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Abstract

Accurate identification of genetic variants from family child–mother–father trio sequencing data is important in genomics. However,
state-of-the-art approaches treat variant calling from trios as three independent tasks, which limits their calling accuracy for
Nanopore long-read sequencing data. For better trio variant calling, we introduce Clair3-Trio, the first variant caller tailored for family
trio data from Nanopore long-reads. Clair3-Trio employs a Trio-to-Trio deep neural network model, which allows it to input the trio
sequencing information and output all of the trio’s predicted variants within a single model to improve variant calling. We also
present MCVLoss, a novel loss function tailor-made for variant calling in trios, leveraging the explicit encoding of the Mendelian
inheritance. Clair3-Trio showed comprehensive improvement in experiments. It predicted far fewer Mendelian inheritance violation
variations than current state-of-the-art methods. We also demonstrated that our Trio-to-Trio model is more accurate than competing
architectures. Clair3-Trio is accessible as a free, open-source project at https://github.com/HKU-BAL/Clair3-Trio.
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Introduction
Accurate identification of genetic variants in family trios
in the human genome is an important task in genomics,
which provides insight into precision medicine and phe-
notype understanding [1]. The human genome follows
the Mendelian inheritance [2], with half of the child’s
genome in family trios inherited from each parent. Call-
ing genetic variants in trios provides a more comprehen-
sive understanding of the inheritance pattern of genetic
variants in families [3].

Several state-of-the-art deep learning-based methods
are available for calling small variants from Oxford
Nanopore Technologies (ONT) data. They are based on
two main designs: pileup and full-alignment. Clairvoy-
ante [4], Clair [5] and Nanocaller [6] use a pileup-based
design, which summarizes the read alignments into
features and counts, which are then piped into a variant-
calling network. PEPPER-Margin-DeepVariant (PEPPER)
[7], on the other hand, applies a haplotype-aware variant
calling pipeline and uses full alignment-based input to
call variants via neural networks. Clair3 [8] combines

the two major designs, using an advance and cascade
design, which symphonizes pileup for the best speed and
full-alignment for the best accuracy for calling variants
from ONT data. Other variant-calling methods, including
Medaka [9] and Longshot [10], are also available for
ONT data. However, all the state-of-the-art methods are
designed for calling individual variants from trios and
fail to leverage Mendelian inheritance in the family for
better variant-calling accuracy for ONT data.

For calling varaints with genetic information shared in
family trios, two pilot studies based on DeepVariant [11]
have been developed. dv-trio [12] provides a processing
pipeline to call variants using DeepVariant, together with
GATK [13] and FamSeq [14], to reduce the number of
Mendelian inheritance violations in its variant calling.
DeepTrio [15] extends DeepVariant’s single sample input
to accept the input of three samples in its deep neural
networks to call candidate sites identified by heuris-
tic checking. Current trio variant callers do not include
Mendelian inheritance violation factors in their model
architecture designs or decisions. Furthermore, all these
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methods are designed for Illumina and PacBio HiFi data
and cannot call variants from ONT data. Therefore, there
is currently no trio information-aware caller available for
calling variants from ONT data.

Generally, two research gaps remain for calling vari-
ants from trios for ONT data: (i) how to train the model
to learn from the information about both individuals and
that preserved in family trios and (ii) how to train the
model to predict the following Mendelian inheritance,
a basic feature in family trios. Unfortunately, these two
questions have never been studied in the ONT data and
remain unsolved in the community.

To fill the two main research gaps and improve variant
calling from trios’ ONT data, we propose a new model:
Clair3-Trio. Clair3-Trio is the first variant caller tailored
for family trios ONT data with a Trio-to-Trio deep neu-
ral network model design that allows it to input the
trio’s sequencing information and output all of the trio’s
predicted variants. Using the Trio-to-Trio model, Clair3-
Trio can efficiently call variants based on individual and
family trio information. We also designed a loss func-
tion, MCVLoss (Mendelian Inheritance Constraint Vio-
lation Loss), to make the model explicitly encode the
priors of Mendelian inheritance in trios to improve its
variant calling (described in the Methods section). Based
on our experiment on the Genome in a Bottle (GIAB)
HG002 trio data [16], Clair3-Trio showed comprehensive
improvement in experiments compared with state-of-
the-art methods. It showed an increment of over +10% in
the F1-score of the child and +5% in the F1-score of the
parents compared with Clair3 and PEPPER when tested
at 10× ONT data. In addition, it showed an order of
magnitude fewer Mendelian inheritance violations than
other methods. All codes and experimental settings for
Clair3-Trio are publicly available at https://github.com/
HKU-BAL/Clair3-Trio.

Methods
Family trio variant calling with Clair3-trio
Clair3-Trio consists of two main modules (Figure 1A):
(i) data preprocessing, which uses the Clair3 pileup
model and WhatsHap phase, as well as the haplotag sub-
module [17] function to phase the data of each individual
in a family; and (ii) model calling, which calls family
trio variants with the Clair3-Trio model. The inputs for
Clair3-Trio are three alignment files from a family trio:
child, mother and father. The workflow and model are
discussed in the following.

Data preprocessing
For data preprocessing, first, we use the Clair3 pileup
model to efficiently find all genetic variants that can be
easily predicted with high confidence, and then, we use
WhatsHap to obtain all phase variants and haptag reads,
based on the called heterozygous single nucleotide poly-
morphisms (SNP) to get phased alignments for the Clair3-
Trio model. With all individuals’ haptaged alignments
available, we use a simple heuristic approach to identify

candidate positions that might have any genetic variants
in the family, as follows: (i) the Clair3 pileup model grasps
all positions with supporting alternative allele frequency
exceeding 0.08 and outputs all individual variant and
non-variant calling with confidence scores [8]. (ii) Next,
all pileup variants called and 20% of low-quality pileup
reference calls are collected from each individual as the
individual’s potential variant candidate sites. (iii) Then,
we unite all the potential variants of each individual in
the family as the trio’s variant candidates. Thus, any vari-
ants identified in a sample can be treated as candidates
in the Clair3-Trio model.

Clair3-trio model: a trio-to-trio deep neural
network model
The Clair3-Trio model is a Trio-to-Trio model that can
input all alignments from the family trio and output all
variants from the same trio. The inputs for the Clair3-Trio
model are generated by merging phased full alignments
from trios. For each individual, the full-alignment infor-
mation is converted into eight different feature channels,
as previously discussed for Clair3 [8]. For each channel,
we aggregate the same channel from each individual in
the same family order as the input of the Clair3-Trio
model (Figure 1B).

The neural network of the Clair3-Trio model consists
of multiple layers: convolutional layers (Conv), residual
convolutional layers (ResBlock), pyramid pooling layers
and dense layers (Figure 1B). Clair3-Trio uses indepen-
dent dense layers to predict each individual’s genotype,
zygosity and two insertion or deletion (INDEL) lengths
in the last layer. All outputs from the model are then
combined and converted to variant records for each indi-
vidual.

Training a Clair3-trio model
To train a Clair3-Trio model in family trio data, we applied
(i) a label cleaning module (Representation Unification)
to clean the training data, and (ii) a trio data filtering
module (MCV filtering) to further filter Mendelian vio-
lation sites in the training data. The two modules were
established based on experiments. We use the Repre-
sentation Unification module from Clair3 to unify the
true variants label with the alignment information in the
training data. The Representation Unification model may
include Mendelian conflict in the unification process.
We added MCV filtering to discard a few candidate sites
(0.05% of candidate sites) in training data that violated
Mendelian inheritance constraints. After cleaning the
data, we performed random downsampling to make the
model increase its generalization at different levels of
data coverage. We downsampled the data into a range
of coverage of 10×, 30×, 60× and 80× for all samples,
kept the child data at high coverage and downsampled
only the parent samples for low coverage. After down-
sampling, we kept 30% of the data of each coverage
combination to balance speed and performance, leading
to 33 353 000 candidates (from the GIAB HG002 family) in
our training dataset. With the training dataset available,
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Figure 1. Workflow of Clair3-Trio. (A) The calling workflow of Clair3-Trio. The trio’s sequencing data are first phased by Clair3’s pileup variant calling
and WhatsHap phase sub-modules and then fed into the Clair3-Trio model to call variants in the trio. (B) The architecture of the Clair3-Trio model.

Clair3-Trio was trained in a two-step procedure. First,
we trained an initial model of Clair3-Trio via the focus
loss function, and then, we fine-tuned the initial Clair3-
Trio model with the addition of multiple task MCVLoss
function. We also tried other training techniques, but
they failed to improve Clair3-Trio. This is elaborated in
Supplementary Notes (see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Differences between Clair3-trio and the Clair3
full-alignment model
Our approach differs from Clair3 mainly in the following
ways:

(i) Targeted for best accuracy, Clair3-Trio can call
variants in all potential variant sites in a family,
while Clair3 calls them in individuals. Clair3-Trio
has much more relaxed candidate selection criteria
for variant candidate selection than Clair3. Claire3-
Trio has 100% of variants and 20% of reference sites,
compared with 30 and 10%, respectively, in Clair3, so
Clair3-Trio ends up with 2.2 times more candidates.
On the other hand, the variant candidates in
the Clair3-Trio model are the union of all trio
members, resulting in 1.9 times more candidates
than individual variants. Typically, Clair3-Trio calls
4.2 times more candidates, on average, than the
default Clair3 for each sample.

(ii) Clair3-Trio is a Trio-to-Trio model, which uses all
data in the trio to predict all of the trio members’
variants directly and consistently, while Clair3 is
a powerful individual variant caller, which can be

treated as a One-to-One model. More information
about the Trio-to-Trio and the One-to-One model is
provided in Results section.

(iii) The Clair3-Trio model uses the MCVLoss function
for fine-tuning, adding penalties to the trio’s variant
predictions that violate the Mendelian constraints,
giving Clair3-Trio a comprehensive understanding of
the family trio’s variant calling.

With the Trio-to-Trio model’s architecture and MCVLoss
function, our model is well-tailored for calling variants
in a family, resulting in a substantial improvement in all
the benchmark experiments (see Results section) using
the same training data as in Clair3.

Modeling Mendelian inheritance with MCVLoss
in deep neural networks
The Trio-to-Trio model can predict the trio’s variants
with trio’s information, but how to explicitly add the
Mendelian inheritance information to the model remains
an open question. In the following subsections, we dis-
cuss the MCVLoss function, which is designed to control
the Mendelian inheritance violation rate in the model.
We briefly describe the original loss function in Clair3
and then introduce the MCVLoss function.

Loss function for a single sample
First, we detail the original loss function for an individ-
ual, inherited from Clair3, to better illustrate the basic
components in the Clair3-Trio loss function. The output
of Clair3 includes four variant tasks—genotype, zygosity
and two INDEL length tasks—as previously described in
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Clair3 [8]. The most important task in Clair3 is to predict
the genotypes, which are classified into 21 genotypes. If
X denotes the alignment from a single sample, the prob-
ability of each possible genotype from the 21 genotypes
for each sample is

pi = softmax(Fgt
(
F′(X)

)
, i ∈ {

gt1, gt2, . . . , gt21
}

, (1)

where Fgt represents the Clair3 model’s last layer—the
21-genotype outputting layer—and F′ represents all the
other Clair3 layers, other than the last Fgt layer, as in
Figure 1B. Based on the probability of 21 genotypes, the
loss function of Clair3 can be simplified as

Loss(F) = FocalLoss
(
Ygt, Pgt

) + L2(F), (2)

where Ygt denotes the true 21-genotype label, Pgt denotes
the predicted probability of each 21-genotype label and
L2 denotes the L2 regularization terms of the model. We
ignore the zygosity and INDEL length terms in this simpli-
fied formula for simplicity (their formulas are identical
to the 21 genotypes task). For applications, the complete
loss functions, including 21 genotypes, zygosity, INDEL
length 1 and INDEL length 2, are described in the Clair3
paper [8].

The output of Clair3-trio and the computation of
the trio probability
We extended the model output in Clair3 from the individ-
ual to compute trio genotypes in Clair3-Trio. The proba-
bility of the trio members is represented as

pc,i = softmax(Fgt,c
(
F′(X)

)
,

pp1,j = softmax(Fgt,p1

(
F′(X)

)
, (3)

pp2,k = softmax(Fgt,p2

(
F′(X)

)
,

where the F′ represents all layers of Clair3-Trio except for
the last layer and Fgt,c, Fgt,p1 , Fgt,p2represents the last three
fully connected layers for computing the 21 correspond-
ing child, parent-1 and parent-2 genotypes, respectively.
Parent-1 can be the mother or father in the trio, and
parent-2 is the remaining parent. The probability of each
trio genotype in the family is computed as

ptrio(i,j,k) = pc,i· pp1,j· pp2,k. (4)

For each individual’s probability, we simply have the
property that

∑
i

pc,i = 1,
∑

j

pp1,j = 1,
∑

k

pp2,k = 1. (5)

Combining formulas (4) and (5) for the trio genotype,
we have a similar property for the trio’s probability

∑
i,j,k

ptrio(i,j,k) = 1. (6)

The Mendelian constraint violation loss function:
MCVLoss
MCVLoss is based on the idea of penalizing the trio
genotype that violates the Mendelian inheritance. For
each trio genotype, we define a parameter β, representing
the valid degree of the genotype

βtrio(i,j,k) =

⎧⎪⎨
⎪⎩

(1 − μ)2, if it follows the Mendelian inheritance (no MCV) ,
μ, if MCV, and child has one allele mismatch,
μ2, if MCV, and child has two alleles mismatch

,

(7)

where μ is the mutation rate per generation, set as
1e−8 by default [18]. Combining the probability of each
trio genotype in the family and the corresponding valid
degree, the sspredicted overall valid degree for trio pre-
diction becomes

Vtrio =
∑
i,j,k

βtrio(i,j,k)· ptrio(i,j,k) =
∑
i,j,k

βtrio(i,j,k)· pc,i· pp1,j· pp2,k.

(8)

Based on formulas (6)–(8), we know that Vtrio ∈ (0, 1).
With all this information, the MCVLoss is defined as

MCVLoss (Ptrio) = −α· log (Vtrio + ε)

= −α· log

⎛
⎝∑

i,j,k

βtrio(i,j,k)· pc,i· pp1,j· pp2,k + ε

⎞
⎠ , (9)

where α controls the importance of the Mendelian inher-
itance penalty in the model, and ε is a small number
(1e−9 by default) to cap the log function to avoid reaching
infinity. α is set as 1 by default, which was decided
experimentally.

With the MCVLoss available, the final Clair3-trio loss
function is

Loss(F) = FocalLoss
(
Ygt,c, Pgt,c

) +
FocalLoss

(
Ygt,p1 , Pgt,p1

) +
FocalLoss

(
Ygt,p2 , Pgt,p2

) +
MCVLoss (Ptrio) + L2(F), (10)

where Ygt denotes the true 21-genotype ground truth and
Pgt denotes the predicted probability of each 21-genotype
label.

In this manner, MCVLoss introduced the Mendelian
inheritance prior to model training. The detailed results
of using MCVLoss are presented in Results section.

Benchmarking methods and metrics
We use Precision, Recall and F1-score metrics to evaluate
the family trio variant-calling performance in different
configurations. The Precision, Recall and F1-score are
computed via hap.py (v0.3.12) [19]. We computed the
number of Mendelian violation variants in trios using
the following steps: (i) merging all trio variants results
using BCFtools (v1.12) [20] with the flag ‘-f PASS -0 -m
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all’ and (ii) computing the number of Mendelian viola-
tions via RTG tools (v3.12.1) [21]. We also computed the
number of de novo variants in the model’s prediction,
where the de novo variants [15] are defined as variants
confidently genotyped as 0/1 in the child and as 0/0 or
unknown in the parents. Note that the metrics of Preci-
sion, Recall, F1-score and number of de novo variants are
constrained in the confidence region, while the number
of the Mendelian violations is computed in all sites.

Results
Data description
We conducted our experiments on the dataset collected
in the Genome in a Bottle (GIAB) [16] Ashkenazi Jewish
trio (HG002-child, HG003-father, HG004-mother). We
obtained the ONT sequencing data from the Human
Pangenome Reference Consortium (HPRC) [22], with
high coverage in three samples, HG002 (∼432×), HG003
(∼85×) and HG004 (∼88×), which were base-called via
Guppy4.2.2. We trained models on the ONT data while
holding out chromosome 20 in all training stages and
preserving it for testing. The truth variants for the trio
were obtained from GIAB’s v4.2.1 small variant bench-
mark [16]. We compared Clair3-Trio with Clair3 (v0.1-
r6) and PEPPER-Margin-DeepVariant (r0.4) (PEPPER). For
individual evaluation, the benchmark was constrained
in the individual region provided in GIAB’s v4.2.1 small
variant benchmark, while the computation of de novo
variants was constrained in the trio’s overlapped high-
confident bed regions.

Assessing variant-calling accuracy in individuals
We compared the Clair3-Trio variant-calling perfor-
mance against Clair3 and PEPPER at different coverage
in individuals from the GIAB trio. The overall benchmark
results are shown in Figure 2 (SNP + INDEL), with SNP
and INDEL breakdowns in Supplementary Figure 1
(SNP, see Supplementary Data available online at
http://bib.oxfordjournals.org/) and Supplementary Fig-
ure 2 (INDEL, see Supplementary Data available online
at http://bib.oxfordjournals.org/) (‘90x’ means ‘up to 90x’
in both figures and tables). For all variants, we observed
that Clair3-Trio had a better performance in the F1-
score than Clair3 and PEPPER. The performance gain
was especially profound in the lower coverage data.
Clair3-Trio achieved an F1-score of 92.85 and 92.12%
at 10× data from HG002 (child) and HG003 (parent),
compared with 82.78 and 86.77% in Clair3 and 54.77
and 65.70% in PEPPER, respectively. More details are
provided in Supplementary Table 1 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).

The SNP and INDEL performance breakdowns are
shown in Supplementary Figures 1 and 2 (see Supple-
mentary Data available online at http://bib.oxfordjournal
s.org/). We found that Clair3-Trio had higher perfor-
mance in both SNP and INDEL than Clair3 and PEPPER.
For SNP, Clair3-Trio performed better than Clair3 and

PEPPER, especially below 40× coverage. For INDEL, Clair3-
Trio showed consistently better results than Clair3 and
PEPPER. For INDEL, Clair3-Trio achieved an F1-score
of 78.07 and 77.40% at 60× HG002 (child) and HG003
(parent) data, respectively. This is much higher than 72.45
and 75.02% in Clair3 and 66.94 and 68.91% in PEPPER.
These results verify the effectiveness of the Clair3-Trio
model.

Comparing performance gain among members of
the family trio, we found that the performance gain
in the child (HG002) was much more profound than
that in the parents (HG003 and HG004). For INDEL,
Clair3-Trio achieved a +5.62% increment in the F1-
score in the child compared with Clair3 at 60×, while
the improvement dropped to +2.38% in the parents
(Supplementary Table 1, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/). The ratio-
nale is that for calling variants, the family trio provided
more information about the child, which shares two
haplotypes with parents, while each parent shares only
one haplotype with the child.

Assessing variant-calling accuracy
in a family trio
Comprehensively evaluating variants across all family
members using metrics such as the number of Mendelian
violations is important when calling variants in a family
trio. In Mendelian inheritance violations, Clair3-Trio
showed an order of magnitude fewer violations than
Clair3 and PEPPER at 10× to 30× coverage. As shown in
Figure 3 and Supplementary Table 1 (see Supplementary
Data available online at http://bib.oxfordjournals.org/),
at 10× coverage, there were 7072 Mendelian violations
called from Clair3-Trio, while the number were 48 345
and 131 509 in Clair3 and PEPPER, respectively. At 60×,
in contrast, there were 8429 Mendelian violations called
from Clair3-Trio, and 30 725 and 20 559 in Clair3 and
PEPPER, respectively. Regarding the number of Mendelian
violations found in Clair3-Trio at 60×, 70.3 and 29.7% of
the calls were SNP and INDEL, respectively, indicating a
large proportion of SNP and INDEL Mendelian violations
recognized by Clair3-Trio. In contrast, for the number of
de novo variants, Clair3-Trio has fewer false-positive (FP)
de novo variants than other tools had. Clair3-Trio had 197
FPs at 60× data compared with 458 and 455 in Clair3 and
PEPPER, respectively. However, Clair3-Trio found slightly
fewer true-positive (TP) de novo variants, 33, compared
with 35 in both Clair3 and PEPPER. We gathered all
false-negative de novo variant cases of Clair3-Trio in
Supplementary Table 2 (see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/) and present
their alignment visualization in Supplementary Figure 3
(see Supplementary Data available online at http://bib.oxf
ordjournals.org/). More discussion about the Mendelian
violations and de novo variant calling for Clair3-Trio are
presented in Discussion section.

We also benchmarked Clair3-Trio at the Chinese trio
(HG005 trio) from GIAB. We obtained the ONT sequencing

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac301#supplementary-data
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Figure 2. Overall benchmarking results on the GIAB trio. The SNP + INDEL’s F1-score, Precision and Recall of different tools at coverage from 10× to 90×
on HG002 (child, left) and HG003 (parent, right).

data (base-called via Guppy4.2.2 with a maximum trio
coverage of 40×) from HPRC [22] and the truth variants
from GIAB’s v4.2.1 small variant [16]. The results are
available in Supplementary Table 3 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Clair3-Trio showed consistently better results than Clair3
and PEPPER in the HG005 trio. Clair3-Trio achieved an F1-
score of 98.16 and 97.58% at 40× data from HG005 (child)
and HG006 (parent), compared with 97.60 and 97.39% in
Clair3 and 97.02 and 96.81% in PEPPER, respectively.

After the initial release of Clair3-Trio, both Clair3 and
PEPPER released their new version with models support-
ing Guppy5 data. We trained a new Clair3-Trio model
with Guppy5 data and benchmarked the new model
with Clair3 (v0.1-r11) and PEPPER (r0.8)’s Guppy5 models.

We found that the performance trend of Clair3-Trio for
Guppy5 remains the same as in Guppy 4. Results are
available in Supplementary Table 4 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).

Assessing the effect of varying parental coverage
on variant-calling accuracy
When calling variants from trios, it is common to see
parents having halved or even lower coverage against
the full of the coverage of the children to manage
sequencing costs [23]. To assess the effect of low parental
coverage on variant calling, we set the child sample
to coverage of 60× and downsampled the sequencing
data of parents from 60× into test ranges of 10×, 20×,
30×, 40×, 50× and 60×. The test results are shown in
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Figure 3. Trio benchmarking results on the GIAB trio. (A) The number of Mendelian inheritance violations, de novo true positives and de novo false
positives found in different tools. (B) The breakdown of Mendelian violation rate of 60× from Clair3-Trio.

Figure 4 (SNP + INDEL), and further details are provided
in Supplementary Figure 4 (SNP, see Supplementary
Data available online at http://bib.oxfordjournals.org/),
Supplementary Figure 5 (INDEL, see Supplementary
Data available online at http://bib.oxfordjournals.org/)
and Supplementary Table 5 (see Supplementary Data
available online at http://bib.oxfordjournals.org/). For the
child sample, the performance of Clair3-Trio is similar to
that of Clair3 when the parent has very low coverage
(10×) overall, indicating that 20× or more for parents is
required for trio calling to improve the variant calling
for the child. When the parents have half the child’s
coverage (child 60×, parents 30×), Clair3-Trio achieved
an overall F1-score of 96.92%, compared with 96.50 and
95.98% for Clair3 and PEPPER, respectively. Separating the
results from SNP and INDEL, we found that Clair3-Trio
outperformed the other tools when parents had coverage
higher than 10× for SNP calling and coverage higher than
30× for INDEL calling. Furthermore, in Clair3-Trio, there
was a large improvement in the performance of low-
coverage parent data when higher coverage for the child
was provided (Figure 4). Clair3-Trio achieved a +6.02%
increment in the F1-score in HG003 (10× parent sample)
compared with Clair3. Furthermore, when parents had
half the child’s coverage (60× for child and 30× for
parents), Clair3-Trio had an F1-score of 96.54% for HG003,
which is also higher than 95.83% in Clair3 and 95.07% in
PEPPER.

We also tested Clair3-Trio in a scenario where only
the child has lower coverage (with 10× for the child and

30× for parents). The scenario with higher coverage for
parents is easier for trio calling compared with lower or
equal coverage for parents in trio data. The results are
available in Supplementary Table 6 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
We found that Clair3-Trio remains to have a higher
performance, with 93.69% of F1-score in 10× in the
child, than 82.78% in Clair3 and 54.77% in PEPPER in this
scenario.

The improvement of Clair3-Trio on the trio data makes
it useful for population genome projects in which better
variant calling performance is expected for both parents
and children.

Building the Clair3-trio model
Comparison of different architectures and model shape

We first categorized different methods based on their
input and output information to generalize different
methods for variant calling from family child–mother–
father trio data. The One-to-One model inputs single
sample information and outputs single sample variants.
Clair3, PEPPER and Medaka are typical One-to-One
models. The Trio-to-One model inputs data from three
samples into the model and outputs single sample
variants. For example, DeepTrio, which works with
Illumina and PacBio HiFi data, is a typical Trio-to-One
model. Finally, the Trio-to-Trio model inputs data from
three samples into the model and outputs the three
samples’ variants simultaneously. In Clair3-Trio, we built
the first Trio-to-Trio model.
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Figure 4. Overall benchmarking results on the GIAB trio when only the parent samples have diverse coverage. The SNP + INDEL’s F1-score, Precision
and Recall of different tools at coverage from 10× to 60× on parent samples with the child’s coverage fixed at 60×.

To compare the performance of different architec-
tures, we ablated the input and output tensors of Clair3-
Trio models accordingly to test as three architectures:
One-to-One, Trio-to-One and Trio-to-Trio models. The
One-to-One model has single sample input and predicts
single sample variants, as in Clair3 and PEPPER. The Trio-
to-One model has information of three samples in its
input but predicts single sample variants in its model,
as in DeepTrio. The Trio-to-Trio model is a native version
of Clair3-Trio, which has three samples input and three
samples output, but with deactivated MCVLoss and fine-
tuning. We trained a single model for all architectures on
chromosome 1 64× data from the GIAB HG002 trio and
tested the performance on chromosome 20. For the Trio-
to-One model, which is sample order specific, we trained

two models separately to make predictions: a child model
and a parent model. The benchmark results for the child
as well as the number of Mendelian violations are in
Figure 5.

We found that including trios information in the model
efficiently improves the variant calling performance
overall, especially in terms of Mendelian inheritance
violations (Figure 5). Switching from One-to-One to Trio-
to-One alone can boost the F1-score in the child by about
+0.23%. The performance increment is consistent with
the DeepTrio results [15]. The performance-boosting
increased to +0.37% and +1.2% when the architecture
was switched to Trio-to-Trio and Clair3-Trio (with
MCVLoss and fine-tuning), respectively. For the child
sample, the F1-score for Trio-to-Trio, One-to-One and
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Figure 5. Comparison of different architectures and shapes for calling variants from trios. All results were trained on chr1 and tested on chr20. (A)
The performance of different model architecture, including one-to-one (Model-A), trio-to-one (Model-B), trio-to-trio (Model-C) and Clair3-Trio (Model-D,
fine-tuned with MCVLoss) architecture; (B) The schema of different trio-to-trio model shapes, and (C) Comparison of different model shapes.

Trio-to-One was 96.30, 95.93 and 96.16%, respectively.
However, for the parent samples, Trio-to-Trio was only
slightly better than One-to-One and Trio-to-One. We also
found that the Trio-to-Trio architecture predicted many
fewer Mendelian inheritance violation variants: 7872 in
the Trio-to-Trio model, 29 753 in the One-to-One model
and 20 016 in the Trio-to-One model.

To further explore the best architecture for the Trio-to-
Trio model, we also evaluated the effect of using differ-
ent model shapes. With three inputs and three outputs
available, we developed multiple candidates for model
shape, as illustrated in Figure 5: (i) Model-A, which inputs
the information of all samples into Resblock and divides
the last dense layer to give three outputs; (ii) Model-B,
which inputs the information of all samples into Res-
block divided at all dense layers; (iii) Model-C, which
inputs single sample information into shared Resblock
and divides the last dense layer to generate three out-
puts and (iv) Model-D, which shares multiple Resblock
from a single input and divides the last dense layer
to generate three outputs. We found that Model-A and
Model-C achieved a similar F1-score (96.30% for Model-
A and 96.26% for Model-C) in the child sample to that
in Model-B (96.18%) and Model-D (96.25%), but Model-
A had many fewer Mendelian violation predictions than
the other models (7872 compared with 11 278, 10 053 and
10 370, respectively, in the other shapes). For this reason,
we selected Model-A as the best shape for the Trio-to-Trio
architecture.

Finetuning with MCVLoss

The MCVLoss (Mendelian Inheritance Constraint Vio-
lation Loss) function is designed to improve variant

calling in trios by leveraging the explicit encoding of the
priors of the Mendelian inheritance in trios. We found
that MCVLoss can effectively reduce Mendelian violation
prediction in variant calling. However, the prediction
is better accompanied with fine-tuning techniques, in
which we train a Clair3-Trio model in two steps: (i)
training Clair3-Trio without MCVLoss with the default
learning rate (1e−3 in our setting) and (ii) fine-tuning
the trained Clair3-Trio model with MCVLoss with a lower
learning rate (1e−5 in our setting). When using the fine-
tuning technique alone, the F1-score from HG002, HG003
and HG004 had a performance boost of +0.2% (Table 1).
We got the best results when combining fine-tuning
and MCVLoss with the +0.2% F1-score increment and
a Mendelian violations reduction from 7872 to 4352.

We also evaluated the effect of using a different α rate
in MCVLoss (Table 2). The α rate in MCVLoss controls the
weighting in terms of loss function, as in formula (9). We
observed that increasing the α rate efficiently decreases
the number of Mendelian inheritance violations but
slightly decreases the overall performance based on the
F1-score. We found the α rate of 1 to be the best setting for
MCVLoss, which balances the F1-score and the number
of Mendelian inheritance violations metrics.

Computational efficiency of Clair3-trio

We inherited the highly optimized modules from Clair3
and created a Clair3-Trio workflow (Figure 1A) with par-
allel computing features in each component to enable
efficient variant calling from trio data. We benchmarked
the efficiency of Clair3-Trio with Clair3, and PEPPER on
a machine with two 12-core Intel Xeon Silver 4116 pro-
cessors. Clair3-Trio was computationally efficient for trio
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Table 1. Benchmarking results from fine-tuning with MCVLoss. All results were tested at 64× data. FT: fine-tune; ‘# of MCV’: number
of Mendelian inheritance violations in predicted variants

FT MCV-Loss Sample Overall SNP Indel # of MCV

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

N N HG002 98.83% 93.90% 96.30% 99.72% 99.57% 99.64% 90.02% 57.92% 70.49% 7872
HG003 98.72% 94.12% 96.36% 99.65% 99.54% 99.59% 89.34% 58.35% 70.59%
HG004 98.84% 93.93% 96.32% 99.70% 99.58% 99.64% 90.01% 57.06% 69.84%

Y N HG002 98.79% 94.31% 96.50% 99.67% 99.68% 99.67% 90.45% 60.21% 72.29% 4885
HG003 98.83% 94.42% 96.58% 99.61% 99.64% 99.63% 90.99% 59.96% 72.29%
HG004 98.91% 94.22% 96.51% 99.69% 99.66% 99.67% 91.06% 58.78% 71.44%

N Y HG002 99.02% 93.59% 96.23% 99.72% 99.56% 99.64% 91.69% 55.69% 69.30% 4754
HG003 98.87% 93.95% 96.34% 99.64% 99.61% 99.63% 90.64% 56.58% 69.67%
HG004 98.83% 93.95% 96.32% 99.72% 99.61% 99.66% 89.64% 57.05% 69.72%

Y Y HG002 98.72% 94.37% 96.50% 99.67% 99.68% 99.68% 89.75% 60.70% 72.42% 4352
HG003 98.77% 94.46% 96.57% 99.61% 99.63% 99.62% 90.47% 60.31% 72.37%
HG004 98.88% 94.27% 96.52% 99.69% 99.66% 99.67% 90.83% 59.14% 71.64%

Table 2. Benchmarking results of different α rate in MCVLoss. All results were tested at 64× data. ‘# of MCV’: number of Mendelian
inheritance violations in predicted variants

α Sample Overall SNP Indel # of MCV

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

0 HG002 98.79% 94.31% 96.50% 99.67% 99.68% 99.67% 90.45% 60.21% 72.29% 4885
HG003 98.83% 94.42% 96.58% 99.61% 99.64% 99.63% 90.99% 59.96% 72.29%
HG004 98.91% 94.22% 96.51% 99.69% 99.66% 99.67% 91.06% 58.78% 71.44%

0.1 HG002 98.77% 94.33% 96.50% 99.67% 99.68% 99.68% 90.19% 60.38% 72.33% 4990
HG003 98.83% 94.42% 96.57% 99.62% 99.63% 99.63% 90.91% 59.97% 72.27%
HG004 99.12% 94.06% 96.52% 99.71% 99.65% 99.68% 92.93% 57.61% 71.13%

1 HG002 98.72% 94.37% 96.50% 99.67% 99.68% 99.68% 89.75% 60.70% 72.42% 4352
HG003 98.77% 94.46% 96.57% 99.61% 99.63% 99.62% 90.47% 60.31% 72.37%
HG004 98.88% 94.27% 96.52% 99.69% 99.66% 99.67% 90.83% 59.14% 71.64%

10 HG002 98.87% 94.17% 96.46% 99.69% 99.64% 99.66% 90.90% 59.47% 71.90% 3926
HG003 98.63% 94.49% 96.51% 99.59% 99.63% 99.61% 89.30% 60.53% 72.15%
HG004 98.96% 94.19% 96.51% 99.68% 99.66% 99.67% 91.66% 58.47% 71.39%

variant calling. Clair3-Trio takes around 3.4 times than
calling a single sample with Clair3. More information on
runtime and memory usage of Clair3-Trio is available in
Supplementary Table 7 (see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/).

Discussion
Clair3-Trio outperformed single sample callers especially
at lower coverages, making sequencing a family trio at a
relatively lower coverage more favorable than sequenc-
ing only the child to a high coverage. As an example, in
Supplement Figure 6 (see Supplementary Data available
online at http://bib.oxfordjournals.org/), two genotypes
0/1 and 0/2 in the child had an equal number of read
supports in 10× data. Clair3 and PEPPER failed to call the
variant base only on the child’s data. Clair3-Trio called
the child genotype as 0/1 correctly with information from
the parents at the same site.

We found that most of the Mendelian violation cases
from Clair3-Trio (68.6%) for parent-1, parent-2 and child,
respectively, are: (0/0, 1/1, 0/0), (0/0, 1/1, 1/1), (0/0, 0/0,

0/1) and (0/0, 0/0, 1/1) (Figure 3B). All these violations
are prone to be found when there is a switch between
heterozygosity and homozygosity in a single trio sample
at a site. For example, in the case of Mendelian viola-
tions (0/0, 1/1, 0/0), the switch between heterozygous
and homozygous in any member’s calling changes the
variant calling to a non-Mendelian inheritance violation
call. As all members have a chance of being miscalled,
these cases remain a challenge even when trio data are
available.

Clair3-Trio has high performance overall, but it has
fewer de novo variants predicted than Clair3 and PEP-
PER. The drop in TP of de novo variants is expected, as
Clair3-Trio is designed to predict variants by leveraging
information from family trios that favor having fewer
Mendelian violations in their prediction. For detecting de
novo variants that do not follow Mendelian inheritance,
One-to-One model-based methods such as Clair3 and
PEPPER can be used to supplement Clair3-Trio.

There are some challenges and future works needed
regarding trio variant calling from ONT data. Exper-
iments show that Clair3-Trio’s improvement over
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state-of-the-art methods is profound when the trio data
have similar coverage among family members, but it only
marginally improves with calling variants from different
data coverage (such as child coverage of 60× and parent
coverage of 10×). These results leave room for further
improvement in trio calling in diverse coverage applica-
tions. The current model is trained with multiple cover-
age down-sampled from the full coverage, but only with
the coverage of the child kept equal to or larger than that
of the parents, and not the cartesian product of the down-
sampled coverage of the three samples. This is a practical
decision to reduce the amount of training data and since
the coverage of the child in a trio is usually higher than
that of the parents. However, this may also challenge
Clair3-Trio when the coverage of parents exceeds that of
the child. An improved training scheme is expected to
handle the large amount of training data when all cov-
erage combinations are used. On the other hand, there is
a research gap in applying variant calling in the human
sex chromosome region. The current training and testing
was constrained to the autosome region, which assumes
that the variants are diplotypes and inherited from one
of the parents. However, on the sex chromosome, the
assumption is unheld when calling variants in the child’s
Y chromosome, which is a haplotype and is obtained only
from the father’s side. Currently, there are no tools avail-
able for calling variants in the sex chromosome region
with the family information from ONT data. We need a
new design for calling variants from the sex chromosome
region to fill this research gap. In the future, we would like
to design a heuristic approach to solve the question: if the
child is female, use Clair3-Trio directly at the sex chromo-
some; if the child is male, use Clair3-Trio to call variants
in the pseudoautosomal regions (PAR1 and PAR2) of the
sex chromosome and build a tailored haplotype model
to call variants in the remaining regions.

Conclusion
In conclusion, we introduced Clair3-Trio, a high-
performance Nanopore long-read variant caller in family
trios with a Trio-to-Trio deep neural network. Clair3-Trio
is the first family trio variant caller tailored for Nanopore
long-read data with a Trio-to-Trio deep neural network
model and MCVLoss. In our experiments, Clair3-Trio
outperformed current state-of-the-art methods on trio
variant calling in terms of F1-score and the number of
Mendelian inheritance violations in all three samples
from a trio. We also demonstrated that the architecture
of the Trio-to-Trio model is much more accurate than the
One-to-One and Trio-to-One model. The source code and
the results of this study are publicly available on GitHub.
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Key Points

• Developed a Trio-to-Trio model to predict trio variants in
ONT data.

• Introduced a novel loss function, MCVLoss, to model
Mendelian inheritance in trio data.

• Demonstrated that the Clair3-Trio model trained on
GIAB data improves variant calling in trio data.

• Demonstrated that Trio-to-Trio models can efficiently
decrease Mendelian inheritance violations compared
with One-to-One and Trio-to-One models.
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Supplementary data are available online at http://bib.
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logs, are available at http://www.bio8.cs.hku.hk/clair3_
trio/analysis_result.
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