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Abstract

Agglomerative hierarchical clustering has become a common tool for the analysis and visualization of data, thus being present in
a large amount of scientific research and predating all areas of bioinformatics and computational biology. In this work, we focus
on a critical problem, the nonuniqueness of the clustering when there are tied distances, for which several solutions exist but are
not implemented in most hierarchical clustering packages. We analyze the magnitude of this problem in one particular setting: the
clustering of microsatellite markers using the Unweighted Pair-Group Method with Arithmetic Mean. To do so, we have calculated the
fraction of publications at the Scopus database in which more than one hierarchical clustering is possible, showing that about 46%
of the articles are affected. Additionally, to show the problem from a practical point of view, we selected two opposite examples of
articles that have multiple solutions: one with two possible dendrograms, and the other with more than 2.5 million different possible
hierarchical clusterings.

Keywords: microsatellite marker, SSR, STR, dendrogram, UPGMA, tie in proximity

Introduction
Molecular markers are powerful tools to study genetic
diversity. They can be used to identify and characterize
the genetic variation (different genotypes) within and
between species and populations [1]. Numerous molec-
ular genetic markers are available for genetic variation
studies: isozyme, directed amplification of minisatellite
DNA, random amplified polymorphic DNA, amplified
fragment length polymorphism, inter-simple sequence
repeat, restriction fragment length polymorphism and
microsatellite markers [1–3]. Among the different molec-
ular markers, microsatellites, which are also known as
short tandem repeats (STR) or simple sequence repeats
(SSR), show the following advantages: they are highly
reproducible; they are co-dominant and multiallelic; they
are highly polymorphic, thus allowing precise discrimi-
nation between closely related genotypes and they can
be analyzed by a polymerase chain reaction assay [4, 5].

Microsatellite markers are short fragments of DNA,
between 1 and 6 base pairs repeated in tandem and
randomly inside the genome [6]. They have been used
for clustering tasks, mainly in the Eukaryota domain,
from animals [7, 8] to plants [9] and fungi [10], and in the

bacteria domain [11]. For any of these clustering tasks,
hierarchical clustering methods are frequently used.
These clustering methods seek to create a hierarchy of
clusters based on specific features [12]. The graphical
structure representation of hierarchical clustering algo-
rithms is a rooted tree called dendrogram. Hierarchical
clustering algorithms are classified by the method used
to form the final dendrogram. It can either be from
small to large clusters (also known as bottom-up or
agglomerative clustering) or from large to small clusters
(also known as top-down or divisive clustering). The
Unweighted Pair-Group Method with Arithmetic Mean
(UPGMA) is an agglomerative hierarchical clustering
method very used in practice. It combines step-by-step
the nearest two clusters or elements into a higher-level
cluster, and the distance between the new cluster and
any other cluster is calculated as the arithmetic mean
distance between elements in different clusters [13, 14].

All agglomerative hierarchical clustering methods
start from a proximity matrix of either similarities
or distances between elements [15]. In the case of
microsatellite markers, the similarity between any two
genotypes is measured as the proportion of shared
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Figure 1. Dendrogram of genetic distances between 10 individuals of L. sativus [20]. (A) Multidendrogram created with the mdendro package, showing in
gray the tied cluster grouping L. clymenum, L. ochrus, L. sylvestris, L. latifolius and L. pratensis, with a range band between the minimum distance (1.0459
units) and the maximum distance (1.1112 units) between all elements that compose the tie in proximity. (B, C) The two possible binary dendrograms,
where the last five elements are grouped differently.

alleles. Software packages frequently use two alternative
distances: one minus the proportion of shared alleles; or
minus the logarithm of the proportion of shared alleles.
Since the number of shared alleles can only take values
between zero and the total number of alleles, and this
number of alleles is usually relatively small (e.g. there
are 30 microsatellite loci in the first case study analyzed
below); thus, it is common to have the same distance
value for different pairs of genotypes. Additional ties may
also appear at any step of the hierarchical clustering
process, and it is even possible to have ties due to the
limited resolution (number of decimal digits) used to
store the proximities matrix. Therefore, we conclude
that the clustering of microsatellite markers is prone
to generate tied distances, similarly to what happens in
other cases [16].

When there are identical similarity values between
different pairs, either in the original distances or during
the agglomeration process, agglomerative hierarchical
clustering methods in general and UPGMA in particular,
can generate more than one structurally different hierar-
chical clusterings. This condition is known as the ties in
proximity problem [13, 16–18]. In all these cases in which
multiple clusterings are possible, the reproducibility of
the results is more difficult and their interpretation may
be biased [19]. In fact, any conclusion obtained from a
single binary dendrogram has to be considered partial
and, therefore, questionable. For instance, more than
one hierarchical clustering is possible when the same
distance separates genotype A from genotype B, as well
as genotype B from genotype C; in this case, genotype B
can cluster with either genotype A or genotype C. Figure 1
shows an example extracted from [20]. This example is
later explained and analyzed in the Case studies section.

There are several software options to perform hier-
archical clustering, developed in different programming

environments. For instance, in R, there are the hclust
(hierarchical clustering) function from the stats pack-
age [21] and the agnes (agglomerative nesting) function
from the cluster package [22]. In Python, there are the
AgglomerativeClustering class from the scikit-learn package
[23], and the linkage function from the scipy package [24].
And in MATLAB, there is the linkage function [25]. All
these functions do not try to solve the ties in proximity
problem, thus simply returning one of the possible binary
dendrograms.

Fortunately, there exist different solutions to prop-
erly deal with the ties in proximity problem. One pos-
sibility is to measure the likelihood of clusters count-
ing cluster frequencies in the set of all possible binary
dendrograms resulting from ties [16]. Another option is
to explore all the binary solutions and assess the dis-
tances among elements within them [26]. An alternative
approach is pyramidal clustering, which allows cluster
overlapping to obtain a unique solution [27–29]. And
one can also use a variable-group algorithm for agglom-
erative hierarchical clustering that yields a graphical
representation known as multidendrogram, where more
than two elements or clusters can be grouped when ties
occur [30] (Figure 1A).

In this work, we take a sample of scientific publications
that had used the UPGMA method in phylogenetic stud-
ies on molecular markers. We analyze the data in these
publications using multidendrograms to detect tied dis-
tances and count the number of articles where more
than one hierarchical clustering was possible. The main
purpose of this work is to estimate the proportion of
nonunique microsatellite UPGMA trees published in the
literature. In addition, to show this issue from a practical
point of view, we describe two opposite examples of
articles that have more than one possible hierarchical
clustering.



Microsatellite UPGMA clusterings | 3

Figure 2. Flowchart of the elaboration of the dataset.

Materials and methods
We carried out the analysis of the articles in three steps.
First, we set the search strategy by obtaining the popu-
lation dataset of articles that used the UPGMA cluster-
ing method to classify microsatellite markers. Then, we
selected a sample dataset by filtering and analyzing a
subset of the publications searching for specific features
in them. Finally, we checked whether the selected articles
had ties in their hierarchical clusterings and counted
the number of articles where the possible hierarchical
clusterings were nonunique.

Search strategy
We looked for scientific publications that used the
UPGMA method on microsatellite markers, up to 2021, in
the Scopus database. The search query used to retrieve
the titles of articles was: ‘UPGMA’ AND (‘microsatellite∗’
OR ‘simple sequence repeat∗’ OR ‘SSR’ OR ‘short tandem
repeat∗’ OR ‘STR’), where AND and OR are the standard
boolean operators. We added the symbol ∗ to some words
to include the plural form of these words. We limited
the search to words of the query present in the title,
abstract or keywords, and the publication year up to 2021.
We collected the following bibliometric information:
document title, journal and year of publication. A total
of 2255 articles had been published from 1995 to 2021
(27 years) and a total of 2239 articles remained after
removing 16 duplicated records. That was the population
dataset subject of this study.

Sample dataset
Figure 2 shows the flowchart of the dataset. We down-
loaded all bibliometric information corresponding to the
selected articles and randomized the dataset to prevent
a bias towards a specific year, subject area or alphabet
order. Given the large number of publications included
in the dataset (n = 2239), we selected a subset containing

20% of them. As a result, the initial sample dataset
was composed of 454 articles. We excluded 62 articles
not available. The remaining subset was composed of
392 publications to analyze. From this subset, we only
selected the articles that contain a dendrogram and a
matrix of proximity data, either similarities or distances,
or a table describing the genetic profiles of all genotypes.
In the cases where the table with the genetic profiles was
provided, we computed a matrix with the proportion of
shared alleles using the adegenet package [31, 32] in R
version 4.1.0 [33]. We rejected articles for further analysis
if the proximity data matrix and the dendrogram did
not contain the same genotype information. In the end,
we came up with a final sample dataset containing 102
articles (see Supplementary data for the complete list).

Nonunique hierarchical clusterings
We used the mdendro package in R to analyze the exis-
tence of ties in proximity and to create the correspond-
ing multidendrograms [30, 34]. This package shows the
location of any tie in a multidendrogram as a coloured
rectangle that represents the variability or range between
the minimum and the maximum distances separating
any two of the constituent clusters, since it is possible
that not all elements in a tie are separated by the same
distance (Figure 1A). We also used Radatools 5.2 [35] to
count the number of possible binary hierarchical cluster-
ings corresponding to a given matrix of proximity data.
Radatools has the option of computing all possible binary
dendrograms as well as the unique multidendrogram.
We chose the former option as we wanted to calculate
the number of binary dendrograms a specific article can
have when there are tied clusters.

Results and discussion
Proportion of articles with ties in proximity
To count the number of publications that had at least one
tie in the resulting hierarchical clustering, we took the
proximity data from all the articles in our sample dataset
and computed the corresponding multidendrogram. We
found that in 47 out of the 102 articles analyzed there was
more than one possible binary dendrogram. This value
corresponds to 46% of the articles, with a 95% confidence
interval (CI) between 36% and 56%. Extrapolating this
percentage to the total population of 2239 articles gives
an estimate of 1032 articles (95% CI 816–1248 articles)
with alternative solutions in the form of different binary
dendrograms. In such cases, employing a single arbitrary
resolved hierarchical clustering out of the different pos-
sibilities can be misleading.

We were also interested in exploring the distribution
of the number of binary dendrograms resulting from
the articles that had at least one tie in the resulting
hierarchical clustering, see Figure 3. Most articles with
ties had between 2 and 10 different binary dendrograms
(66%, i.e. 31 of all the articles with ties), followed by
articles having between 11 and 100 different binary
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Figure 3. Distribution of the number of binary dendrograms resulted from
the articles that had at least one tie in the resulting hierarchical clustering
(n = 47).

dendrograms (13%, i.e. six of all the articles with
ties). Remarkably, 11% of all the articles with ties (i.e.
five articles) had more than 10000 different binary
dendrograms. These results are in good agreement with
previous studies reporting that the occurrence of ties was
responsible for more than one hundred thousand den-
drograms [16], or even more than seven hundred million
dendrograms [36].

Analysis of publications per year
The publication year of the articles in our population
dataset ranged from 1995 to 2021 (Figure 4). The majority
of them were published after year 2000. Since 2009, more
than 100 articles have been published yearly; 2016 is
the year with more published articles (n = 158) and for
the last 10 years the number of publications has sta-
bilized around 140 articles per year. Overall, the num-
ber of published articles shows a steady increase since
the 2000s, indicating that this research area started to
gain considerable attention. The reason for this increase
may be 2-fold: on the one side, the existence of next-
generation sequencing technologies that started a new
era of genomics research with high throughput sequenc-
ing data and cheaper sequencing costs [37], and on the
other side, software packages to run hierarchical clus-
tering algorithms in general, and the UPGMA method in
particular, started to be more readily available at that
time.

We are aware that this is just an underestimation
of the real number of publications that contain an
UPGMA tree of microsatellite markers. This is so because
we did not take into consideration articles published
in journals outside the Scopus Indexed Journal List.
Also, because there are other articles in the Scopus
database that contain an UPGMA tree of microsatellite
markers, but they do not contain in their title, abstract
or keywords, any of the words that we used as search
criteria.

Figure 4. Number of scientific publications that used the UPGMA method
on microsatellite markers, up to 2021, in the Scopus database.

Figure 5. Articles classified by subject area. There are 13 subject areas
that constitute <1% each, and they have been grouped together in the
category named ‘Other’.

Distribution of subject areas
The 2239 articles were classified into 22 different
subject areas. The two most common subject areas were
Agricultural and Biological Sciences (46%), followed by
Biochemistry, Genetics and Molecular Biology (29%) in
second place (Figure 5). These two subjects constitute
75% of the total number of articles. It was expected
that most of the articles were related to biological
sciences or similar research areas as STR and SSR are
tools frequently used in these areas. We grouped the 13
subject areas that constitute <1% of the total number
of articles each into a category named ‘Other’ in
Figure 5. For instance, Computer Science [38], Math-
ematics [39] or Social Sciences [40] are examples
of research areas that are quite distinct from the
previous ones. Such a variety of subject areas indi-
cates that the clustering of microsatellite markers by
UPGMA is widely used in many areas of scientific
knowledge.
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Figure 6. Dendrogram of genetic similarity between 22 individuals of C. annuum L. [41]. (A) Multidendrogram showcasing the three different ties as a
line joining more than two clusters, instead of a range band, for the sake of clarity. (B, C) Two possible binary dendrograms among the more than 2.5
million available.

Case studies
Among the 102 articles that we have analyzed from our
sample dataset, we have selected two opposite cases to
demonstrate how it is possible to obtain multiple differ-
ent hierarchical clusterings from the same dataset using
the same clustering algorithm (UPGMA). The first exam-
ple describes a case that generates 2 different binary
dendrograms, whereas the second example describes
a case that generates more than 2.5 million different
binary dendrograms.

In the first case study, the authors analyze the genetic
diversity among Lathyrus sativus (grasspea) from its culti-
vated and wild relatives [20]. The study has a total of 10
taxa, the number of microsatellite loci used is 30, and the
distance matrix values have an accuracy of four decimal
digits. The distance matrix values range from 0 to 2.
The original data present a tie between Lathyrus pratensis
and two clusters of grasspea: one formed with Lathyrus
clymenum and Lathyrus ochrus and the other with Lathyrus
sylvestris and Lathyrus latifolius. The corresponding multi-
dendrogram is shown in Figure 1A, where the minimum
and maximum distances between all cluster elements
are 1.0459 and 1.1112, respectively. This tie is responsible
for two different binary dendrograms using the UPGMA
method. We can describe this tie as happening in the
middle of the dendrogram as it is formed by taxa already
in clusters. After its formation, the tied cluster will be
grouped with the other five elements in the dendrogram.
This case clearly shows that tied distances can happen
in any step of the clustering process.

In Figure 1B, we can observe one of the two possible
binary dendrograms, clustering first L. pratensis with the
pair formed by L. sylvestris and L. latifolius. Then, a second
cluster formed with L. clymenum and L. ochrus is added
to the previous cluster containing three elements. This
binary dendrogram shown in Figure 1B is exactly the
same that the authors of the study gave in their article

[20]. In Figure 1C, it is depicted the other possible binary
dendrogram for the same input data, where L. clymenum
and L. ochrus are clustered first with L. sylvestris and L.
latifolius. A fifth element, L. pratensis, is added then to the
previous cluster containing four elements.

In the second case study, the authors analyze the
genetic diversity of 22 chillies (Capsicum annuum L.)
germplasm using four microsatellite markers [41]. The
article provides a proximity matrix of similarity values
with an accuracy of three decimal digits. The similarity
matrix values range from 0 to 1. The original data present
three ties along with the resulting multidendrogram
(Figure 6A). These three ties are responsible for more
than 2.5 million different binary dendrograms using the
UPGMA method (to be exact, 2655193 different binary
dendrograms). This second case study is a clear example
that multiple ties can occur in the same hierarchical
clustering. Note that the larger the data set, the more
likely it is to have different binary dendrograms [18].

In Figure 6, we can also observe two possible binary
dendrograms for the 22 chillies among the more than
2.5 million possibilities. The two selected dendrograms
have several remarkable differences between them. One
clear difference, for instance, is that in Figure 6B Comilla
is first clustered with Sada_gol, and the resulting cluster is
merged with Ruma. On the contrary, in Figure 6C Comilla
is first clustered with Dhani, and the resulting cluster is
merged with Sada_gol. An even more outstanding differ-
ence is found between clusters (Angoor, Shada) and (Boro,
BD.2025) that are directly clustered together in Figure 6C,
whereas they only join at the root of the dendrogram
(minimum ultrametric similarity) in Figure 6B.

Conclusions
In this study, we have provided a comprehensive review
of microsatellite dendrograms created using the UPGMA
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method. Binary dendrograms are constrained to group
elements in pairs, which becomes an issue when there
are tied distances between two or more elements. In
these cases, a binary dendrogram first groups two of the
tied elements, and then the other elements in the tie are
added in a posterior step or they are grouped in another
cluster. In this way, the real genetic relationship between
genotypes is not properly reflected in the hierarchical
clustering. For this reason, we wanted to know how fre-
quently ties in proximity occur in published hierarchical
clusterings of microsatellite markers. Our analysis shows
that 46% (95% CI 36–56%) of the articles have at least one
alternative solution to the published binary dendrogram.
In our dataset of 2239 articles, this would correspond to
1032 articles having at least one tie (95% CI 816–1248 arti-
cles). The potential implications that this finding uncov-
ers need to be taken seriously into consideration because
between one-third and up to one-half of the articles
under consideration are affected by the ties in proximity
problem. The existence of articles containing UPGMA
binary dendrograms that are not unique solutions can
have consequences not only on the direct conclusions
obtained in these publications, but also indirectly on the
works based on these original publications.

With such alarming numbers, one has to consider
what a suitable solution for this problem is. The results
shown in this study are a clear example of why hierar-
chical clustering studies should not limit their results
to a single binary dendrogram when ties in proximity
can cause up to hundreds or even thousands of different
binary dendrograms, for a given set of genotypes. In
the introduction of this manuscript, we have mentioned
some possible solutions such as analyzing all the result-
ing binary dendrograms by counting cluster frequencies
[16] or by assessing distances among elements [26]; using
pyramidal clustering to allow cluster overlapping [27–29]
or grouping more than two clusters at the same time
using multidendrograms [30].

Ties in proximity affect more fields than the one
analyzed here. We have shown that ties are not exclusive
of biological sciences or similar research areas; instead,
they can also occur in completely different research
areas. Thus, such a wide range of research topics affected
by ties is not exclusive of microsatellite data and experi-
ments. Note that this problem is inherent in the method-
ology used to obtain binary hierarchical clusterings.
Here we have studied the UPGMA method in particular,
although the same problem can occur using any other
type of agglomerative hierarchical clustering, such as the
also common complete linkage or Ward methods.

Key Points

• Dendrograms are used in microsatellite marker publica-
tions.

• There are microsatellite distance ties in 46% of the
papers.

• Several binary dendrograms are generated although not
reported.

• This situation makes results not concluding nor repro-
ducible.

• We propose to use algorithms that generate unique den-
drograms.
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academic.oup.com/bib.
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