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ABSTRACT Previous studies show high agreement between MIC spectrophotometric
readings and visual inspection of azoles and amphotericin B against Aspergillus fumigatus
isolates. Here, we tested and compared the in vitro activity of a novel antifungal, olorofim,
against Aspergillus spp., Scedosporium spp., and Lomentospora prolificans by visual inspection
and spectrophotometric readings. Clinical isolates of Aspergillus (n = 686) and Scedosporium
(n = 36) spp. and L. prolificans (n = 13) were tested. Olorofim MICs were evaluated—follow-
ing the EUCAST E.Def 9.4 procedure—by visual inspection or spectrophotometric readings
(combinations of either $90% or $95% fungal growth inhibition endpoints compared to
drug-free control endpoints and different wavelengths [405 nm, 450 nm, 492 nm, 540 nm,
and 620 nm]). We observed high in vitro activity of olorofim against all tested Aspergillus
spp. (MICs up to 0.06 mg/L), except for A. calidoustus, and against L. prolificans and
Scedosporium spp. (MICs up to 0.125 mg/L). The combination of $90% fungal growth in-
hibition endpoints at wavelengths of $492 nm resulted in high essential agreements with
A. fumigatus and lesser agreement with non-fumigatus Aspergillus, Scedosporium spp., and
L. prolificans, although the number of isolates studied was low. This single-center study
shows high agreement among olorofim MICs against A. fumigatus by visual inspection and
spectrophotometric readings ($90% fungal growth inhibition endpoints and wavelengths
of $492 nm) and encouraging results against non-fumigatus Aspergillus spp., Scedosporium
spp., and L. prolificans.

KEYWORDS olorofim, Aspergillus, Lomentospora prolificans, Scedosporium, EUCAST,
spectrophotometric reading

Recent reports have raised concern about the increasing rate of azole resistance in
Aspergillus fumigatus isolates worldwide (1–3). Intrinsic resistance to amphotericin

B is a trait of Aspergillus species such as A. terreus, A. flavus, A. nidulans, and A. fumigatus cryptic
species (4–6). Scedosporium spp. and Lomentospora prolificans—rarely the cause of invasive
fungal infections—frequently show resistance to multiple antifungal agents (7). The limited
number of available antifungal agents greatly hampers the treatment of invasive fungal
infections. The search for new antifungal agents is key in light of the emergence of multidrug-
resistant fungal isolates.

Olorofim is the leading novel antifungal of the orotomide class of drugs. It inhibits the
biosynthesis of pyrimidine by inhibiting dihydroorotate dehydrogenase. Because olorofim
works by a new mechanism, it eliminates the presence of antifungal cross-resistance as
shown by the full activity of olorofim against azole-resistant A. fumigatus isolates (8–11).
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Olorofim showed in vitro antibiofilm activity against early-stage A. fumigatus and L. prolificans
biofilms (12, 13). Olorofim has shown in vitro antifungal activity against clinical mold isolates,
including Aspergillus spp., Scedosporium spp., and L. prolificans following EUCAST procedures
and MIC determination by visual inspection (14–17). However, visual inspection of MICs
against mold isolates may be subjective, and spectrophotometric readings may help increase
objectivity. Previous studies show high agreement between MIC spectrophotometric readings
and visual inspection of azole and amphotericin B against A. fumigatus clinical isolates (18–21).
These high agreements motivated an update of the EUCAST E.Def 9.4 document, which now
includes MIC spectrophotometric readings of azoles and amphotericin B against A. fumigatus
as an alternative to visual inspection (22).

To date there is only one study addressing olorofim MIC spectrophotometric readings
against molds as an alternative to visual inspection (23). Thus, we tested the in vitro activity
of olorofim against a collection of different clinical Aspergillus spp., Scedosporium spp., and
L. prolificans isolates comparing visual inspection of the plates and spectrophotometric
readings and using different endpoints and wavelengths.

RESULTS AND DISCUSSION
OlorofimMICs obtained by visual inspection against Aspergillus spp., Scedosporium

spp., and L. prolificans.MIC distributions against the species tested, with some exceptions,
fit a Gaussian pattern (Table 1). Olorofim showed in vitro activity against all Aspergillus sp.
isolates tested; all MICs reached 0.06 mg/L, except against A. calidoustus (highest MIC, 0.5 mg/L).
Modal olorofimMICs were 0.008 mg/L (against A. terreus), 0.016 mg/L (A. fumigatus, A. flavus,
and other Aspergillus spp.), 0.03 mg/L (A. niger), and 0.5 mg/L (A. calidoustus). Likewise, oloro-
fim showed in vitro activity against the Scedosporium sp. and L. prolificans isolates tested; all
MICs reached 0.125 mg/L. Modal olorofim MICs were 0.016 mg/L (the S. apiospermum com-
plex) and 0.125 mg/L (L. prolificans). The obtained wild-type upper limit (wtUL) values (when
possible) were 0.016 mg/L (A. terreus), 0.03 mg/L (A. fumigatus), 0.06 mg/L (A. niger), and
0.06 mg/L (S. apiospermum complex) (Table 1 and Table S1 in the supplemental material).
Table 1 and Table S1 show olorofim MICs against quality control strains by visual inspection
and spectrophotometric readings. Our study is in line with previous reports that demonstrate
in vitro olorofim activity against Aspergillus spp. using EUCAST procedures (9, 24–27). A. fumi-
gatus and A. terreus isolates were especially susceptible to the drug, whereas olorofim MICs
against A. calidoustus were notably higher than those of the remaining Aspergillus spp., con-
firming previous observations (9, 24, 25). Further studies should be developed to assess the
role of olorofim for treating patients infected by A. calidoustus.

Scedosporium spp. and L. prolificans cause difficult-to-treat infections due to the intrinsic
low activity of azoles and amphotericin B against these fungi (17). Olorofim has shown in vitro

TABLE 1MIC distributions by visual observation for olorofim against the isolates tested

Species (n)

MIC distributions (no. of isolates at each MIC, mg/L)a

0.001 0.002 0.004 0.008 0.016 0.03 0.06 0.125 0.25 0.5 1 2 4 8 ‡ 16
A. fumigatus sensu lato (566)b 0 2 6 86 433 37 2 0 – – – – – – –
A. flavus sensu lato (44)b 0 0 1 18 25 0 0 0 – – – – – – –
A. terreus sensu lato (33)b 0 0 4 24 5 0 0 0 – – – – – – –
A. niger sensu lato (23)b 0 0 0 0 9 12 2 0 – – – – – – –
A. calidoustus (7) 0 0 0 0 0 0 0 0 1 6 0 0 0 0 –
Aspergillus spp. (13)b 1 1 0 1 8 2 0 0 – – – – – – –
Scedosporium spp. (36)c 0 0 0 4 12 11 5 4 0 0 – – – – –
L. prolificans (13) 0 0 0 0 0 0 3 10 0 0 – – – – –
A. flavus ATCC 204304 0 0 0 0 22 2 0 0 – – – – – – –
A. fumigatus ATCC 204305 0 0 0 2 19 3 0 0 – – – – – – –
aModal MIC values are shown in bold. Dashes indicate nontested concentrations.
bA. fumigatus sensu lato (A. fumigatus sensu lato [n = 529], A. lentulus [n = 20], Neosartorya udagawae [n = 7], A. fumigatiaffinis [n = 4], A. novofumigatus [n = 2], N. tsurutae
[n = 2], A. felis [n = 1], A. thermomutatus [n = 1]); A. flavus sensu lato (A. flavus [n = 42], A. alliaceus [n = 1], A. tamarii [n = 1]); A. terreus sensu lato (A. terreus sensu stricto
[n = 23], A. citrinoterreus [n = 9], A. hortai [n = 1]); A. niger sensu lato (A. tubingensis [n = 10], A. awamori [n = 8], A. niger sensu stricto [n = 5]); other Aspergillus spp. (Emericella
nidulans [n = 9], A. sydowii [n = 3], and A. amoenus [n = 1]).

cS. apiospermum complex (S. apiospermum sensu stricto [n = 29], S. boydii [n = 4], S. ellipsoideum [n = 1]), S. auriantiacum (n = 1), and S. minutisporum (n = 1).
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activity against Scedosporium spp. and L. prolificans using the EUCAST procedure (17, 24).
Moreover, a recent study proved the efficacy of olorofim to treat mice infected by
Scedosporium spp. and L. prolificans (28). Our results confirm the remarkable in vitro
activity of olorofim (higher against Scedosporium spp. than against L. prolificans) and its
potential to become an effective antifungal agent for treating patients with Scedosporium/
Lomentospora invasive infections.

Comparisons of MICs obtained by visual inspection and spectrophotometric
readings. Tables 2 and 3 and Table S1 summarize the MIC distributions of olorofim against
Aspergillus and Scedosporium spp. and L. prolificans obtained by visual inspection and by spec-
trophotometric readings using different combinations of fungal growth inhibition endpoints
and wavelengths. MIC distributions against A. fumigatus sensu lato are shown in Table 2.
Overall, essential agreements between MICs by visual inspection and spectrophotometric
readings were higher using $90% fungal inhibition endpoints; such agreement values
increased to.99% when wavelengths were$492 nm. The combination of$90% fungal
growth inhibition endpoints and wavelengths of $492 nm resulted in MIC distributions
generated by either spectrophotometric readings or visual inspections with identical wtUL
values (0.03 mg/L).

We sequenced the pyrE gene in A. fumigatus sensu stricto isolates showing an olorofim
non-wild-type phenotype (MICs higher than the wtUL value derived from visual inspection
MIC distributions and spectrophotometric readings using either $90% or $95% fungal
growth inhibition endpoints and wavelengths of $492 nm). MIC distributions generated
from visual inspection led to two non-wild-type isolates. As to wtUL values from MIC distri-
butions obtained by spectrophotometric readings, only one isolate was classified as non-wild
type ($90% fungal growth inhibition endpoint and a wavelength of 492 nm; MIC, 0.06 mg/L).
In contrast, $95% fungal growth inhibition endpoints led to several non-wild-type isolates
(wavelengths of 492 nm [n = 7], 540 nm [n = 7], and 620 nm [n = 4]). The examined pyrE gene
sequences did not have the G119 substitution previously linked to resistance to olorofim, thus
supporting the use of$90% fungal growth inhibition endpoints, which resulted in the lowest
number of isolates with a false non-wild-type phenotype.

Table S1 shows the MIC distributions obtained against non-fumigatus Aspergillus species.
To harmonize the methodology against all Aspergillus spp., combinations of fungal inhibition
endpoints of$90% and wavelengths of$492 nm were assessed. It led to 100% agreement
values between MIC visual and spectrophotometric readings, although spectrophotometric
versus visually obtained wtUL values did not match values for A. terreus (0.008 mg/L versus
0.016 mg/L) and A. niger when MICs were read at 540 nm (0.06 mg/L versus 0.125 mg/L)
(Table S1). Unfortunately, wtUL values from MIC distributions by visual inspection could not
be set against A. flavus because of a very narrow MIC range; if the wtUL value had been

TABLE 2MIC distributions by visual observation and spectrophotometric readings against A. fumigatus sensu lato isolatesa,b

Endpoints (%) (wavelength
[nm]) used to obtain theMIC

MICs (no. of isolates at each MIC, mg/L) Essential
agreement
(%)

Statistical wtUL at each percentage
of modelled population

0.001 0.002 0.004 0.008 0.016 0.03 0.06 0.125 ‡0.25 95% 97.5% 99% 99.5% 99.9%
Visual reading 0 2 6 86 433 37 2 0 0 ND 0.03 0.03 0.03 0.03 0.03
90 (405) 0 1 9 98 374 78 4 1 1 98.41 0.03 0.03 0.03 0.03 0.06
95 (405) 0 1 2 13 149 163 83 103 52 55.48 0.125 0.25 0.25 0.25 0.5
90 (450) 0 2 9 105 346 89 9 1 5 96.64 0.03 0.03 0.03 0.03 0.06
95 (450) 0 1 16 133 149 84 113 69 1 49.47 0.125 0.25 0.25 0.5 0.5
90 (492) 0 2 15 191 332 25 1 0 0 99.47 0.03 0.03 0.03 0.03 0.03
95 (492) 0 2 5 39 322 177 14 2 5 95.58 0.03 0.03 0.06 0.06 0.06
90 (540) 0 2 19 234 296 15 0 0 0 99.82 0.016 0.03 0.03 0.03 0.03
95 (540) 0 2 7 61 397 92 6 1 0 97.53 0.03 0.03 0.03 0.03 0.03
90 (620) 0 2 17 244 287 16 0 0 0 99.82 0.016 0.03 0.03 0.03 0.03
95 (620) 0 2 7 57 404 92 4 0 0 98.23 0.03 0.03 0.03 0.03 0.03
aReadings used two endpoints ($90% and$95% inhibition of fungal growth versus a drug-free control) at different wavelengths (405 nm, 450 nm, 492 nm, 540 nm, and
620 nm) against A. fumigatus sensu lato. Essential agreements among visually obtained MICs and spectrophotometric MICs and wild-type upper limits were calculated.

bUnderlined values indicate calculated non-wild-type isolates according to the statistical wtUL (99% of modeled population). Bold values indicate modal MIC. ND, not done.
Cells in gray indicate the combination of fungal growth inhibition endpoint and wavelength values leading to an essential agreement value of.99% and wtULs similar to
the one obtained by visual readings (using the 99% of modeled population).
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0.016 mg/L, it would have matched the wtUL values generated by spectrophotometric
readings.

Previous studies have proved spectrophotometric readings to be an alternative to
visual inspection for determining azole and amphotericin B MICs against A. fumigatus
sensu stricto (18–21), and currently, it is included in the updated EUCAST E.Def 9.4 procedure
in which fungal inhibition growth endpoints of $90% are recommended (22). Our observa-
tions extend olorofim spectrophotometric MIC readings against A. fumigatus—including cryp-
tic species—using the same fungal growth inhibition endpoint ($90%) if the wavelengths
used are $492 nm. However, for non-Aspergillus spp., following the criteria of getting high
essential agreements and identical wtUL values betweenMIC distributions generated by either
visual inspection or spectrophotometric readings using $90% growth inhibition endpoints
and wavelengths of$492 nm are not as clear as for A. fumigatus.

We also compared olorofimMICs by visual inspection and spectrophotometric read-
ings against S. apiospermum complex (Table 3). The highest agreements were found
when readings were done using wavelengths of $492 nm. Although the highest
agreements with visual inspection were found with $95% fungal growth inhibition
endpoints, the $90% endpoint led to wtUL values of MIC distributions matching those
of visual inspection and to a lesser extent in non-wild-type isolates. The $95% fungal
growth inhibition endpoint seemed to be more accurate against L. prolificans, although
it was not possible to calculate wtUL values due to the small number of isolates.

Given that the E.Def 9.4 document recommends the$90% fungal growth inhibition
endpoint when using spectrophotometric MIC readings of azoles and amphotericin B
against A. fumigatus, the aim of the current study was to harmonize such endpoints when
conducting olorofim antifungal susceptibility testing. This endpoint worked fine for A. fumiga-
tus sensu lato isolates. Taking into account the small number of non-fumigatus Aspergillus
sp. and Scedosporium sp./L. prolificans isolates, further studies with a larger number of iso-
lates should be developed to determine which fungal growth inhibition endpoint is best
for the species in question. Few works have been published to date on the activity of olorofim
against non-fumigatus isolates and Scedosporium spp./L. prolificans and are almost nonexistent
when it comes to MIC spectrophotometric readings.

A limitation to this study is the small number of isolates of non-fumigatus Aspergillus spp.
and Scedosporium spp./L. prolificans. Moreover, this is a single-center study, and broadening
our observations to multiple centers may support and validate the findings of this work.

In conclusion, our study proves in vitro activity of olorofim against clinical mold isolates,
including different Aspergillus spp. and the highly antifungal-resistant Scedosporium spp. and
L. prolificans. This work also shows a high agreement among MIC values of olorofim against
A. fumigatus by visual inspection or spectrophotometric readings ($90% fungal growth inhi-
bition endpoint and wavelengths of $492 nm) and presents encouraging results against
non-fumigatus Aspergillus spp., Scedosporium spp., and L. prolificans.

MATERIALS ANDMETHODS
Isolates studied and molecular identification. A total of 735 clinical isolates—one isolate per patient

and species—collected from the lower respiratory tract (91%) and belonging to Aspergillus (n = 686) or
Scedosporium (n = 36) spp. and L. prolificans (n = 13) were tested. Scedosporium spp., L. prolificans, non-
fumigatus Aspergillus, and some A. fumigatus sensu lato isolates (n = 402) were from patients admitted to
Gregorio Marañón hospital (Madrid, Spain) between 1999 and 2021; the remaining A. fumigatus sensu
lato isolates (n = 284) were collected as part of an multicenter azole resistance surveillance study conducted in
Spain in 2019 (1).

Isolates were identified by amplifying and sequencing the b-tubulin gene using btub-2a and btub-2b
primers; calmodulin was used to identify A. niger isolates (Table 1) (29).

Olorofimantifungal susceptibility testing. Antifungal susceptibility to olorofim (F2G, Inc., Manchester,
UK) was studied using the EUCAST E.Def 9.4 procedure; MICs were obtained after plates were incubated
for 48 h (tissue-treated trays, CELLSTAR reference [ref.] 655 180; Greiner Bio-One, Frickenhausen, Germany) at
35°C without shaking (22). Tested olorofim concentrations ranged from 0.001 to 0.125 mg/L; higher concentra-
tions were used against Scedosporium spp./L. polificans (0.5 mg/L) and A. ustus (8 mg/L). MICs were obtained by
visual inspection (defined as the concentration that completely inhibits visible fungal growth) or by spectropho-
tometric readings (combinations of either $90% or $95% inhibition of fungal growth compared to drug-free
control endpoints and different wavelengths [405 nm, 450 nm, 492 nm, 540 nm, and 620 nm]). Quality control
was ensured by testing the A. flavus ATCC 204304 and A. fumigatus ATCC 204305 strains.
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Underlying mechanism of olorofim resistance in A. fumigatus sensu stricto isolates. The pyrE
gene was amplified and sequenced in A. fumigatus sensu stricto isolates showing a non-wild-type oloro-
fim phenotype an MIC above the statistical wild-type upper limit [wtUL], calculated either from the MIC
distribution obtained by visual inspection or by spectrophotometric readings using $90% fungal
growth inhibition endpoints and wavelengths of $492 nm (27).

Data analysis. MIC visual inspection was used as the gold standard and compared against spectro-
photometric MIC readings; MICs (percentage) within 61 2-fold dilutions were considered to be in essential
agreement (19). In species-specific olorofim MIC distributions with a minimum number of 15 isolates (for A.
ustus and L. prolificans there were fewer than 15 isolates) wtULs were set following the principles applied for
epidemiological cutoff (ECOFF) calculation using the ECOFFinder program (30). The best combination of fungal
growth inhibition endpoint/wavelength to obtain MIC spectrophotometric reading (against each species com-
plex tested) was determined when essential agreement between MICs obtained by visual inspection and spec-
trophotometric readings were high and wtULs (99% of the modeled population included) were identical.

Ethical consideration. Given the in vitro nature of this study, approval of the ethics committee was
not required.
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