Skip to main content
. 2022 Jul 25;23(5):bbac286. doi: 10.1093/bib/bbac286

Table 1.

Details of the methods for the differential state analysis of scRNA-seq data compared in this study

Pseudobulk methods Single-cell methods
Pseudobulk methods that require built-in normalization Pseudobulk methods that can be used with any normalization Mixed models accounting for subjects as a random effect Naïve methods that do not model subjects Methods that have the option to use latent variables to correct for batches, etc.
Method name DESeq2 edgeR Limma ROTS MAST_RE muscat_MM NEBULA-LN wilcoxon MAST LR negbinom poisson
Normalization Median of ratios TMM TMM + voom TMM + CPM + log2 No default (Log normalize) Log normalize Normalization factors from library sizes Log normalize Log normalize Log normalize Log normalize Log normalize
Statistical tests Negative binomial generalized linear model Negative binomial model + empirical Bayes procedure Linear model + empirical Bayes procedure Reproducibility optimized test statistic Two-part hurdle model with random effect for subject lme4 linear mixed model with voom weights Negative binomial mixed model Wilcoxon rank sum test Two-part hurdle model Logistic regression Negative binomial generalized linear model Poisson generalized linear model
R packages (normalization, test) DESeq2 edgeR edgeR, Limma edgeR, ROTS MAST muscat nebula Seurat Seurat, MAST Seurat Seurat Seurat
Filtering Nonexpressed genes Nonexpressed genes Nonexpressed genes Nonexpressed genes Number cells expressing gene < subjects Number cells expressing gene <20, Number cells in sample < 10 Genes with counts per cell <0.005 Nonexpressed genes Nonexpressed genes Nonexpressed genes Number cells expressing genes <3 Number cells expressing genes <3
Version 1.32.0 3.34.0 3.48.0 1.20.0 1.18.0 01-06-2000 01-01-2007 4.0.2 4.0.2 4.0.2 4.0.2 4.0.2
References [18] [17] [17, 19] [17, 20] [15] [6, 21, 22] [16] [23] [15, 23] [23] [23] [23]