
total donor pool) [60, 61].

As previously noted the different underlying societal attitudes
(e.g. self-determinism versus utility) may result in nations and
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regions coming to quite different approaches to the same
question. A key factor for future projections is to what extent
healthcare financiers will be prepared to fund increasing
transplant numbers.

Bridge to transplantation
Continuous positive airway pressure/bi-level positive airway
pressure

Increasingly, noninvasive ventilation has been used in the setting
of hypercapneic respiratory failure as a bridge to transplantation.
This is generally not supported by strong clinical trial data.

Mechanical ventilation

The utilisation of mechanical ventilation as a bridge to
transplantation varies widely around the world. This is, in part,
based on the ability to rapidly access donors and prioritisation
of those who are mechanically ventilated (e.g. the LAS).
Although mechanical ventilation at the point of LTx is a risk
factor for increased post-operative mortality, the incremental
effect on survival is often greatest in these circumstances.
Mechanical ventilation in cystic fibrosis can be particularly
problematic with the rapid accumulation of highly viscous
secretions rapidly leading to severe sepsis. Perseverance with
bi-level positive airway pressure, where possible, appears to be
the preferred approach [62].

ECMO

As noted previously, technological improvements have
improved the outcome of advanced life support with ECMO.
There have been sporadic attempts to support patients to
transplant over at least 20 yrs. A recent case series of 38 ECMO
bridges to lung transplant reports an 89% successful bridge
(median time 5.5 days) with 1-yr survival of 60% in those
actually surviving to transplant [63]. A further recent study
showed similarly inferior survival in ECMO bridges to
transplant lung recipients [64]. Importantly a 2–4 week time
window is required to find a suitable donor. In donor allocation
systems with high priority categories and a large population
base, finding a suitable donor in this time frame is feasible [65].
The ability to size match by cutting down donor lungs facilitates
the ability to consider many more potential donors [66].
Evolving technologies, such as single twin lumen catheters that
allow veno-venous ECMO or the ‘‘Novalung’’, may extend this
time window by allowing mobility and some rehabilitation in
the potential recipients receiving advanced life support [67].

Re-transplantation

Re-transplantation remains a very uncommon indication for
lung transplantation. Re-transplantation for early graft dys-
function had particularly poor results and is now rarely
offered. Patients without other comorbidities and o2 yrs after
initial transplant have comparable outcomes to first time lung
transplant recipients (LTR) [68]. As is a common issue with
much LTx data there are many confounders. Generally, these
re-transplant candidates are subjected to even tighter scrutiny
than first time recipients in the selection criteria/organ
allocation system. Thus, only a small proportion of patients
dying of bronchiolitis obliertans syndrome (BOS) will receive
re-transplantation, although it is likely to be a frequent
occurrence in paediatric lung transplantation [69].

Age: paediatric lung transplantation versus older recipients

Pre-specified upper age limits for donors and recipients have
been part of lung transplant practice from the earliest days.
Although it is clear that the ageing process makes it more likely
that other important comorbidities exist, in reality age limits
have been used as a method of limiting the need to evaluate
many patients who could conceivably benefit from transplan-
tation. Indeed technical improvements have allowed successful
lung transplantation despite serious comorbidities such as
coronary artery disease [70].

Many jurisdictions have developed equal opportunity laws
over the last several decades, which would prohibit excluding
patients from consideration simply on chronological age. This, in
part, explains the trend to increasing age of LTR. Often quoted is
the lack of an effect of increasing age on transplant outcome.
However, recipients .60 yrs (and particularly .65 yrs) prob-
ably represent only a small fraction of all patients with end-stage
lung disease in those age ranges. Thus, it is probably fairer to say
that in a highly selected subgroup, reasonable results can be
achieved [71].

At the other end of the age spectrum paediatric LTx remains very
uncommon with only ,100 being performed globally each year.
Clearly improvements (e.g. CF) in prognosis have reduced the
need for paediatric LTx. Nevertheless a shortage of paediatric
lung transplant centres, the rapid downward trajectory on these
patients and a great shortage of paediatric lung donors are
contributory. Innovations such as cut down transplantation,
lobar transplantation and living donor lobar transplantation
have all been used to address the paediatric donor shortage.

The complexities of paediatric lung transplantation are reflected
in inferior BOS-free survival. Thus, re-transplantation is often
considered. At an objective level, an adult patient may have a
superior median survival but in many countries the value of a
year of survival in children may be valued higher than that of an
adult. In publicly funded lung transplant programmes there
may be an expectation that societal attitudes and beliefs are
reflected in who ultimately receives a transplant.

Where we are now and the present challenges?
What is clear is that we can perform lung transplantation in
many patients with the ability to improve survival and QoL
(fig. 1). The majority of patients with severe lung disease do not
receive a lung transplant, and even those who do generally have
a period of improved QoL, a modest improvement in survival
with significant complications (many iatrogenic) but ultimately
still a substantially reduced life expectancy. Despite this, lung
transplantation is now regarded as standard treatment of many
end-stage lung diseases.

Patients’ expectations are that they will have access to this
complex and costly treatment and the ongoing intensive follow-
up that is required. Healthcare funders have a strong desire to
cap overall expenditure and reduce unit cost. Paradoxically, the
more we move from ideal donors and ideal recipients the
greater the likelihood that the unit price will actually increase.
This revelation often leads to great consternation among the
healthcare funders, who, while publicly supportive of increas-
ing organ donation, struggle with the impact of this on the
financial bottom line. Often under-appreciated by those who
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fund healthcare is the cost of ongoing care of the still expo-
nentially growing number of long-term survivors of LTx.

The road ahead is full of real challenges to increase the
numbers of lung transplants performed, improving the QoL
achieved and lengthen the survival of recipients. Controlling
the costs of the transplant procedure, as well as the costs of
ongoing care, will be critical in achieving extra proportional
resources for the increasing in lung transplant activities.

PATIENTS: CURRENT CLINICAL MANAGEMENT/KEY
QUESTIONS

Where are we now and where do we need to go?

What exactly is primary graft dysfunction and how can we
understand it better?
A clear understanding of what primary graft dysfunction
(PGD) is and isn’t and what drives the underlying pathobiol-
ogy as well as how it translates to downstream effects all have
major implications for both short- and long-term outcomes in
LTR [72–74]. After a relatively slow start, we are now making

significant inroads into better understanding, diagnosing and
managing this condition.

Definition, pathobiology and risk factor identification

PGD of the lung is a syndrome of ‘‘acute lung injury’’ that
occurs within 72 h of LTx. It is characterised histopathologically
by diffuse alveolar damage and physiologically by ‘‘impaired
oxygenation, diffuse pulmonary infiltrates and decreased lung
compliance without an elevated left atrial pressure’’ [72]. In
2005, an ISHLT-appointed working group on PGD added both a
grading system (based on worsening Pa,O2/inspiratory oxygen
fraction (FI,O2) ratios) and a further time dependence to the
definition (0–6 h, 24 h, 48 h and 72 h) of reperfusion with the
dual aim of better delineating clinical risk factors and improving
the predictive power for clinical outcomes [73].

It is widely believed that the ischaemia–reperfusion insult that
necessarily accompanies all LTx procedures is at the core of
PGD and that the variable clinical manifestations of this
condition are largely due to critical differences in donor organ
quality (including time of organ preservation and storage) as
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FIGURE 1. Increasingly complex pathways in lung transplantation (1985–2012). ICU: intensive care unit; NYHA: New York Heart Association; CXR: chest radiograph;

Pa,O2: arterial oxygen tension; FI,O2: inspiratory oxygen fraction; PEEP: positive end-expiratory pressure; HLTx: heart–lung transplantation; ETT: endotracheal tube; IPPV:

intermittent positive pressure ventilation; ECMO: extracorporeal membrane oxygenation; VV: veno-venous; VA: veno-arterial; SLT: single lung transplant; BLTx: bilateral lung

transplant; BiPAP: bi-level positive airway pressure; NIV: noninvasive ventilation.
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well as variable contributions from recipient reperfusion pro-
cesses, allo-associated inflammation and lung fluid balance
dysregulation [72, 73]. In addition, all these donor, operative and
recipient factors are, at least in part, management dependent.
Therefore, it follows that ischaemia–reperfusion can be consid-
ered a multifactorial process whereby a variable number and
magnitude of key disturbances in the organ donor, storage/
transport conditions of the allograft and LTR immuno-inflam-
matory responses result in a spectrum of PGD that ranges from
the very mild to the extremely severe. Finally, excessive fluid
resuscitation may significantly confound the clinical syndrome
of PGD in the setting of ‘‘injured and inflamed lungs’’
(irrespective of the cause), that no longer have the benefit of
intact lymphatic drainage as a result of the transplant procedure.

The increasing appreciation of the impact of PGD on clinical
outcomes post-LTx has led to efforts to better identify
modifiable clinical risk factors despite the limitations posed
by single centre studies with small numbers of patients spread
over different treatment eras [74]. Given the previously
mentioned pathobiological framework, it is not surprising that
the factors that increase the probability and, more importantly,
the severity of ischaemia–reperfusion injury are also the factors
that have been generally acknowledged as being the key risk
factors for PGD. These factors include ‘‘marginal donor lungs’’
for any reason (e.g. trauma, aspiration, pneumonia, and acute
respiratory distress syndrome that may/may not be associated
with brain death), prolonged ischaemic times and any degree
of pulmonary arterial hypertension in the recipient [75, 76].
Interestingly, the time at which the Pa,O2/FI,O2 ratio is at its
worst within the first 72 h of reperfusion seems to vary
considerably in different reports; resulting in minimal ‘‘extra’’
predictive power for lung allograft outcomes (most likely a
function of the ‘‘noise’’ introduced when there are many
interacting factors at play) [76]. In contrast, donor organ
biology in the setting of brain death is increasingly of interest
now that this is able to be compared to lungs that are DCD.
Indeed, there is now very recent evidence that DCD lung
allografts are generally associated with less PGD (‘‘all else
being equal’’) than non-DCD lungs and better long-term
outcomes [40]. These observations again highlight the mechan-
istic complexity that is hidden by clinically based definitions of
PGD and risk factor identification and reminds us that a deeper
understanding is dependent on more completely delineating the
cellular processes associated with organ retrieval, storage and
re-implantation of the lung allograft.

Clinical patterns: diagnostic considerations

The increasing standardisation of the definition and grading of
PGD [73, 77] has had the immediate effect of increasing the
number of milder cases being reported (grade 1 and 2) but
attributing the major impact on early mortality to PGD severity
of grade 3 or above (variably reported between 10–50%) [78, 79].
In addition, it is grade 3 PGD rather than milder grades of PGD
that has been specifically associated with increased long-term
BOS [74, 80] when the association has been present; perhaps in
keeping with BOS heterogeneity and relatively small study
cohort sizes [81–83]. Finally, although less stringent definitions of
PGD were associated with an increased incidence they were not
associated with increased mortality [84]. This finding has been
confirmed and validated by the ISHLT grading system [85]

thereby suggesting that an important ‘‘cause and/or effect’’
threshold may exist relating PGD to important clinical outcomes.

Given the variable contribution of PGD grade 3 to future BOS
in LTR some further ‘‘unbundling’’ of this relationship is
warranted. First, the ‘‘effect’’ size for this association is critically
dependent on the probable mechanism at play. Is it the
physiological derangement that is related to later BOS or is this
derangement a marker of underlying processes that predispose
to BOS, or both? Secondly, how can we better ‘‘model’’ what is
going on pathobiologically, temporally and contextually? More
detailed profiling of the development of grade 3 PGD is only
now beginning, particularly regarding biomarkers of cell injury
and inflammation [86]. However, only specific interventions in
the ‘‘controlled’’ setting of a randomised clinical trial are likely
to provide the best answers.

Management issues: prevention, treatment and late
complications

An improved understanding of the key processes leading to
the pathophysiology of PGD is clearly the first step in better
preventing and treating this condition. Once PGD and its
complications are established the clinical focus very quickly
switches to supportive management in the form of more detailed
attention to fluid balance, maintaining haemodynamic stability
without excessive filling pressures, and minimising ventilator-
induced lung injury in the early post-operative period. Even in
this setting however, it would be very beneficial to delineate any
alloimmune or other drivers of an ongoing injury process.

However, more difficult, but perhaps even more rewarding,
will be an improved clarification of the risk factors and path-
obiological processes that lead to PGD in the first place with an
aim to prevent PGD of any severity that is associated with either
a compromised allograft (excessive damage/impaired tissue
repair) or problematic alloreactivity (excessive alloresponse/
fragile tolerance), both of which may reasonably be linked to
poorer short- and long-term outcomes.

As will be discussed later, although research efforts in this area
have always been present, they are now escalating dramati-
cally with the realisation that the key cellular processes that
lead to PGD may also have a significant impact on lung
allograft outcomes and survival in the long term. In particular,
chronic allograft dysfunction (CLAD) rates have not improved
in parallel with improvements in early acute rejection rates but
may be more amenable to specific early interventions relating
to prevention and better management of PGD. In particular,
there is an increased focus on the links between ischaemia–
reperfusion injury, reactive oxygen species formation, subse-
quent endothelial and epithelial cell injury, innate immunity
and pro-inflammatory cascades [87]. Although the majority of
work aiming to prevent PGD has focused on minimising cold
ischaemia and improving lung preservation methods [75, 88],
there is a parallel interest in reducing subsequent immuno-
inflammatory pathway upregulation that could potentially
become self-perpetuating (including anti-HLA allo-antibodies
and auto-antibodies to collagen type 4) [33, 89–93]. Finally,
ex vivo conditioning of the lung allograft not only has the
potential to better delineate PGD pathophysiology but can also
be harnessed to reduce ischaemia–reperfusion injury and block
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immuno-inflammatory cascades by utilising specific treatment
and delivery opportunities [94–97].

What does histopathological acute rejection (as currently
defined) tell us or not tell us?
Acute rejection, as defined histopathologically, has proven to be a
very useful concept over the last 20 yrs but the clinical exactness
of the term does not completely reveal the full spectrum of
cellular interactions and complexity that shapes an alloresponse,
and for which immunosuppression is essential. In addition to the
histopathological diagnosis of acute rejection being a relatively
insensitive measure of alloreactivity, there is also the possibility
that milder forms of an alloresponse, and even perhaps some
cases of ‘‘peri-vascular’’ lymphocytic infiltration, may be predo-
minantly tolerogenic rather than destructive; thereby raising the
possibility in some LTR that ‘‘alloimmune control’’ risks of extra
immunosuppression may outweigh the benefits.

Definitions, pathobiology and risk factor identification
Alloreactivity is defined as the host immune response to non-
self-donor antigens and, as such, is a dominant feature of lung
transplantation where donor organs are not routinely HLA-
matched (because of organ scarcity and logistic constraints)
[98]. Although HLA mismatching between donor organ and
recipient is the primary basis for all allograft rejection
syndromes, the exact pathobiology defining this process in
an individual LTR is poorly understood and poorly monitored
leading to a relatively heavy reliance on potent, broad-based
immunosuppression strategies.

Despite our relatively limited understanding of the specifics of
the alloresponse in any individual LTR, experimental evidence
from T-cell depletion studies in animal models and the
successful use of cyclosporin A in human lung transplantation
strongly suggests that, at least initially, the alloresponse is
predominantly T-cell dependent [99]. T-cells require a mini-
mum of two signals for activation, antigen recognition and co-
stimulation. Given the life history of all adult humans and,
perhaps especially LTR, memory T-cells are ubiquitous and
may be particularly problematic post-transplant because their
activation is relatively less stringent than for naı̈ve T-cells and
of the potential of heterologous immunity [100]. The majority
of B cells require help from T-cells to initiate antibody
production and although T-cell independent antibody produc-
tion is well described, this largely occurs in the setting of
infection and/or later post-transplantation [101, 102]. In any
case, donor-specific antibodies targeting HLA molecules on the
various cell types in the allograft, as well as autoantigens, can
contribute to graft loss especially if they are high affinity,
complement binding and part of an integrated immune–
inflammatory attack on the foreign tissue [100].

Alloreactive T- and B cells in the recipient can be initiated by so
called direct, indirect or semi-direct pathways, depending on
the interaction between donor major histocompatibility com-
plex (MHC) and recipient antigen presenting cells [103, 104].
Although it has been reported that the direct pathways tend to
dominate the early post-transplant period (relatively high
precursor frequency) and the indirect pathway tends to
dominate the later period (aimed at fewer donor MHC peptides
displayed on recipient MHC molecules) [105], the exact
contribution of either allorecognition pathway or even T- and

B-effector cell pathway amplification [106–108] to chronic
rejection in an individual LTR is difficult to ascertain [109].
Similarly, it is difficult to apportion the contribution of impaired
regulatory control mechanisms [110–112], persistent autoimmu-
nity [92, 113] and/or epithelial repair processes [114, 115] to
chronic allograft loss.

In the above framework of alloreactivity-associated injury
there are two extreme approaches to risk factor identification. At
one extreme, there is the difficult task of identifying specific
HLA combinations between donors and recipients factoring in
the potential for heterologous immunity (i.e. recipient’s infection
history) that may predispose to an aggressive alloresponse. At
the other extreme, the focus is on identifying early damage
signals in the allograft that could act as a net integrator of
pathways leading to acute and/or CLAD (see later section). In
between these two extremes, the multi-dimensional complexity
of the alloresponse makes it relatively difficult for the specific
measurement of one dimension to sensitively and specifically
capture all the information that is not measured in all its other
dimensions. Having stated this, it is probable that an inter-
relationship between activation of innate immunity, antigen
presenting pathways, T-cell immunity, humoral responses
and inflammation in the LTR exists even in the setting of
immunosuppression and perhaps even gets stronger with
increasing alloreactivity, thereby enabling the current spectrum
of clinical tools to diagnose the risk and/or presence of
significant alloreactivity (histopathology of lung tissue, donor-
specific antibodies and even relatively non-specific signals from
cellular immune assays) to be at least partly predictive of poorer
allograft outcomes over time.

Clinical patterns: diagnostic considerations
In many ways, the management of life-threatening acute
rejection has been a major success as it defined the modern era
of lung transplantation. Calcineurin-based maintenance immu-
nosuppression protocols and steroid-based augmented immu-
nosuppression strategies have dramatically reduced the rate of
histopathological acute rejection and hence graft loss from this
condition over the last 25 yrs [116]. However, and perhaps
equally important, despite the reduction in histopathological
acute rejection, there has not been any significant improvement
in chronic lung allograft dysfunction over the same time period
[116, 117]. Is this because of the damaging effects of undiagnosed
sub-clinical alloreactivity/fragile tolerance? Alternatively, is it
because of other factors that may compromise the integrity of the
allograft (e.g. infection, dysregulated inflammation/repair pro-
cesses)? Or a combination?

The histopathological classification and grading of acute
cellular rejection in LTR was first described in 1990 and has
only minimally evolved since then [118–120]. Acute vascular
cellular rejection on transbronchial biopsies is characterised
according to the degree of perivascular lymphocytic infiltrate
with minimal (A1), mild (A2), moderate (A3) and severe (A4)
infiltration and variable infiltration with other cell types
including eosinophils and neutrophils. Although the limita-
tions of inadequate tissue sampling is always discussed, the
lack of more detailed phenotypic analysis of the cellular
infiltrate (e.g. CD4/CD8 T-cells, regulatory T-cells (Tregs) or
B cells), particularly in relation to the total infiltrate, and also
the resident cell profile (e.g. degree of endothelial damage,
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apoptosis and/or proliferation) is not. Perhaps of even greater
importance is the fact that this paucity of information coupled
with the relative insensitivity of transbronchial biopsies to obtain
adequate bronchiolar tissue with which to assess cellular
rejection of the bronchioles makes it difficult to properly examine
the potential link between the two. Acute cellular reaction grade
B is characterised by lymphocytic inflammation of the small
airways and perhaps not surprisingly is a stronger risk factor for
the development of BOS than acute vascular rejection [119, 121].
For completeness, grade C rejection is characterised by features
of obliterative bronchiolitis (including obstructive changes with
or without mucostasis and/or endogenous lipoid pneumonia)
but rarely diagnosed on transbronchial biopsy. Finally, grade D
rejection is rarely seen but histologically is characterised by
arterial and venous intimal fibrosis with or without inflamma-
tory infiltrates [118, 119]. Finally, histopathological techniques to
diagnose antibody-mediated rejection remain relatively proble-
matic, although improving [82], thereby greatly limiting our
ability to fully understand the potential relationships between
circulating donor-specific antibodies, antibody- and cell-
mediated rejection in the lung allograft and various clinical
patterns of chronic lung allograft dysfunction [119, 120, 122–125].
From the clinical information perspective, the histopathological
diagnosis of allograft rejection is associated with a clear trade-off
between sampling/technical efficiencies and predictive power.
Just as importantly, however, although there is a histopatholo-
gical ‘‘exactness’’ associated with the diagnosis of allograft
rejection types/grade and specific other patterns (e.g. bronchio-
litis obliterans organising pneumonia (BOOP) or fibrinoid
organising pneumonia (FOP)), the precise pathobiological rela-
tionships within and between the various vascular, bronchiolar
and interstitial phenotypes central to these diagnoses remains
unclear (fig. 2).

The current state of relatively insensitive and poorly specific
tests for alloreactivity-associated organ damage relegates much
of our diagnosis of acute rejection ‘‘risk’’ and ‘‘presence’’ to a
relatively probabilistic analysis. This assessment then informs
decision making pathways in a contextual framework where
other important information such as infection risk and
immunosuppression profiles are also factored in. In this setting,
a clear understanding of both the certainties and uncertainties
relating to ‘‘acute rejection’’, ‘‘infection’’ and ‘‘drug toxicity’’ are
all critical.

Management issues: prevention, treatment and complications
In the context of ongoing long-term lung allograft loss,
diagnostic uncertainty related to alloreactivity is dramatically
compounded by the need to avoid under-management of this
condition. Immunosuppression management is, therefore,
understandably relegated to giving as much as possible without
causing adverse events or overdoing the potential risk of
adverse events (especially as there is really no viable back-up
plan once the lung allograft is lost and re-transplantation is an
option in only a handful of cases).

Although, it would then be acceptable to run lower immuno-
suppression levels if there was clear evidence of drug toxicity
or significant infection, the exact ‘‘thresholds’’ for these decisions
are not always clear, particularly where both damaging
alloreactivity and infection are present to a varying degree and
perhaps even compounding each other. The current lack of an

accurate, robust, sensitive, predictive, treatment responsive and
therefore meaningful measure of the alloresponse makes
individual titration of maintenance immunosuppression, aug-
mentation of immunosuppression strategies and management of
established BOS all less than optimal. Better targeting immuno-
suppression may not only reduce graft loss from unchecked
alloreactivity over time, but may also offer the possibilities of less
fragile operational tolerance risk and limitation of excess
infection and malignancy risk; both of which may also help to
improve lung allograft outcomes as well as non-lung allograft
morbidity and mortality. In addition, the development of novel
targets for new classes of immunosuppressive drugs will be
greatly facilitated by the identification of specific molecular
pathways that trigger tissue injury-associated enhancement of
the presentation of foreign antigens, activation of T-cells and
amplification of immuno-inflammatory loops.

Although initial and subsequent risk stratification regarding
alloreactivity and infection may be improved by utilising
newer diagnostic and therapeutic tools to maximise benefit
while minimising risks, a level of ‘‘trade-off’’ will always be
required unless true tolerance of the allograft can be achieved
at the same time as maintaining a fully potent host response to
microbial pathogens!

How good are current immunosuppression strategies and
how can they be better?
The relative potency and T-cell selectivity of cyclosporin A
(CyA) revolutionised organ transplantation generally and lung
transplantation specifically [1, 126]. Although CyA enabled
effective immune suppression to be obtained without excessive
myelosuppression, a ‘‘standard’’ triple regimen for immunosup-
pression (initially CyA+steroids+azathioprine) quickly became
routine for LTR so as to maximise net immunosuppression whilst
minimising specific toxicities [127]. This standard triple regimen
has continued to be fine-tuned over the years by increasingly
changing calcineurin inhibitor to tacrolimus, reducing the total
steroid dose, and often using mycophenolate mofetil instead of
azathioprine in an effort to increase the efficacy with which the
alloimmune response is suppressed whilst keeping specific drug-
related toxicities to an acceptable level. However, this ‘‘trade-off’’
can only be partially achieved with respect to infection risk given
the many fundamental similarities with which an immune
response attacks both foreign tissue and foreign pathogens. In
the latter setting, better diagnostic tools for destructive allor-
eactivity would dramatically help to individualise care as would
better diagnostic tools/therapeutic strategies for the various
infection syndromes that LTRs are at risk from.

Calcineurin-based immunosuppression: a great start but still a
way to go

CyA and tacrolimus specifically bind to cyclophilins (a family
of cytoplasmic proteins) [128], and thereby inactivate calci-
neurin; a key intracellular protein phosphatase critical for
cytokine gene transcription dependent T-cell activation and
proliferation [128, 129]. As calcineurin inhibitors (CNIs) have
significant inter- and intra-individual absorption variability,
dosing needs to be titrated according to drug levels [130–132].
Maintaining CNI levels within a specified range helps to
achieve acceptable immune suppression without excessive
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FIGURE 2. Histopathological phenotypes in the lung allograft. a, b) Vascular phenotypes, c, d) bronchiolar phenotypes, e, f) interstitial phenotypes. a) A2 cellular

rejection, b) A2 plus immunohistochemistry for apoptotic (caspase 3) and proliferation (Ki67) markers, c) B-lymphocytic infiltrate, d) bronchiolitis obliterans organising

pneumonia, e) obliterative bronchiolitis (OB), and f) OB with chronic vascular rejection/fibrosis. Other histopathological phenotypes not shown include: chronic, low grade

pneumonitis; endothelialitis with/without complement staining; and fibrinoid organising pneumonia. In (b) the peri-vascular lymphocytic infiltrate is schematically shown to

consist of a combination of CD4/8 T-effectors and CD4/FoxP3 T-regulatory cells.
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toxicity and aides in the management of cytochrome P450
metabolism-mediated drug interactions in individual LTR.

According to the most recent ISHLT registry, tacrolimus is now
the most common CNI being used by LTR (slightly more
effective immunosuppression profile and a different side-effect
profile) [4, 133, 134]. Over the years there has been much
refinement in the dosing of both CyA and tacrolimus according to
pharmacokinetic parameters [135]. This has been a necessary first
step to better understanding the immune-related and off-target
pharmacodynamic effects of these drugs. For both these CNIs, the
most common serious adverse reaction is nephrotoxicity which
may be acutely reversible or chronically progressive [136–138].
Indeed, chronic renal impairment and end-stage renal failure are
now increasing problems in many long LTR survivors [132, 136].
Other severe but less frequent CNI side-effects include neuro-
toxicity syndromes and thrombotic thrombocytopenic purpura/
haemolytic uraemic syndrome [139, 140]. Less severe but much
more common side-effects include muscle dysfunction, hyper-
tension, hypercholesterolemia, gingival hyperplasia and hirsut-
ism [130, 141].

CNI dosing adjustment according to a pharmacokinetic target
range is only partly predictive of pharmacodynamic effects
(either allograft rejection syndromes or specific toxicities). The
development of improved diagnostic assays for both alloreac-
tivity and infection in the future is the critical next step to allow
further titration of these drugs according to true pharmacoki-
netic/pharmacodynamic principles thereby maximising allo-
graft specific immunosuppression whilst infection risk and
organ toxicities are minimised across all time periods and
clinical contexts.

Clinical protocols: maintenance versus augmented
immunosuppression
The complexity of the immuno-inflammatory host response post-
transplantation has led to the combination of several immuno-
suppressive agents with different therapeutic and toxicity profiles
so that a ‘‘net’’ therapeutic index could be maximised. As already
discussed, this led to the relatively standard triple agent
immunosuppression regimen for LTR which has been modified
over the years as evidence of improved efficacy or the need to
reduce side-effects for specific agents has emerged [138, 141–143].

Steroids inhibit both humoral and cell-mediated immunity
primarily by turning off gene transcription of multiple immune
inflammatory genes [144]. These drugs are highly bioavailable
and dosage is weight based but no drug level monitoring is
available. Toxicities include well known acute and chronic
gastrointestinal, metabolic and cardiovascular toxicity [4, 144].
Given the increasing appreciation of the chronic toxicity problem
of corticosteroids, maintenance doses are usually reduced to
baseline physiological levels within 6–12 h if possible. Parado-
xically however, if a significant acute allograft rejection
syndrome is suspected and no significant infection is present
then pulse treatment with high dose methylprednisolone given
over 3 days is one of the most effective ways to regain control.

Nucleotide blocking antimetabolites and agents such as
azathioprine (AZA) and mycophenolate mofetil (MMF) usually
complement CNIs and steroids in the standard triple regimen of
immunosuppression routinely used in LTR. MMF is a powerful
broad-spectrum immunosuppressant that inhibits T- and B cell

proliferation [145]. As the synthesised form of mycophenolic
acid, MMF has improved oral bioavailability [146] but drug
monitoring is not routinely available. MMF dosing generally
varies between 250 mg twice daily up to 1,000 mg twice daily
being largely driven by the rejection/infection combined risk/
benefit ratio as well as the common toxicity profile of this drug
which includes gastrointestinal and haematologic side-effects
[145, 146]. AZA is generally better tolerated than MMF especially
at higher doses. Although it was initially thought that MMF was
better at preventing acute rejection thereby making its increased
toxicity profile acceptable, a more recent large RCT did not
definitively confirm this [147].

As well as the changes to the first line immunosuppressants
that have occurred over the last 5 yrs, the use of induction
agents, such as the interleukin (IL)-2 receptor antagonist
basiliximab and the mammalian target of rapamycin (mTOR
inhibitors), sirolimus and everolimus are is now common
[4, 142, 148]. The use of these agents is most commonly as
CNI sparing agents (especially in the setting of nephrotoxicity
risk) but they may also be used to combat an elevated risk of
allograft rejection in specific settings (e.g. IL-2 receptor
antagonists for high panel reactive antibodies (PRAs) in the
immediate post-operative period and the mTOR inhibitors for
recurrent/progressive late rejection). Sirolimus and everolimus
exert their immunosuppressive effect by binding to intracellular
immunophilin proteins (FKBP12) and blocking mTOR-asso-
ciated cytokine mediated proliferation of T- and B cells resulting
in apoptotic cell death [149, 150]. This anti-proliferative effect
can also interfere with endothelial cell, fibroblast and vascular
smooth muscle cell proliferation. Therefore, these drugs are
generally not used in the first 3 months post-transplantation as
they can potentially inhibit adequate healing following surgery
with disastrous consequences [149, 151]. Variable bioavailabil-
ity, the potential for drug–drug interactions and a relatively low
therapeutic index (major toxicities include bone marrow
suppression, gastrointestinal and pulmonary toxicity, including
FOP), makes drug monitoring for these medications essential
[151, 152]. However, even with their increased usage and blood
level monitoring, the pharmacokinetics of the mTORs is not, as
yet, as well understood as for the CNIs. In addition, given their
broad anti-proliferative potential it is not clear whether there is a
clear pharmacodynamic effect between immune cell suppres-
sion and non-immune cell regulated proliferation/healing for
the lung allograft, and, if so, whether it is context dependent.

Although the relatively broad and aggressive triple immunosup-
pression regimen and its variations that are currently routinely
used post-LTx have significantly reduced acute rejection syn-
dromes, only a minimal impact has been made on long-term lung
allograft function outcomes as has been previously discussed.
This is an interesting paradox and suggests several possibilities
which are not necessarily mutually exclusive. First, it is possible
that despite reducing histopathological acute rejection rates, as
diagnosed during surveillance bronchoscopies, undiagnosed
subclinical alloreactivity persists to a degree that chronic rejection
outcomes remain unabated. Secondly, current immunosuppres-
sion regimens may inhibit destructive alloreactive immune
processes as much as operational tolerance and so over a longer
time period there is little ‘‘net’’ gain, particularly if the
destabilising effect of episodic infection is also taken into account.
Finally, it is possible that the downstream effects of either
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episodic or persistent sub-clinical alloreactivity or infection are
greatly magnified by allo-related and/or immunosuppression-
related dysregulated healing/repair mechanisms.

Individual patient management issues

All LTR more or less start with a relatively standard triple
immunosuppression regimen which very quickly begins to be
individualised according to routine clinical parameters relating,
particularly, to rejection risk (PRAs, B and T-cell cross-match
results, donor-specific antibodies), infection risk (especially
primary donor sero-positive/recipient sero-negative mismatch
(D+/R-) CMV/EBV mismatches and airway bacterial/fungal
infections) and renal status. The use of induction therapy, early
CNI target levels and the use of MMF rather than AZA are all
dependent on this early assessment. From then on, there is a
continuous evaluation of immunosuppression-related benefit/
risk framework with changes being ideally made in parallel and
in proportion to a changing risk context. The development of
humoral rejection would, therefore, be managed by escalating
therapy from increasing baseline immunosuppression to pulse
methylprednisolone to courses of i.v. rituximab and/or plasma-
phoresis and/or i.v. intragam as required, providing no
significant infection was present [153, 154].

Although the availability of better immunosuppressive drug
monitoring coupled with very sensitive, accurate and respon-
sive diagnostic immune and toxicity assays would substan-
tially improve immunosuppression-related risk management
in LTR, it remains unlikely that these risks can be completely
eliminated. Therefore, it follows that thoughtful, information-
weighted and value-driven decision making will always be
required to manage the intrinsic risk trade-off between
alloreactivity and infection/toxicity that will never be able to
be completely resolved with the use of these more specific but
nevertheless still ‘‘blunt’’ immunosuppressant agents. These
trade-offs are particularly relevant in the LTR who routinely
receives a non-HLA matched donor organ which is necessarily
fully exposed to aero-environmental irritants, allergens and
infections [155, 156] and will, therefore, require a vigilant and
indefinite review of immunosuppression strategy.

Given the above framework for potential pathways to ‘‘chronic
rejection’’ it is perhaps not surprising that treatment of most
patterns of persistent/progressive loss of lung allograft
dysfunction in LTR do not respond dramatically to pulse
steroids, an increase in baseline immunosuppression or even a
course of antithymocyte globulin therapy. The proviso here of
course is that acute cellular and/or humoral rejection have
been excluded and as this is often difficult to do; a trial of
increased immunosuppression is perhaps always warranted. It
then becomes a self-fulfilling fact that the LTR that do not
respond to an empirical trial of augmented immunosuppres-
sion have treatment resistant chronic rejection and those that
stabilise have partially responsive disease. In either case, any
further empirical increases in immunosuppression would have
to be carefully weighed against the potential for greatly
increasing infection-related problems, therefore accelerating
the demise of the patient.

In the setting of established BOS, net immunosuppression should
be reduced to minimise the possibility of further lung complica-
tions from either acute or chronic infection. The use of the

immuno-modulating, non-immunosuppressing, antimicrobial
agent azithromycin would also be reasonable in this setting
[157–160]. However, the benefits of using azithromycin in both
established BOS and/or even earlier remains to be confirmed in a
large prospective RCT (the impetus for which would increase
should this drug be associated with significant long-term
toxicities).

Finally, although many newer agents are being developed with
variable therapeutic indices (to decrease allograft rejection with
minimal toxicity), perhaps the major hope lies with new
biological agents and small molecule inhibitors that are
strategically given at the time of transplantation to help promote
long lasting operational tolerance [161, 162].

Are antimicrobial prophylaxis/treatment strategies
adequate and where are the gaps?
The risks posed by ubiquitous DNA viruses that can reactivate
from the latent state and common respiratory pathogens (viruses,
bacteria and fungi) are ever present for the LTR. The reasons for
this include: the HLA mismatched nature of the lung allograft,
the broad spectrum of immunosuppression used to prevent both
acute and chronic allograft rejection and the constant exposure of
the lung allograft to the external environment, all of which make
it very easy for the transplanted lung to become infected, for
infection to progress and for antimicrobial treatment approaches
to be relatively compromised.

Infection in the LTR can lead to clinically obvious septic
syndromes that have direct and dramatic effects on the allograft
or more subtle impacts associated with persistent, sub-clinical
infection. These latter indirect effects may include breaking
operational tolerance, contributing to low-grade airway damage
and impairing well-regulated repair processes. The importance of
preventing acute episodes of symptomatic infection as much as
possible, and using treatment strategies that are quick and
effective should they occur, is without question. What about low-
grade persistent viral reactivation and/or airway infection? How
should they be managed? Where does one draw the line between
treatment or not? And when do the adverse side-effects of any
antimicrobial intervention approach (whether it be prophylaxis
or treatment) outweigh the perceived benefits? Also, how should
we manage immunosuppressive strategies in individual case
scenarios? Although these are difficult questions, it is clear that
better diagnostic tools and therapeutic options for viral, bacterial
and fungal infections in LTR being systematically applied to well
phenotyped study cohorts with adequate longitudinal follow-up
will provide the platform for future improvements in manage-
ment. Finally, although annual influenza vaccine is recom-
mended for all LTR unless there are contraindications, how
should we think about the pros/cons of newer vaccine options
being developed? All of the above is perhaps best exemplified by
the transformation in CMV diagnostics and management over
the last decade.

Viral infections
Although reactivating DNA viruses, such as CMV, have
always been a well-recognised problem in LTR, the acute
and chronic impact of episodic respiratory RNA viruses and
adenovirus on the lung allograft are being increasingly
appreciated as diagnostic testing for these viruses has become
available and is more routinely used.
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DNA viruses: CMV versus others

In the early days of lung transplantation, severe CMV disease,
particularly in the form of CMV pneumonitis, was a major cause
of early morbidity and mortality [163–166]. However, with the
use of more tailored immunosuppression protocols, the
increased availability of antiviral agents for prophylaxis and
treatment protocols and the development of better molecular-
based diagnostic tools to help guide pre-emptive intervention
strategies, the rates of clinical CMV disease syndromes (includ-
ing CMV pneumonitis) have reduced dramatically and the focus
is now on how to best understand and therefore manage
subclinical CMV reactivation [167–174].

Although the possibility of sub-clinical CMV reactivation is not
difficult to conceptualise as ‘‘filling the gap’’ between a truly
latent state and clinical disease, it was only after the develop-
ment of quantitative molecular PCR-based assays for CMV and
their systematic application in the peripheral blood and
bronchoalveolar lavage of LTR study cohorts that the concept
really took hold [170, 171, 175]. In addition, the sensitivity,
quantitative power and dynamic range of these assays allowed
for the early detection of CMV, viral load monitoring and
assessment of treatment response [170, 171, 176].

The concept of sub-clinical reactivation raised two further
issues related to CMV reactivation pathobiology. First, defini-
tions for the CMV infection, sub-clinical reactivation and
disease (including tissue invasive disease diagnosed by
characteristic CMV inclusions on histopathology) had to be
standardised and internationally accepted [177]. Secondly, the
variable reactivation dynamics of CMV suggested that CMV
specific immunity was variably able to control reactivation.
Various measures of CMV-specific immunity are now an active
area of research [178–181] and may further help to risk stratify
patients thereby allowing for even further individualisation of
antiviral and immunosuppression treatment approaches.

The current state-of-the art regarding CMV management in
LTR combines a universal prophylaxis protocol for usually
3–6 months post-transplant coupled with protocols for routine
diagnostic testing for CMV that can then guide pre-emptive
intervention strategies, with full treatment protocols being
reserved for break-through clinical disease [169, 172, 182, 183].
Although this extended approach has had the overall benefit
of reducing CMV events in LTR, late CMV can still occur
[172, 173, 184, 185] thereby raising the possibility that long-
term prophylaxis may have additional benefits [183, 185, 186].
However, longer use of antiviral drugs will need to be
balanced against the potential for increased toxicity, antiviral
resistance and increased costs. These considerations are perhaps
even more important if long-term prophylaxis is used to reduce
the rate of BOS development in LTR. Although recent studies
have shown that there is an association between sub-clinical
CMV reactivation and BOS even in the modern era [186], a
cause–effect understanding of this association can only occur
through properly conducted randomised trials which would
also be able to address a risk/benefit analysis of long-term
antiviral prophylaxis for CMV.

Intravenous ganciclovir and oral valganciclovir are usually
used in various combinations for both prophylaxis and
treatment of CMV according to the risk of disease or its

severity, respectively. For example, treatment of CMV is
usually with i.v. ganciclovir but oral valganciclovir is often
used for minor reactivation episodes, especially if there is also
reduction of immunosuppression and viral load monitoring
is ongoing. Anti-viral side-effects for both agents include
neutropenia and prolonged use may predispose to anti-viral
resistance (especially if high viral loads are present) which is
difficult to treat [184, 187]. An exciting recent development is
the possibility of a vaccine for CMV to help protect the
particularly ‘‘at risk’’ sero-negative recipient [188–190].

Like CMV, other herpes viruses, such as human herpes virus 6
and 7, EBV, herpes simplex virus and varicella zoster virus,
can also establish latency after primary infection and therefore
reactivate with immunosuppression although the site, fre-
quency and severity of this reactivation is very variable.
Importantly, this reactivation variability is very dependent on
the source cell for latency, the specific signals for reactivation
and the anti-viral immunity thresholds required for controlling
each of these viruses. Again, as for CMV, although excellent
anti-viral agents currently exist, their optimal use is dependent
on the development and systematic application of better
diagnostic tools which would then enable an improved
understanding of sub-clinical reactivation for each of these
viruses and their association with various clinical syndromes
[191–196]. This will be discussed in more detail for EBV (the
second most problematic herpes virus for LTR) in relation to
post-transplant lymphoproliferative disease (PTLD) [197–200].
Importantly, sub-clinical EBV reactivation may also specifically
influence lung allograft outcomes through non-lytic virus
effects [201, 202], stimulating an activated immuno-inflamma-
tory phenotype [203] and the potential for generating cross-
reactive antiviral memory T-cells [204]. Finally, these concepts
are perhaps also important for non-herpes viridae DNA
viruses such as human papilloma viruses, hepatitis B and C
viruses and parvoviruses, all of which may cause significant
problems in individual LTR [205, 206].

RNA viruses: influenza versus others
Community acquired respiratory viral infections are very
common and so perhaps it is no surprise that the more routine
application of molecular-based assay systems are increasingly
diagnosing the presence of these viruses in upper respiratory
tract (URT) and/or lower respiratory tract infection syndromes
in LTR [207–213].

On average, up to 30% of all respiratory viral syndromes are
now positively diagnosed using more recent, multiplex PCR
tests with picornaviruses generally being the most frequently
identified [207–209]. Influenza and the paramxyoviridae
(parainfluenza, respiratory syncytial virus (RSV) and meta-
pneumovirus) are not infrequently isolated and are particu-
larly important as there are specific treatments available for
these viruses [214]. It remains unclear, however, why in some
cases the same virus may remain localised to the URT whereas
in others it may quickly spread to the lower respiratory tract.
Equally unclear is why the same virus in the lower respiratory
tract of some LTR is associated with minimal symptoms whilst
in other cases there is a rapid progression to severe infection,
allograft injury and ultimately irreversible lung allograft
dysfunction in the form of non-treatment responsive organis-
ing pneumonia (e.g. BOOP or FOP) [213–216]. Interestingly,
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both BOOP and FOP have been previously described in the
setting of acute community acquired pneumonia syndromes
and are perhaps related to infectious pathogens [217, 218] in
the setting of impaired immunity and dysregulated repair;
both of which are more common in LTR.

Prevention is the best method of managing the potential
problems from community viral infections in LTR and this
involves strictly avoiding sick contacts/isolation procedures,
appropriate hand hygiene and virus-specific precautions such
as yearly influenza vaccinations [219–222]. The importance of
community viral infections post-transplant and their vary-
ing presentations require a vigilant approach regarding risk
stratification and diagnostic/management decision including
the commencement of early treatment protocols for influenza
(oseltamavir and zanamavir being the only current readily
available antivirals in an outpatient setting) even whilst waiting
for confirmatory test results. This is especially true during
outbreaks, epidemics and pandemics such as the relatively
recent H1N1/09 influenza pandemic where the pre-test prob-
ability of a positive test result in a specific clinical scenario is
relatively high [219, 223, 224]. Effective treatment protocols
based on parenteral or nebulised ribavarin are available for RSV
and parainfluenza, although, in general, these are more
complicated to administer [225, 226]. Unfortunately, therapies
for picornaviruses are yet to become a clinical reality although
research efforts in this area are continuing [227, 228].

HIV

Uniquely, HIV is an RNA virus that depends on a reverse
transcriptase to synthesis its DNA form. Its preponderance for
infecting CD4 T-cells, thereby leading to their depletion, is the
major mechanism by which it causes severe immunodeficiency
syndromes if unchecked. Over the last few years HIV infection
has complicated a small number of immunosuppressed solid
organ transplant recipients for various ‘‘unplanned’’ reasons.
Of importance here is that nucleic acid testing for HIV in ‘‘at
risk’’ donors can only reduce the negative window between
HIV exposure and a positive test result to about 3 days and,
therefore, can never eliminate all risks associated with using
organs from such donors. Interestingly, the results of HIV in
these cases are surprisingly not disastrously bad in the setting
of appropriate management and, although there may be a
reporting bias at play, the relatively positive outcomes offer
unique pathobiological insights into the potential interaction(s)
between newly and/or previously acquired HIV infection and
a suppressed immune system [229]. Building on these
observations, in South Africa, where there is a high prevalence
of HIV and renal failure in the setting of limited resources for
healthcare, there is now an active programme of renal
transplantation using HIV positive donors and recipients with
short- and long-term outcomes that are acceptable for that
population [230, 231].

Bacterial infections

Bacterial infections are responsible for a major component of
infectious complications in immunosuppressed LTR both in the
lung allograft and in non-allograft tissues. Although acute
bacterial infections can occur at any time post-LTx there is a
biphasic peak in incidence early in the post-operative period and
again following the development of BOS later. Early infections

may begin in the donor lung or in the native airway of the
recipient and therefore may complicate the bronchial anastomo-
sis as well as the pleural and/or mediastinal space [232–234].

During the immediate post-transplant period the risk of
aspiration pneumonitis is particularly increased in the setting of
vagal injury-associated delayed gastric emptying and gastro-
oesophageal reflux disease (GORD) [235]. Similarly, gastrointest-
inal infection with Clostridium difficile and intravenous line
infections in the setting of prolonged parenteral antibiotic use
are also not uncommon early following transplantation [234, 236,
237]. Late infections in the lung allograft are often due to
impaired airway defences either acutely in the setting of a viral
infection or chronically in association with BOS [121, 238, 239]. In
both cases, nosocomial bacterial pathogens such as MRSA and
multi-resistant Gram-negative organisms including Pseudomonas
aeruginosa can be particularly problematic and ongoing immu-
nosuppression can significantly compromise antimicrobial treat-
ment regimens [234, 239–241].

The persistence of specific bacterial pathogens such as
Staphylococcus aureus and P. aeruginosa in the lower airways
of the lung allograft may be either a marker or a cause of lung
allograft dysfunction or both. This is particularly relevant in
LTR who have CF and the upper airway is already colonised
with bacteria (e.g. S. aureus, P. aeruginosa). Although the
distinction has important implications for pathobiology, its
practical management often distils down to appropriate
antibiotic treatment courses initially with a view to eradicating
the bacteria and, if this fails and a chronic biofilm infection
develops, the aim switches to maintenance suppression with
control of acute exacerbations.

Community acquired bacteria including pneumococcus and
atypical bacteria are always a possibility in LTR and they
should always be covered in any empirical treatment regimen
for community acquired pneumonia syndromes. In particular,
the sero-dependence of Mycoplasma and Chlamydia pneumoniae
diagnosis is problematic in immunosuppressed LTR. Interest-
ingly, anecdotally it seems that relatively few cases of pneumo-
coccal pneumonia and/or bacteraemia are diagnosed using
standard tests in any one centre. However, multicentre sys-
tematic reviews examining the incidence of pneumococcal
bacteraemia in LTR clearly indicate otherwise [242, 243]. These
results suggest either that some LTR are not vaccinated prior to
transplantation or that their vaccine-associated immune protec-
tion post-transplant is inadequate. Currently, it is recommended
that at risk patients with severe lung disease are vaccinated with
the 23-valent polysaccharide pneumococcal vaccine. The role of
the newer conjugate pneumococcal vaccines in LTR with a T-cell
dependent antibody production profile remains to be elucidated,
but they may be particularly beneficial in the older LTx
candidate prior to transplantation.

When bacterial sepsis does occur in immunosuppressed LTR,
it can be devastating both because of uncontrolled sepsis and
distal sight seeding [233, 242, 244, 245]. Early use of appropriate
antibiotic treatment is critical in this scenario as high mortality
rates are associated with delayed antibiotics, inadequate dosage
and resistant pathogens [246–248]. Finally, the last comment is
particularly relevant for less commonly diagnosed bacterial
respiratory pathogens such as Legionella, Mycobacteria, Nocardia
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and Burkholderia pseudomallei (meliodosis), especially if the
acquisition is travel associated [249, 250].

Fungal infections
Pulmonary fungal infections are both a major cause of short-
and long-term morbidity and mortality in immunosuppressed
LTR. Between 15% and 30% of LTR will acquire a fungal
infection and the incidence of this is again biphasic with an early
peak post-operatively and a late peak following BOS [251–254].
By far the most common infection is Aspergillus in the airways of
the lung allograft causing various degrees of tracheobronchitis
with or without bronchial anastomotic involvement and/or
tissue invasion [255, 256]. The incidence of severe invasive
disease has been reduced with the increasing use of prophylac-
tic antifungals, but mortality remains high should it occur [253].
Systemic candidiasis that is either an intravenous line or
gastrointestinal related is also associated with significant
mortality [257].

Aspergillus is a widely distributed filamentous organism (with
septate hyphae whose conidia can be inhaled easily). The LTR
is therefore always at risk from inhaling the conidia of
Aspergillus and there is evidence that this is more likely in the
setting of building-associated earthwork and seasonal factors
[258]. In addition, some patients such as those with CF may be
chronically colonised with Aspergillus in their native airway.
In these patients, prophylactic antifungals for at least the
first 6 months post-transplant are very important to prevent
significant anastomotic or chronic airway infection [252, 259].
Later acquisition of infection, particularly if it persists despite
antifungal treatment, may be both a marker of BOS and a cause
of progressive loss of allograft function. In both cases, the risk of
locally invasive or disseminated disease dramatically increases
in the setting of increased immunosuppression [259–261].

The detection of Aspergillus in the airways of LTR is very
sensitive using regular bronchoscopic sampling and fungal
culture assays, such that the negative predictive value of these
tests is excellent. Once Aspergillus is detected in the airways,
however, the specificity with which colonisation, tracheobron-
chitis and tissue invasive disease are diagnosed is relatively
poor. Whether galactomannan levels in the bronchoalveolar
lavage, serum or urine [262–264] or Aspergillus PCR load in the
blood [265] will prove useful in answering these questions
remains to be seen.

The current prophylactic and treatment antifungal drug of
choice for Aspergillus is voriconazole which has proven efficacy
but significant bioavailability, drug–drug interaction and toxicity
issues making therapeutic drug monitoring very important and
useful [266–273]. A prophylaxis strategy is recommended when
there is a high pre-test probability of Aspergillus being present
and potentially causing serious complications as in LTR with
Aspergillus in the sputum just prior to transplant surgery.
However, a pre-emptive treatment course is preferred when
Aspergillus is first isolated in LTR airways. Finally, antifungal
combination therapy (voriconazole+caspofungin or amphotericin)
is reserved for the most severe invasive forms of the disease [253,
274–276]. In all cases, however, the benefits versus risks of ongoing
antifungal therapy in LTR have to be continually assessed.

Unlike Candida, Cryptococcus is a yeast that has a propensity for
lung infection and early neurological involvement [277, 278],

particularly in immunosuppressed LTR. Cryptococcal antigen
testing is useful in both compartments and can also be used to
monitor the effectiveness of specific antifungal therapy [277–279].

Non-aspergillus moulds that may affect the lung or sinuses
of LTR include the Zygomycetes, Scedosporium and Fusaerium
[278, 280]. Clinical presentation can vary from colonisation to
invasive infections. Scedosporium apiospermum and S. prolificans
often require combination therapy using voriconazole and
terbinafine, reductions in immunosuppression and occasionally
debulking surgery if possible [252, 275]. With increasing over-
seas travel, the endemic mycoses may need to be considered in a
wide range of differential diagnoses given their variable clinical
presentation [281, 282]. An initial awareness of the relevant
epidemiology is key, coupled with appropriate sero-testing and
culture diagnostic methods for blood and tissue. An early
diagnosis is a prerequisite for aggressive management to
commence otherwise mortality is likely to be high [282].

What do the labels chronic rejection/BOS/CLAD tell us and
not tell us?
Although lung transplantation is associated with significant
improvements in short-term patient survival and QoL in those
with severe lung disease amenable to this treatment option,
long-term survival remains limited. In particular, 5-yr survival
rates are currently 50–60% with most late deaths being directly
or indirectly associated with progressive allograft dysfunction.
But what is progressive lung allograft dysfunction? What drives
it? and what are the likely consequences/treatment implica-
tions? Moreover, how do the diagnostic concepts of ‘‘chronic
rejection’’, ‘‘BOS’’ and ‘‘CLAD’’ help us answer these questions?

Definition: pathobiology and risk factors

Chronic rejection in the lung allograft has been conceptualised
as the development of histopathologically defined obliterative
bronchiolitis on the basis of strong observational and experi-
mental evidence [118–121]. However, the insensitivity of
histological diagnosis has led to a syndromic diagnosis of
bronchiolitis obliterans, otherwise known as BOS, defined as
the ‘‘irreversible loss of forced expiratory volume in 1 s as
a percentage of the best achieved post-transplant that is
otherwise unexplained’’ [283]. Although this clinical syndrome
approach has clearly been very useful over the last 25 years, it
has its limitations as it summarily dismisses the possibilities
that non-obstructive progressive lung allograft dysfunction
(e.g. restrictive lung pathophysiology or fibrosing/organising
pneumonia) may also be a manifestation of chronic rejection in
some circumstances and that other factors such as acute and/
or chronic airway infections in particular may be important
contributors to this process (either directly by breaking
operational tolerance or indirectly by causing airway damage
that is not appropriately repaired). These specificity issues
with the diagnosis of BOS has led to the adoption of the term
CLAD as a catch-all diagnosis irrespective of the various
causes/processes that may have led to it [107, 284–287]. As
always in medicine, each diagnostic approach has pros and
cons meaning that in the absence of ‘‘the perfect test’’ there is
an unavoidable ‘‘trade-off’’ for each diagnostic label that needs
to be factored into decision making. In this setting, the key
point will always be ‘‘how well’’ does the diagnostic label
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answer the specific question being asked by the clinician, the
scientist or the epidemiologist.

The complex interplay between donor antigens, recipient
immunity and environmental stimuli that leads to the patho-
physiology of BOS is likely to vary in individual LTR, to be
dynamic and be contextual. Despite the compelling evidence for
allo-recognition, inflammation and adaptive immunity amplifi-
cation being important, it remains unclear why individual LTR
develop early aggressive disease and others maintain excellent
allograft function for many years. Most research studies in this
area tend to focus on LTR who develop BOS/CLAD post-
transplantation, but it may be equally fruitful to systematically
study in detail those LTR who maintain excellent lung allograft
function in the long term, or who recover quickly and fully after
LRT viral infections. Although variations in HLA mismatching,
PGD development, immunosuppression thresholds, the fre-
quency/severity of episodic infections and the development of
high-affinity alloantibodies and autoantibodies [107, 108, 121, 283,
288, 289] may partly explain the aggressiveness of alloreactivity
or the robustness of operational tolerance, the predictive power of
these associations lacks specificity for outcomes in an individual
LTR. Although this complexity renders many animal models for
lung transplant-associated chronic rejection relatively insuffi-
cient, they nevertheless provide a platform, albeit limited, for our
understanding of this condition [290]. For example, in animal
transplant models, initial epithelial loss occurs in both syngeneic
and allogeneic heterotopic tracheal transplant grafts, but only in
the allogeneic setting does fibro-proliferation occur. It remains
unclear, however, how dependent the observed fibro-prolifera-
tion is on lymphocytic infiltration and whether it is a marker of
epithelial loss and dysregulated repair processes or the result of
excessive fibroproliferative pathways that may be amenable to
treatment [291].

The effect of HLA mismatching in the clinical setting where
most patients receive an average mismatch of two to three
HLA antigens is relatively difficult to ascertain. Even using
large registry databases, there are relatively few patients who
have a high number of HLA matches, the HLA mismatches are
all different and CNI immune suppression has a blunting
affect [292].

Although the main identifiable clinical risk factors for BOS in
previous studies have been acute rejection, CMV infection and
lymphocytic bronchiolitis, the majority of BOS cases remain
‘‘unexplained’’. For example, acute rejection as currently
diagnosed generally explains ,5–10% of BOS outcomes [116,
121]. This may, in part, relate to the relative insensitivity of the
tests used to diagnose the identifiable risk factors. Recent
developments have led to increased diagnostic sensitivity either
by definition (e.g. minimal acute rejection [116]), or technically
(e.g. donor-specific antibodies, either pre-existing or de novo [293,
294] and subclinical CMV reactivation in the lung allograft
[186]), with parallel improvements in the association with BOS
[100]. However, diagnostic sensitivity for measures of allor-
eactivity and their potential association with BOS need to
improve further. Such improvements in the near future may
include better phenotyping of histological acute cellular rejec-
tion (e.g. effector T-cell/Treg and/or endothelial/epithelial
damage signals) and better functional donor-specific antibodies
assessment (e.g. affinity and complement binding).

Over the last decade, non-alloimmune risk factors for BOS
have been increasingly identified both as the result of
increased awareness, improved diagnostic testing and longer
BOS-free follow-up periods. Such factors include common
community acquired respiratory infections, persistent bacterial
and fungal airway infections (previously discussed) [207–209,
214, 215, 239, 295], aspiration episodes related to GORD [81,
296, 297] and baseline graft function (either as a function of
severe PGD [81] or due to a single rather than a double lung
transplant procedure being performed [4, 296]).

Finally, we speculate that the clinical finding that lymphocytic
bronchiolitis often precedes BOS may be a summary signal
which encapsulates many other risk factors and may be both a
strong biomarker of, or causally related to, the bronchiolar
epithelial injury and/or dysregulated repair that is likely to be
at the core of BOS development [298].

Clinical patterns: diagnostic considerations

As previously discussed, the current limitation to long-term
survival for LTR relates predominantly to the development of
progressive loss of allograft function whether it is defined as
BOS or CLAD [4, 283, 284]. Indeed, plotting lung function status
over time for individual LTR identifies several clear patterns of
lung function loss from chronically progressive at one end of the
spectrum to a prolonged period of stability before a large step
down in function, and everything in between regarding stepped
decreases in lung function interspersed with varying periods of
stability. Interestingly, where temporal associations with these
downward inflexion points can be identified, they most usually
relate to ‘‘respiratory infection’’ episodes, other aero-environ-
mental insults or low immunosuppression status. It is specu-
lated that these factors may aggravate destructive alloreactivity
at the same time as breaking any operational tolerance that may
be active. In this framework of multiple risk factors that can be
variably measured and with many potential interaction effects
spread over time driving lung allograft dysfunction, perhaps the
wisest approach is to focus on developing biomarker, physio-
logical and imaging tests that can detect meaningful airway
injury at the earliest time possible. Ideally, such a test could then
be used to more accurately characterise BOS development and
thereby potentially improve risk factor identification either
singly or in combination.

Management issues: prevention, treatment and management of
established disease

The management strategies for chronic progressive lung allograft
dysfunction and established BOS with and without infection
have already been addressed in terms of diagnostic decision
making and therapeutic options. However, the ultimate manage-
ment aim of this condition is prevention.

Ideally, prevention would mean the attainment of a truly
tolerant state for the lung allograft without any need for
maintenance immunosuppression. Although this remains a
future hope, more realistic in the short term is perhaps the
achievement of more robust operational peripheral tolerance
that can better withstand the destabilising influences of
infection and other injuries, and improvements in detecting
and selectively targeting subclinical alloreactivity syndromes
that damage the allograft (fig. 3) [299].
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Finally, a more complete understanding of the mechanisms
underlying the recent improvements in PGD outcomes and
decreased BOS rates associated with DCD donors offers a
potential opportunity to further modify the early transplant
operation-associated factors that are critical for maximising the
baseline integrity of the lung allograft and its initial set points
regarding alloreactivity and operational tolerance. With this in
mind, all the recent expansion in lung transplant activity options
designed to increase the availability of this life giving proce-
dure (fig. 1) needs to be continually balanced by the equally
important need to improve long-term outcomes and QoL.

What is the impact of non-lung allograft disease on patient
outcomes post-transplantation?
Although the management of allograft-related complications
are an essential focus of post-transplant care, many non-
allograft complications can still occur and cause significant
morbidity and mortality. Non-allograft complications are
particularly likely in older patients, severely ill patients that
are also very deconditioned and malnourished, and in patients
with severe end-stage lung disease due to a systemic process
that can also variably affect other organ systems (e.g. CF).

Although LTx is now most commonly performed as a double
lung procedure, the special situation of SLT can often be severely
compromised by native lung complications such as dynamic
hyperinflation (emphysema) or infectious complications (idio-
pathic pulmonary fibrosis). In addition, diaphragmatic impair-
ment from either phrenic nerve injury or adhesions is particularly
disastrous after a SLT. Finally, although rare, primary disease

recurrence has been reported for sarcoidosis and lymphangio-
leiomyomatosis, most often as recurrent granulomatous disease
in the allograft [300].

Post-transplant immunosuppression protocols might dramati-
cally compound organ based pre-transplant comorbidities as
well as contributing to the ever-present risk of drug–drug
interactions and non-allograft infection and malignancy
complications.

Lung allograft versus comorbidities

The awareness, timely detection and pro-active management
of comorbidities and their complications are necessary to
minimise their negative impact on post-transplant QoL and
survival. Common comorbidities in older patients that can
have a major impact post-LTx include cardiovascular disease,
renal disease, osteoporosis and muscle wasting. This contrasts
with the common pre-transplant comorbidities seen in CF
patients (often younger) which include various gastrointestinal
and nutritional disorders, liver disease, diabetes, osteoporosis
and occasionally line-related chronic venous thrombosis
problems. In both cases, immunosuppressants can aggravate
pre-existing complications as well as leading to de novo organ
toxicity problems.

By far the most important non-organ-specific complications
post-LTx are immunosuppression-associated infections and
malignancy. Allograft and non-allograft infections are a
constant risk throughout the post-LTx period and have already
been covered in detail. The prevalence of malignancy increases

Injury/DAMPs

Innate
immunity

Inflammation/
repair

Stable allograft 
(operational tolerance)

B-cells

Immunosuppression

T-cells

CLAD

Infection

FIGURE 3. Conceptual schema for multi-dimensional, interacting, non-linear development of bronchiolitis obliterans syndrome/chronic lung allograft dysfunction

(CLAD). DAMPs: damage-associated molecular patterns.
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with time post-transplant, from ,5% to 10–15% and .20% in 1-,
5- and 10-yr survivors, respectively, with PTLD (especially in
paediatric LTR and early post-transplant) and skin cancers
(especially after 2 yrs and in those with prolonged sun
exposure/drug-associated photosensitivity history) being the
most common [4, 301]. PTLD is particularly problematic in the
primary EBV D+/R- mismatch setting [302]. Although HLA
matching status, level of immunosuppression and the absence
of antiviral prophylaxis are also important risk factors in these
patients, it is the routine use of EBV viral load monitoring that
has the best predictive power for the development of this
condition [197–199]. Other malignancy complications include all
solid tumours, especially colon, breast and prostate, particularly
in older LTR [4, 303]. Beyond the first year, malignancy accounts
for ,10% of deaths [4, 301, 303].

In addition to LTR-associated medical comorbidities, there are
also psychosocial and socioeconomic factors that can be very
problematic. Although psychosocial problems can present
difficult management issues in their own right, they can also
indirectly influence patient outcomes by interfering with
routine post-transplant management protocols. Pre-transplant
multidisciplinary team assessment of potential LTR candidates
is essential for screening patients for extreme psycho-beha-
vioural issues. Nevertheless, there is an understandable bias
towards avoiding the withholding of a potentially life giving
procedure to young people with less than extreme problems in
this area. Finally, for both medical and psychosocial comor-
bidities post-LTX, the large heterogeneity in LTR-associated
conditions and severity status makes it almost impossible to
conduct well-designed clinical trials to help guide difficult
decision making in individual patients.

Clinical patterns of cumulative impact on key specific organs
Pre-existing renal disease and perioperative renal injury both
significantly magnify the risk of post-transplant renal compli-
cations that can easily be exacerbated by even relatively
minimal CNI toxicity [304–306]. If chronic renal impairment
progresses to end-stage renal failure despite optimising
nephro-protective management strategies, as much as possible,
then the pros/cons of various dialysis options and even renal
transplantation will need to be considered factoring in the total
health status of the patient. In older LTR, cardiovascular
complications are also common and include diastolic dysfunc-
tion, coronary artery disease, atrial fibrillation particularly in
the perioperative transplant period and, later on, systemic
hypertension and hyperlipidaemia [307]. Other significant
complications that can be exacerbated by routine post-
transplant medications include myelosuppression [308], glu-
cose intolerance and diabetes [309], electrolyte disorders,
gonadal dysfunction and osteoporosis [310–312].

Gastrointestinal disorders in LTR include GORD, which is
relatively prevalent pre-transplant in many patient groups and
has been linked to post-transplant lung function decline [235,
297, 313–319]. Although the observed association between
GORD and CLAD is often difficult to separate in terms of cause
and effect in later stages, if there is any evidence that GORD may
be contributing to early loss of lung function, then appropriate
medical and/or surgical therapies should be aggressively
pursued [313, 320–323]. In this setting, BAL, pepsin or bile salts
may be a useful biomarker especially in patients in whom

there is a high pre-test probability of severe GORD, such as
CF patients or any LTR with vagal nerve injury-associated
decreased gastric emptying. CF patients are also at risk from
distal intestinal tract obstruction, older LTR are at risk from
colonic complications such as diverticulitis, and in both groups,
prolonged antibiotic use is associated with C. difficile colitis
which can be very severe and even life threatening [324–326].

Various acute and chronic neurological complications can
occur in LTR, mostly in relation to CNI toxicity [139, 310, 326],
that may or may not involve poorly measurable drug interac-
tions with other neuro-active drugs and which are also
dependent on liver metabolism, such as commonly used anti-
anxiety and antidepressant medications. Although CNI toxicity
may be difficult to diagnose, specific tests including computed
tomography scan and magnetic resonance neuroimaging can be
very helpful in excluding other potential causes. More frequent
is CNI-associated peripheral muscle dysfunction and exercise
limitation that has been described previously [327–329].
Although these findings were associated with a flurry of early
research activity into the effects of CNIs on muscle and
mitochondria [330–332], more recent research efforts have given
us increasingly unique insights into this pathobiology [333].
Similarly, the high prevalence of osteopaenia and osteoporosis
in patients with advanced lung disease (especially in those with
low body mass index and chronic steroid use) and LTx was well
recognised from the beginning. More recently, there has been an
increasing interest in identifying different patterns of bone loss
(as defined by bone densitometry) in the setting of post-
transplant immunosuppression but ‘‘adequate’’ vitamin D,
calcium and bisphosphonate therapy and then relating this
information to overall bone strength and the development of
fractures [311, 334–336].

Management issues: prevention versus treatment
The management of specific organ-based comorbidities in LTR
necessarily involves both a pre and post- transplant focus. As
already discussed, there are several absolute and relative
contraindications related to the presence and severity of
comorbidities for recipient selection. Once an LTx candidate is
accepted on the waiting list there is a need to actively manage
any potentially important comorbidities, as much as possible,
whilst still maintaining a QoL perspective. In the extreme case,
where the possibility of LTx is becoming increasingly unlikely,
then a palliative care focus should increasingly dominate all
management decisions including those related to comorbidities.
However, once LTx occurs, pro-active management decisions to
minimise the impact of comorbidities as much as possible is
critical. This includes careful and individual titration of
immunosuppressive and other drugs post-transplant, active
risk factor and specific disease management of all comorbidities,
and optimisation of psychosocial health and QoL issues.

Infection and malignancy are the major non-organ based
comorbidities in LTR and both have specific pre-transplant
and post-transplant risk profiles that are important for decision
making and management. Management issues related to
infection have already been discussed in a previous section.
Current candidate selection guidelines consider malignancy
within 2 yrs an absolute contradiction to lung transplantation
and also recommend excluding patients with malignancy
within 5 yrs of being assessed [23, 337]. Although there are
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no routine screening guidelines for cancer post-transplant,
ongoing awareness and vigilance is always required, especially
in ‘‘at risk’’ patients with higher dose immunosuppression.
Importantly, PTLD is the commonest cause of malignancy-
associated morbidity and mortality early post-LTx whereas
skin cancers dominate malignancy complications later on [4].

PTLD is predominantly EBV driven [197] with mortality
varying according to age, extent of disease, response to initial
treatment and the development of other complications [338–340].
Although histological diagnosis is essential for early treatment
to commence [5, 15, 33], viral quantitative PCR assays are very
helpful in predicting disease, guiding pre-emptive intervention
(e.g. reduction in immunosuppression and antiviral therapy)
and monitoring of disease risk, at least initially [341–343].
Although EBV virus-driven proliferation is a key initial driver in
the development of PTLD, the failure of antiviral therapy
(ganciclovir/valganciclovir) to treat this condition often necessi-
tates further reductions in immunosuppression as well various
other treatment strategies including intragam and rituximab,
with more conventional combination chemotherapy approaches
being reserved for refractory disease [338]. Skin malignancies are
usually squamous cell carcinomas with poor prognosis being
associated with older age, scalp site disease, extracutaneous
spread and multiple tumours, as well as poorly differentiated
histology, increasing tumour thickness and tissue invasion
[344, 345]. Preventative management focuses on minimising
immunosuppression doses and reducing the modifiable risk
factors of current sun exposure and photosensitising drugs (e.g.
voriconazole in at risk patients) recognising that previous
exposures and latent infection with some DNA viruses (e.g.
papillomaviruses) are no longer modifiable [346, 347]. Local
surgery is the mainstay of treatment with increasing reliance on
superficial ablative therapy, cryotherapy and photodynamic
therapy to control both disease and at risk skin fields.

How do we measure QoL post-LTx?

The early focus of research post-transplant necessarily focused
on establishing the surgical and technical feasibility of the
transplant procedure, monitoring lung allograft function and
getting the immunosuppression balance right in terms of
preventing allograft rejection syndromes without excessive
infection complications. Although achieving acceptable survi-
val outcomes in both the short and long term was always a
‘‘measurement’’ priority, this was not necessarily the case for
QoL after a lung transplant.

Measuring QoL

Health-related QoL (HRQoL) assessments after LTx are pre-
dominantly dependent on dyspnoea symptoms, exercise toler-
ance, medication burden and comorbidities which are only
partly captured by lung function numbers and blood test results
[348–351]. Although HRQoL is largely a function of an
individual’s sense of satisfaction and happiness related to their
physical and psychological health, QoL can be more broadly
defined as a complex interaction between a person’s physical
health, psychological state and personal beliefs, level of
independence, social relationships and their relationship to
their specific environment [352].

Clinical outcomes and HRQoL: BOS versus comorbidities versus
others
Several longitudinal studies have shown that lung transplanta-
tion improves QoL post-transplant for many patients [353–358].
Anecdotally, this is not surprising given the precarious
prognosis and QoL status of patients awaiting LTx almost by
definition and the injection of hope and improved functional
status that usually occurs once the operative ‘‘hurdle’’ of a lung
transplant procedure has been passed. ‘‘Usually’’, however,
does not mean ‘‘always’’ and neither does it mean ‘‘forever’’. In
individual LTR, severe early allograft dysfunction or early loss
of allograft function can occur either related to infection or BOS
which, in combination with a chronic burden of complications
post-transplant and/or a negative psychological state where
expectations have not been met (whether or not they have been
clearly stated), has major HRQoL implications.

BOS is the leading cause of mortality beyond the first
transplant year [4] and the early development of this condition
significantly reduces HRQoL [359]. Although, post-transplant
HRQoL is very BOS dependent, other factors that may signifi-
cantly compound problems with exertional dyspnoea and
exercise intolerance are: peripheral muscle weakness; decreased
mobility; treatment-related side-effects; anxiety/depression and
the psychological effects of being diagnosed with a potentially life
threatening illness, especially after having gone through the roller-
coaster ride of hope for a better future with an LTx. However, a
well-functioning graft post-transplant in combination with
relatively minimal symptoms from comorbidities is likely to
minimise the burden of post-transplant medication and lead to a
more positive view of the future. What is clear here is that post-
transplant HRQoL is dependent on key factors that act across
multiple dimensions, are time dependent and may either
compound or buffer each other.

It is therefore not surprising that several studies have shown
differences in pre-transplant functionality and QoL status of
LTR which contribute to post-transplant QoL [354, 360–363]. In
particular, CF patients often have higher QoL measures when
compared to other disease sub-groups perhaps due to the
generally younger age at which they are transplanted, their
life-long disease duration and potentially more finely tuned
coping strategies [361, 362–364]. For all patients on the lung
transplant waiting list, however, imminent death pre-trans-
plant and the chance of survival post-transplant are likely to
positively influence most measures of post-transplant QoL.

Managing the ‘‘whole’’ patient: are expectations being met post-
transplantation?
As HRQoL in LTR is largely a function of physical wellbeing
interacting with psychosocial health [358, 364], the cumulative
impact of lung allograft dysfunction, severe comorbidities,
significant anxiety/depression, other psychosocial issues and
socioeconomic problems can quickly become overwhelming
[362, 365, 366]. Psychological support, counselling and social
work services (focusing on both pre and post-transplant issues
coupled with appropriate pharmacologic treatment as required)
are, therefore, an essential component of the multidisciplinary
care of all LTR. As well as a focus on coping strategy improve-
ment, the management of expectations post-LTx is equally
important. For some patients, a wide pendulum swing between
the ‘‘hope’’ of a completely new start post-transplantation and

UPDATE ON LUNG TRANSPLANTATION T. KOTSIMBOS ET AL.

290 VOLUME 21 NUMBER 126 EUROPEAN RESPIRATORY REVIEW



the reality over time of another chronic disease state that
requires constant management is very difficult to deal with and
may lead to subsequent behavioural and psychosocial distur-
bances that can significantly impact on clinical outcomes
thereby further exacerbating the problem and, of course,
HRQoL. This may be the case in less mature individuals and
paediatric LTR.

The complex risk/benefit calculation to help determine the
potential prognostic and QoL benefits of LTx for any
individual with progressive end-stage lung disease usually
distils down to a question of ‘‘when’’ rather than ‘‘if’’ it is best
to go onto the lung transplant waiting list. The overall
improvement in HRQoL in late survivors post-transplant is
therefore not surprising given the alternative, but QoL and
mode of death are clearly also important in the non-survivors.

It is therefore not unreasonable to develop an approach to
determine maximal net lung transplant benefit as this would
guide more precise informed consent regarding lung transplan-
tation and allow better targeting of early intervention strategies
as appropriate in at risk individual LTR. Finally, such an
approach may even allow for families, communities and society
at large to also begin to more actively engage in the difficult
questions relating to who should/shouldn’t be considered for a
lung transplant in the setting of limited healthcare resources.

PROSPECTS: FUTURE RESEARCH DIRECTIONS

Where do we need to go and how do we get there?

It is sobering that despite recent major advances in fundamental
immunology, the goal of achieving consistent long-term lung
allograft function following LTx remains frustratingly elusive.
Given that the orthodox mechanism of allograft rejection, the
mode of action of immune suppressive drugs and the many
facets of infection in LTR have been already discussed, in this
section we consider in more detail recent scientific insights and
alternative mechanisms that might contribute to PGD, acute and
chronic graft rejection, the inter-relationships between these
conditions, and how such interactions may relate to new
concepts in immune modulation and therapy. These advances,
while still awaiting clinical translation into better graft outcomes,
may also provide new insights into less invasive monitoring of
rejection with biomarkers and into stem cell and regenerative
strategies for growing new lung tissue. Additionally, we
consider novel approaches to minimise immune suppression-
associated lung infection risk and to reduce iatrogenic damage to
non-immune organs such as skeletal muscle and bone, where
loss of function directly contributes to patient immobility,
morbidity and loss of QoL.

PGD and its relationship to alloreactivity and tolerance
PGD has been already discussed in detail. In brief, it is
characterised by infiltration, oedema and severe hypoxia of the
newly implanted lung allograft which reflects the aggregate of
damage to the lung sustained during recovery, processing,
surgery, reperfusion, haemodynamic instability and mechan-
ical ventilation with or without further complications from
pneumonia.

The inter-relationship between PGD, alloreactivity, tolerance,
and acute and chronic rejection/BOS is an area of enduring
and unresolved dispute. Although there is evidence linking

early PGD to later allograft rejection syndromes the association
is by no means simple and there is, to date, no convincing
predictive algorithm to guide therapy.

Importantly, screening methods have reduced the incidence of
hyper acute reaction, (where there is a pre-existing serological
incompatibility that causes hyper acute antibody mediated
lung damage). Similarly, harvesting improvements, such as
very recently improved portable normothermic perfusion
devices, have demonstrated superior outcomes in small
limited pilot studies [367]. But it remains almost impossible
to recover human lungs for transplantation without the organ
sustaining some form of acute injury. PGD occurring within
72 h of transplantation remains relatively common with an
incidence between 10% and 25% and the more severe grades
are still associated with relatively high 30-day mortality rates
despite advances in management [368].

Injury, innate immunity and alloreactivity

Experimental systems have provided important clues into the
mechanisms that may lead to PGD but because of the diversity
of injury types the clinical syndrome remains very hard to
study mechanistically in humans. One area that is likely to be of
major importance is innate immunity. Soon after the first innate
immune Toll-like Receptor (TLR), TLR4, was discovered to
be the Gram-negative bacterial endotoxin receptor, its close
homologues were rapidly identified by homology screening and
the family was recognised as innate immunity pattern recogni-
tion receptors that had evolved and diversified to detect distinct
pathogen-associated molecular patterns (PAMPs). Almost
immediately it was also discovered that TLRs were able to also
respond to some self-proteins. This is especially true when the
self-proteins are from immune privileged, mostly intracellular,
sources normally hidden to adaptive immunity surveillance.
Thus, the TLR receptors emerged as critical sensors not only of
pathogens but also damaged tissue.

In experimental models it is now well established that the
types of acute tissue damage known to occur in PGD can release
intracellular cell contents collectively termed damage-associated
molecular patterns (DAMPs) from injured cells [369]. These
DAMPS are linked to the same innate immune effector path-
ways, such as TLRs, that mediate acute inflammation and prime
the adaptive immune system. These receptors are coupled to
their effector pathways via intermediates including MyD88 and
IRF3 which recruit distinct cellular responses and inflammation.
Accordingly, DAMPs are of interest both as potential mediators
and biomarkers. Subsequently, additional damage and cellular
stress sensing intracellular machinery has been discovered, such
as the unfolded protein response system and the hypoxia
response system [370, 371], important not only as candidate
biomarkers but also as probable effector pathways in acute and
chronic rejection.

Elevated levels of one such DAMP, RAGE (receptor for
advanced glycosylation end products), is an epithelial injury
marker whose measurement in donor lung bronchoalveolar
lavage and recipient blood has been linked to PGD risk [372,
373]. Similarly, the level of long pentraxin 3 (a TLR agonist
implicated in reperfusion injury) and endothelin-1 expression
in both donors and recipients predicts PGD [374, 375]. Other
researchers, noting the complexity of injury and the diversity
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of material released from damaged cell and tissue responses to
injury, have focused on gene transcript patterns or clusters of
protein biomarkers [376]. While these DAMP biomarkers show
promise as both diagnostic/prognostic biomarkers and treat-
ment target none has been clinically validated to date.

DAMPs can also constitute neo-antigens because most are
normally hidden from the host immune system inside cells. As
well as validated antigen targets like collagen V, the intracellular
DAMP content released on necrotic cell death, especially where
innate signalling molecules including activin A are strongly
activated, may trigger the formation of reactive T-cells and auto-
antibodies [377, 378]. Given that PGD can stimulate innate
immunity which primes adaptive immunity, thereby shaping
adaptive immunity-mediated T- and B cell effector pathways, it
is perhaps not surprising that panels of acutely altered
intracellular protein biomarkers correspond well to patterns of
autoantibodies observed in chronic graft rejects [376]. In
addition, recent reports have shown that specific autoantibodies
are important risk factors for the development of BOS and
CLAD [92].

However, activation of innate immune effector pathways is not
a uniform pathway to inflammation and injury. Depending on
the nature and degree of injury, concurrent mechanisms linked
to immune tolerance and resolution can also be activated by
events linked to causing PGD. ‘‘Tolerance’’ is a functional
descriptor for the set of control mechanisms than contain over-
exuberant immune reactions and protect host tissue from
damage. It operates at the T-cell level centrally with the
elimination of self-reactive lineage committed thymocytes in
the thymus and peripherally, for both T- and B-cells, via multiple
checks and balances against excessive or inappropriate activa-
tion. In the peripheral T-cell compartment tolerance is particu-
larly associated with induction of FoxP3+ Tregs. Emergence of
Tregs is critically dependent on IL-6 and transforming growth
factor (TGF)-b, factors also closely linked to induction of
pathogenic IL17-producing T-cells [379, 380]. Given that genetic
mutation studies have clearly shown the additional role of IL-6
(signalling via a component of its receptor complex called gp130)
to promote fibrosis, this cytokine seems attractive for future
research [381–383]. Moreover, the capacity of B cell derived IL-6
to trigger autoimmunity [384] further underscores this disease
axis. IL-17 (and its closely related effector IL-23) is a potential
specific therapeutic target for BOS. At least in experimental
models, a TGF-b/Fc fusion protein that redirects TGF-b
signalling has been used successfully to promote Tregs and
diminish T-helper (Th)17 effectors [385].

Innate immune signals mediated by PAMPs and DAMPs
prime the immune system at the molecular level by activating
antigen presenting cells (APC) and upregulating co-stimula-
tory molecules such as those in the B7 family and CD40-CD40L
interactions. Competent T-cell activation requires APC activa-
tion inducing IL-2 production to drive expansion and co-
stimulatory molecules. When IL-2 signalling is interrupted
strong suppression of T-cell expansion occurs; hence, the
clinical efficacy of CNIs in clinical transplantation. However,
where T-cell co-stimulation is interrupted, T-cells are pushed
into either apoptosis or a persistently anergic or tolerant state.
This form of inactivation is distinct from the suppressive
effect of Tregs. This understanding has catalysed interest in

understanding how PGD might shape the subsequent fate of a
lung allograft over its entire life.

Much of the evidence for the innate immune system’s role in
human clinical lung rejection is inferential and based on the
presence of known innate immunity effector molecules and the
modulatory role of CD14 (which co-signals with TLR4) or TLR4
polymorphisms (where hypo-functional variants confer benefit)
on graft outcome [386]. In model systems, innate immunity
alone is insufficient to mediate chronic cardiac allograft rejection
[387] which is consistent with clinical experience using CNIs. In
LTx, high Tregs in peripheral blood suggest better allograft
outcome [110] and, because Tregs work best in close proximity
to effectors, this blood study may underestimate their true
benefit. This suggests that manipulating low level or subclinical
mechanisms linked to PGD might actually aid in promoting
long-term engraftment and tolerance [388].

Lung allografts have one additional complexity not seen in re-
vascularised allografts of other organs; the donor bronchial
circulation is not connected with the recipient circulation because
of the technical difficulty in making this anastomosis surgically.
The bronchi are, therefore, chronically hypoxic leading to
induction of hypoxia-induced factor dependent remodelling and
fibrotic pathways that operate independently of innate and
adaptive immunity and may contribute substantially to BOS [389].

Tolerance and intolerance: manipulating a multi-tiered system
PGD, and indeed tissue damage and inflammation from any
cause, has the ability to break tolerance for both T- and B cell
compartments due to the strong concurrent stimulation of
innate immune pathways and immuno-modulatory growth
factors/cytokines. This effect may be dramatically amplified in
the setting of infection and reduced immunosuppression
ultimately resulting in loss of lung allograft function that can
quickly become irreversible (fig. 3).

In kidney allograft models, genetic inactivation of MyD88, a
critical signalling intermediate linking TLRs with inflamma-
tory gene induction, led to graft tolerance that was mediated by
induction of regulatory FoxP3+T cells and reduced formation of
damaging Th17 effector cells [388]. This raises the still untested
possibility that it may be possible to subtly alter innate immune
signalling after the initial transplant procedure in order to
promote tolerance. If this strategy could be achieved as predicted
in animal studies, it would affect both T-cell and B cell
compartments. A second strategy that has been proven as an
immune suppressing method is to block co-stimulation mole-
cules such as CD40/L signalling. Recently, there has been specific
interest in optimising the combination of anti-co-stimulation
antibodies with IL-2 synthesis or activity inhibitors to drive a
stronger, more tolerant state [161]. However, in human allograft
medicine this latter strategy carries the risk of anergising or
tolerising immunity to lung pathogens which would have pro-
foundly detrimental effects. Indiscriminately targeting MyD88 or
co-stimulation molecules carries a similar and substantial risk of
triggering serious infection either by reactivating latent viral
infection or worsening disease when the lung has already been
colonised by bacterial or fungal pathogens.

Very recent studies have shown that P. aeruginosa can subvert
tolerance in lung allografts by stimulating B7 expression on
neutrophils [390]. This study points to the critical role that
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infection or colonisation may have on long-term outcomes. This
is further emphasised by studies in which neutrophils have been
shown to act on dendritic cells to promote tolerance in the
absence of an infectious pathogen [391]. Similar effects, exerted
via the generation of cross reactive T-cell and activation of
bystander effectors have been observed after Listeria monocyto-
genes infection [392]. Tregs exert their effects largely by
interacting closely with T effector populations and usually need
to be in relative excess. This has opened the possibility of
promoting tolerance by simply depleting or suppressing the
accumulation of a fraction of, but not all, T effector cells which
can also be achieved by manipulating chemotactic recruitment
signals [393]; an approach that also suppresses inflammation.
There is also some evidence that the nature of injury and the
duration of donor brain death, especially where PGD occurs,
can suppress the development of tolerance [394] suggesting the
possibility of still further improving graft harvesting and
preservation methods. The improved short- and long-term
outcomes seen with DCD LTx are perhaps an excellent example
of this [40].

Although respiratory infection is a powerful inhibitor of
tolerance, non-infectious respiratory insults may also be
important. Cigarette smoke exposure, a noted immune dama-
ging insult, suppresses tolerance at the level of indolamine 2,3-
dioxygenase expression [395]. Interestingly, tranilast, a mast
cell stabiliser that was initially examined in asthma but has
now shown promise in arthritis and multiple sclerosis and
induces tolerance [396], is believed to mimic anthranilic acid,
formed by idoleamine oxidase from tryptophan. The role of
idoleamine oxidase in LTx has been challenged with sugges-
tions that it better marks inflammation than tolerance [397].

Given the importance of tolerance there has been increasing
effort to develop viable methods to induce this state in both the
T- and B cell compartments. In addition, the detection and
monitoring of the ‘‘tolerant state’’ would be extremely useful
in the clinical setting. Although decreased Tregs in the
peripheral blood have been linked to BOS [398], they are not
a useful biomarker in individual patients. Whether improved
detection of Treg T-cell receptor specificities and/or phenotype
characteristics will improve the biomarker potential of this T-
cell subset will require proper longitudinal validation studies
to be performed. In assessing these models and predictions it
is, however, very important to consider that tolerance is almost
certainly a labile and plastic state that can vary quickly in
response to different clinical contexts.

Mesenchymal stem cells, once hoped to be a source of new
lung tissue, have emerged as a viable strategy to induce tole-
rance because when they are grown ex vivo and reinfused, par-
ticularly with immune modulation targeting mTOR, a persistent
tolerance-like state can be achieved [399]. An analogous strategy
has been to infuse so called myeloid suppressor cells although the
effects of these cells are less promising than Treg-targeted transfer
protocols [400]. In skin allograft models, mast cell derived
granulocyte macrophage-colony-stimulating factor plays a criti-
cal role in preconditioning dendritic cells to a tolerogenic state:
whether this can translate to the lung, however, seems highly
unlikely as lung granulocyte macrophage-colony stimulating
factor has an intense immune priming effect and can break
tolerance itself [401, 402]. Furthermore, mast cell degranulation,

which occurs in response to DAMPs, also breaks tolerance [403].
Class II histone deactylase inhibitors epigenetically alter gene
expression by regulating its acetylation promote FoxP3 activity
and Treg induction. Since clinically useful histone deactylase
have already entered practise in oncology it may be possible to
create better tolerated variants as adjunctive therapy for LTR.
Compared to T-cells and Tregs, B cell manipulation strategies
have been much less studied as a means to tolerance induction
even though it is known that the presence of inactivated B cells is
a marker of tolerance and that these cells can adoptively transfer a
tolerant state [404].

The acute lung: why does acute rejection not predict long-
term lung outcomes?
Conventionally, there is a belief or assumption that the intensity
of PGD or of acute rejection should predict the probability of
chronic rejection leading to BOS and graft failure [405]. There is
certainly observational evidence to support this view [80, 406].
But, on closer examination the concordances are weak and the
features observed in the immunopathology and treatment
response cannot be converted into a predictive algorithm that
informs long-term allograft survival [74, 81, 89]. In any case,
these conditions need to be aggressively treated in their own
right because of the risk they pose to survival if uncontrolled.
Most disappointingly, however, there is no clear evidence that,
on an individual patient basis, therapeutic suppression of early
manifestations of PGD or rejection beyond that required by
clinical decision making related to risk management in the short
term, can be achieved in a manner that would consistently
reduce the probability or extent of BOS.

How specifically do earlier events relate the lymphocytic
bronchiolitis that is observed to proceed and believed to, at
least in part, cause subsequent obliterative bronchiolitis and
therefore BOS? Given that lymphocytic bronchiolitis is patchy
and easily missed on the biopsies needed to monitor its presence,
and that BOS is defined as a clinical end-point that reflects
already extensive damage and remodelling (and loss) of airways,
what surrogates might be developed to better prevent its
occurrence? Furthermore, given that available therapies are
almost exclusively able to suppress immune alloreactivity and
control some aspects of inflammation but are not specifically able
to suppress or reverse fibrosis, what new drugs do we need?
How will we then initially use anti-fibroproliferative agents to
prove that excessive fibrosis is a causative factor for BOS rather
than just a marker of a damaged epithelium that cannot heal in
any other way? Alternatively, as is discussed in the field of lung
fibrosis, does inflammation directly cause fibrosis in the first
place? Or is inflammation a parallel process that overlaps in time
with an entirely separate biology of airway destruction that is
clearly refractory to current anti-inflammatory drugs? While this
last point seems almost counter-intuitive based on current
pathogenesis and treatment regimens there is clear evidence
from other fibrotic diseases and from experimental models that
inflammation can be dissociated from progressive fibrosis. For
example, genetic manipulation of signalling from gp130 (a co-
receptor essential for signalling of the IL-6 family cytokines
which includes IL-6, IL-11, leukaemia inhibitory factor and
oncostatin M) directly indicates that fibrosis and inflammation
can be dissociated [382, 383]. Therefore, it follows that in LTx-
associated obliterative bronchiolitis, there is a great difficulty in
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knowing whether complete suppression of inflammation as a
primary therapeutic goal is intrinsically able to reduce all future
risk. This is compounded by a lack of proven biomarkers or
imaging methods that detect very early, sub-clinical decline in
graft integrity. One interesting interpretation of this poor
concordance is that the fundamental mechanisms of PGD, acute
and chronic rejection/BOS are not actually the same despite
shared manifestations (like inflammation and alloreactivity).

A further aspect of the problem is that chronic rejection in the
setting of adequate calcineurin inhibition is more likely to
involve B-cell mediated anti-graft antibodies and non-T-cell/
non-B cell mechanisms that are much less responsive to
currently available therapies. Processes leading to fibrosis such
as epithelial to mesenchymal transition, myofibroblast and
fibroblast proliferation remain beyond the reach of current
available therapies. There is more hope of shorter term progress
targeting infectious risk factors that may amplify the processes
described above particularly given the advances in strategies to
target CMV and biota. But how specifically do latent viruses,
especially CMV, airway colonisation with bacterial or fungal
pathogens, or an altered meta-genome interact [74, 239]?

One area of striking deficiency in our current understanding is
exactly how broad, potent immunosuppression regimens alter
the lung microbiome. There is now very good evidence that
even the healthy lung has a significant low level flora and that
this microbiome shifts dramatically in lung disease [407, 408].
There is also emerging evidence from CF, asthma and COPD
research that treatment, including steroids, shifts the com-
position of the microbiome substantially and that the microbiome
varies with disease severity [409]. In health, the lung micro-
biome is a low-abundance mirror of what is found in upper
airways [410]; this changes in both acute and chronic lung
disease. There is considerable regional heterogeneity in the
composition of the biome within lungs between lobular segments
and there is emerging evidence that viruses, including low level
viral infection that in its own right would not usually be
considered a particularly damaging insult, can have a substantial
and sustained effect on the patterns and virulence of the
microbiome that is long lasting. These effects may result from
an alteration in the complex pattern of micronutrients generated
by low abundance pathogens that sustain more virulent bacteria
[411–413]. Research into how the metagenome varies in lung
allografts in relation to outcomes is currently in its infancy [414].

It is very likely that donor lung microflora/microbiome at
transplant and over time will adversely affect allograft survival.
P. aeruginosa, for example, has been shown to be capable of
breaking allograft tolerance through the unusual paracellular
mechanism of upregulating B7, a co-stimulation molecule
usually found on dendritic cells and on neutrophils [390]. As
Pseudomonas also has been shown to colonise damaged airways,
both cause and effect possibilities exist for its presence in the
airways being associated with a marked increased risk of BOS
[239]. It seems increasingly likely that the well-established link
between CMV and BOS will relate not only to classical
mechanisms of upregulating innate natural killer cells [415],
adaptive immunity effector pathways [416, 417] and reducing
tolerance but also to a shift in the metagenome that may
constitute a major driving insult. It is perhaps this insult that
ultimately entrains treatment refractory pro-fibrotic pathways.

Given that the current potent immunosuppressive regimes that
necessarily must be used to manage life-threatening rejection
syndromes will almost certainly be shown to shift the lung
metagenome, we are in urgent need for objective evidence of
what really happens to the lung microflora in transplant
medicine (and for that matter, the gastrointestinal microbiome
as well). An ideal immune suppressor of the future would
contain alloreactivity while promoting tolerance and maintain-
ing normal host defence. For example, in a CMV positive
recipient an ideal intervention would contain latent virus,
preserve memory effect CD4 T-cell in the lung and yet still
suppress alloreactivity. Such molecules are yet to be discovered.

How can we better individualise immunosuppression
treatment and other management strategies post-LTx?
There are no proven biomarker strategies, surrogates or refined
lung imaging methods that can detect incipient deterioration in
the lung allograft and guide therapy. For example, new
therapies such as novel antibodies that are highly effective
immune suppressors and have been used as induction agents
do not necessarily have a strong effect on subsequent BOS rates
[418]. As such management remains largely empirical, chan-
ging or escalating in response to overt deterioration and crises.
It is particularly disappointing that the successes for basic
pharmacology, which has contributed so much to the
discovery of novel agents, has not been equalled by clinical
pharmacology where blunt pharmacokinetic blood levels
remain the only guidance in the management for complex
and subtle pharmacodynamic effects.

At all levels, LTx remains a major challenge in an era of
personalised, stratified medicine; this is not to say the field is
without progress. Pharmacogenomic approaches have revealed
some mechanisms that are sensitive to immunosuppressive
drugs, most notably export proteins [419, 420]. Large integrated
studies, such as LARGO, have also pointed to gene variations
that influence outcome, again pointing to ATP binding cassette
transport proteins and cytochrome-mediated biotransformation
variants as having the main influence on pharmacokinetic
profiles and achieving stable blood levels in the clinical setting
[421]. However, knowledge in the field remains indirect linking
polymorphisms in inflammatory cytokines to outcomes rather
than a more fundamental understanding of the effect of variants
on the molecular loci of drug action.

Given that the types of immune suppressors that could control
allograft rejection without damaging host tissues remain
conceptual, there is also a pragmatic interest in better under-
standing the molecular basis of comorbidities common after
lung allograft.

Decline in lung function is conventionally viewed as the cause
of diminished exercise activity after transplantation but, and in
a manner analogous to recent work in COPD, loss of skeletal
muscle strength and mass can contribute substantially to this
problem [422, 423]. Loss of muscle function and mass, together
with fibre type switching result from lack of activity, steroid
effects and the adverse effects of inflammation, which
represses muscle growth at the level of satellite cells and
myocytes, and promotes resorption of muscle proteins via the
26 proteasome. Given that long-term immunosuppressive
regimens can impair nerve function, there is interest in
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whether some loss of muscle might also result from a loss of
trophic neuronal drive to the tissue.

Similarly, osteoporosis is a common clinical problem after LTx
[424]. This is thought to reflect the intersection of direct effects
of immune suppressing therapies, not restricted to steroids, to
repress new bone formation together with the pro-osteoclastic
effect of lung inflammation which is known to induce bone
resorption. In model systems this is due to granulocyte-colony-
stimulating factor produced in inflamed tissue feeding back to
the bone marrow to induce proteases in the bone marrow
endosteum essential to releasing tethered leukocytes into the
circulation, as well as having a pro-osteoclastic effect and
repressing osteoblast activity.

While direct neurotoxic effects of immunosuppressive regimens
are very well known, it is surprising that so little attention has
been paid to the possibility that affective disorders, which are
over-represented in LTR, might, in some cases, have some
underlying organic cause [360]. Severe peripheral inflammation
has not only been linked to pain but also independently to
depression and anxiety in other inflammatory conditions such
as rheumatoid arthritis [425, 426].

Collectively, these advances and insights point to new
strategies to refine clinical LTx, improve long-term allograft
outcomes and better manage complex comorbidities. The
extreme heterogeneity of transplantation medicine and biology
means that progress will be slow but tangible advances seem
within reach.

SUMMARY
When LTx started, its ultimate goal was to deliver on the hope
of a longer and fuller life for selected patients with end-stage
lung disease. Over the last 30 yrs we have learnt so much and
applied it in a way that has extended thousands of lives in so
many ways. We hope this article has clarified what remains to
be done and opened up thinking to elucidate, address, and
solve the remaining barriers to achieving a durable lung
allograft with minimal comorbidities and as full a future as
possible, for as many patients as possible, utilising this life-
saving and life-giving procedure.
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