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Abstract

The quantification of developmental potential is critical for determining developmental stages and identifying essential molecular
signatures in single-cell studies. Here, we present FitDevo, a novel method for inferring developmental potential using scRNA-seq
data. The main idea of FitDevo is first to generate sample-specific gene weight (SSGW) and then infer developmental potential by
calculating the correlation between SSGW and gene expression. SSGW is generated using a generalized linear model that combines
sample-specific information and gene weight learned from a training dataset covering scRNA-seq data of 17 previously published
datasets. We have rigorously validated FitDevo’s effectiveness using a testing dataset with scRNA-seq data from 28 existing datasets
and have also demonstrated its superiority over current methods. Furthermore, FitDevo’s broad application scope has been illustrated
using three practical scenarios: deconvolution analysis of epidermis, spatial transcriptomic data analysis of hearts and intestines, and
developmental potential analysis of breast cancer. The source code and related data are available at https://github.com/jumphone/
fitdevo.
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Introduction
Single-cell RNA sequencing (scRNA-seq) technology
is now widely used for deciphering cell molecular
activities [1, 2]. Meanwhile, computational approaches
are becoming more and more indispensable for taking
advantage of scRNA-seq data [3, 4]. In a single-cell study
of developmental biology, data analysis typically starts by
using well-established computational frameworks, such
as Seurat [5–8] and Scanpy [9], to preprocess data and
conduct dimension reduction [e.g. principal component

analysis (PCA), uniform manifold approximation and
projection (UMAP) and Monocle, etc.] [10–13], which
is then followed by determining the developmental
potential (DP) using prior information, such as known
marker genes [14, 15]. Identified marker genes, however,
are often not available when novel developmental
systems are investigated, thus encouraging researchers
to explore other accessible features that are correlated
with the developmental process, including RNA velocity
(e.g. Velocyto and Dynamo) [16, 17], principal component
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(PC) polarity (VECTOR) [18], network property (e.g.
SCENT and CCAT) [19, 20] and transcriptional diversity
(CytoTRACE) [21].

For RNA velocity and VECTOR, users must reanalyze
intronic reads and calculate over 100 PCs, respectively
[16, 18]. Those procedures are time-consuming, and
sometimes may not be possible because of the limitation
of sequencing platforms or the lack of captured cells.
Therefore, more convenient and independent methods
are urgently needed to infer the DP with scRNA-seq data.
By now, several methods are constructed without using
intronic reads or too many PCs. In 2017, Teschendorff
et al. proposed a method named SCENT which uses
the entropy of cell’s transcriptome in the context of
a given network to estimate DP [19]. In 2020, Gulati
et al. reported that a cell’s transcriptional diversity
(the number of detected genes) is positively correlated
with the cell’s DP and therefore built a method named
CytoTRACE [21]. In addition, the authors also showed
that using sample-specific information (sample-specific
signatures correlated with transcriptional diversity) can
significantly improve the performance of inferring DP.
In the same year, Teschendorff et al. published an ultra-
fast method named CCAT [20]. In the study of CCAT, the
authors find that the correlation (Pearson Correlation
Coefficient, PCC) between gene expression and gene’s
network degree is an approximate estimate, but not
equivalent, of cell entropy. Therefore, they use the net-
work degree as gene weight (GW), and use the correlation
between GW and gene expression to represent the
cell’s DP. CCAT is shown to have better performance
than previously published methods, including SCENT
[19], CytoTRACE [21], scEnergy (in the package named
scEpath) [22], StemID [23], cmEntropy [24] and SLICE [25].
In summary, calculating the correlation between GW and
gene expression is an effective way to infer DP. However,
CCAT does not use sample-specific information, and
the network degree may not be the best choice for
determining GW.

To evaluate the performance of different methods
in inferring DP, people need to know the correct
developmental order of cells. In the study of CytoTRACE,
the authors introduce two types of differentiation labels:
timepoint label and phenotype (cell type) label [21]. The
timepoint label is objective and has been widely used
to indicate the correct developmental order, whereas
phenotype label is often subjective due to the artificial
labeling of phenotype (cell type). In the study of CCAT,
to conduct a discrimination test, the authors only keep
cells with starting and ending labels [20]. The benchmark
dataset of CCAT is reliable in testing the performance of
different methods, but may not be suitable for being des-
ignated as training dataset because it does not have cells
in the transition phase. What’s more, existing methods
(e.g. SCENT, CCAT, CytoTRACE, etc.) are shown to have
good performance in their benchmark datasets [19–21].
However, it is still unclear whether those methods
meet the requirement of practical scenarios, such as

deconvolution analysis (in silico flow cytometry) [26, 27],
spatial transcriptomic data analysis [28, 29] and cancer
cell’s DP analysis [30, 31].

Here, we present FitDevo, a novel method for inferring
DP using scRNA-seq data. The main idea of FitDevo is
first to generate sample-specific gene weight (SSGW) and
then infer DP by calculating the PCC between SSGW and
gene expression. SSGW is generated using a generalized
linear model (GLM), which combines sample-specific
information and GW. In this study, GW is learned from
17 samples having a timepoint label (training dataset,
collected by the study of CytoTRACE). In this study, the
term ‘sample’ indicates the constructed sample that
contains all scRNA-seq data of a previously published
dataset. We test the performance of FitDevo using 28
samples (testing dataset, collected by the study of CCAT)
and show that FitDevo outperforms previous methods.
Furthermore, we prepare three practical scenarios
that users may encounter when conducting single-cell
developmental studies, including deconvolution analysis
of epidermis, spatial transcriptomic data analysis of
heart and intestine and DP analysis of breast cancer.
After applying FitDevo, CCAT and CytoTRACE to those
three practical scenarios, FitDevo achieves the best
performance. FitDevo is implemented in R. Source code
and benchmark datasets of this study are available at
https://github.com/jumphone/fitdevo.

Results
The generation of GW
The overall study design of the computational frame-
work and applications is summarized schematically in
Figure 1. The first step of this study is the generation
of GW. According to the study of CCAT, defining a cell’s
DP as the correlation between GW and gene expres-
sion can achieve promising performance in their bench-
mark dataset [20]. The authors of CCAT define GW as
a gene network degree. However, existing networks are
not designed for inferring a cell’s DP, which may restrict
the performance of CCAT. Here, to accurately infer cell’s
DP, we propose a supervised workflow for generating
GW (Figure 2A). Firstly, we download scRNA-seq data col-
lected by the authors of CytoTRACE [21] and build a train-
ing dataset that only contains samples with a timepoint
label (Supplementary Table 1 and Material and Meth-
ods). In total, our training dataset includes 17 samples
(in this study, the term ‘sample’ indicates the constructed
sample that contains all scRNA-seq data of a previously
published dataset) and covers a wide range of devel-
opmental scenarios (Supplementary Table 1). Secondly,
for each gene in each sample (genes expressed in < 9
samples are removed), we calculate a PCC between the
gene’s expression and the reverse order of timepoint
label. In this step, we build a PCC matrix having 14 717
rows (genes) and 17 columns (samples). Thirdly, to reduce
the variance of different genes’ PCCs, we calculate stan-
dardized PCCs for each gene by dividing the root-mean-
square (RMS) (Figure 2A). Finally, we define our GW as
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Figure 1. The overall study design of the computational framework and applications. For details about this study, refer to the Results and the Material
and Methods sections.

the averaged standardized PCC of all 17 samples. In total,
we get GW of 14 717 genes. The GW value of a gene is
supposed to represent its contribution to DP. For instance,
NANOG is a well-known marker for embryonic stem cells
[32] and has a high GW value (0.516). Another case in
point is ENO2, also known as the neuron-specific enolase,
which is a marker for mature neuron cells [33] and has
a low GW value (−0.309). In the following study, the
term ‘GW’ indicates the GW generated by our supervised
workflow except otherwise stated.

Two characteristics of GW are shown in Figure 2B. First,
GW is positively correlated (PCC = 0.305) with standard-
ized PCC. Because GW is defined as the average of stan-
dardized PCCs, there is no wonder that they are positively
correlated. However, the correlation value is significantly
higher than that of randomly generated PCC matrices
(ranging from 0.254 to 0.262, 1000 times) (Figure 2C), indi-
cating that, for each gene, different samples tend to have
similar correlation values between gene’s expression and
the reverse order of timepoint label. Second, most values
of GW are larger than 0. We notice that the percentage of
positive values in GW (77%) is significantly higher than
that of randomly generated PCC matrices (ranging from
48% to 51%, 1000 times) (Figure 2C), which is consistent
with the study of CytoTRACE to some extent [21]. The
authors of the CytoTRACE study found that the number
of detected genes is positively correlated with the cell’s
DP, implying that most genes’ expression values tend
to be positively correlated with the reverse order of the
timepoint label.

Following the study of CCAT [20], we define a cell’s
DP as the correlation (PCC) between GW and gene
expression. In addition, as performed by the study of
CytoTRACE [21], we calculate the rank correlation (Spear-
man Correlation Coefficient, SCC) between inferred DP
and the reverse order of timepoint label to evaluate the
performance of different methods. After applying GW to
our training dataset, GW is shown to have significantly
higher SCCs than CCAT (average SCC of GW: 0.634,
CCAT: 0.501, P-value = 0.002) (Figure 2D), demonstrating
the effectiveness of GW in the training dataset. In

addition, when building the training dataset, we have
removed a zebrafish sample due to the limited number
of homologous genes between zebrafish and mammals
(Material and Methods). Nevertheless, we can still apply
GW to that zebrafish sample, and get a positive SCC
(0.228), indicating the versatility of GW. Considering all
17 samples in our training dataset are directly derived
from the study of CytoTRACE, we would like to check
the necessity and sufficiency of each sample. To check
the necessity of each sample, we remove samples one-
by-one and generate 17 sets of GW. The average SCCs
of those 17 sets of GW range from 0.580 to 0.642
(Supplementary Figure 1), suggesting that removing
either of the 17 samples will not strongly affect the
performance. To check the sufficiency of each sample,
we use individual samples one-by-one to generate 17
sets of GW. The average SCCs of those 17 sets of GW
range from −0.065 to 0.497 (Supplementary Figure 2),
suggesting that using one single sample cannot achieve
acceptable performance. Finally, we randomly remove
1–15 samples to test the robustness of GW. We find that
using no <13 samples can achieve a pretty high average
SCC (around 0.63), demonstrating that training samples
are almost saturated and the performance of GW won’t
be dramatically affected by removing a small number
(<5) of training samples (Supplementary Figure 3). And
notably, even the quality of the training datasets (e.g.
sequencing depth, gene coverage, etc.) has been observed
to be different in various sequencing platforms, we find
that the performance of GW is not significantly affected.

The discovery of binarized gene weight (BGW)
As shown in Figure 2D, GW only has a slightly higher
average SCC (0.634) than CytoTRACE (0.601). In Cyto-
TRACE, two types of information are used to infer a cell’s
DP, including gene number (GN) and sample-specific
information. Considering that the sample-specific
information can significantly improve its performance
[20, 21], we directly compare using GW with using GN
alone. In the training dataset, GN shows a much lower
average SCC (0.377) than GW (0.634). What’s more, when
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Figure 2. The generation of GW and the discovery of BGW. (A) The workflow of generating GW. ‘PCC’ stands for Pearson Correlation Coefficient. ‘RMS’
stands for Root-Mean-Square that is calculated by using the ‘scale’ function in R. In this study, the term ‘sample’ indicates the constructed sample that
contains all scRNA-seq data of a previously published dataset. (B) The scatter plot describing the relationship between GW values and standardized
PCCs. For each gene, we build two vectors. The first vector (y axis) has 17 elements that are the standardized PCCs of 17 training samples, whereas the
second vector (x axis) has 17 elements sharing the same value (the GW value of the given gene). The upper dot-line, middle line and lower dot-line are
the 97.5%, 50% and 2.5% quintiles of standardized PCCs, respectively. The color on the scatter plot indicates the density of points, whereas the upper
gray panel shows the density plot of GW values. (C) Two characteristics of GW. We calculate 1000 random GW sets by randomly generating 1000 PCC
matrices. The gray areas represent the distribution of statistics of the random GW sets, whereas the red arrows highlight the statistics of the real GW
set. (D) The comparison results using training dataset. ‘GN’ means that we define DP as the number of detected genes. ‘GN (GW > 0)’ and ‘GN (GW ≤ 0)’
mean that we define DP as the number of detected genes with positive GW and negative GW (there is no GW that is equal to 0), respectively.

separately using the number of genes with positive
and negative GW, we get relatively higher (0.436) and
nearly zero (0.012) average SCCs, respectively (Figure 2D).
Although using the number of genes with positive GW
can achieve a higher average SCC (0.436) than GN (0.377),
it is still not as good as GW (0.634), implying that using
genes with positive GW alone is insufficient to infer cell’s
DP accurately. To simultaneously use the information of
genes with positive and negative GW, we replace GW with
the binarized value of GW (defined as BGW) (threshold is
0) and apply BGW to our training dataset. Interestingly,
BGW is shown to have an even higher average SCC (0.647)
than GW (0.634) (Figure 2D), suggesting that using the
binarized value of GW, rather than continuous value,
is enough for inferring DP. In addition, we have tested
a list of thresholds (e.g. −0.3, 0, 0.3, etc.) to generate
BGW, and setting the threshold at 0 achieves the best
performance (Supplementary Figure 4). Besides, in our
training dataset, most samples (14 out of 17) are mouse

samples, driving us to test the performance of BGW in
human samples. Therefore, we download scRNA-seq
data from Human Cell Landscape (HCL) and organize
the data into a matrix that contains expression profiles
of 1336 cell types with fetal and adult labels (Material
and Methods) [34]. As shown in Supplementary Figures 5
and 6, fetal cell types have significantly higher inferred
DP than adult cell types (P-value<2.2×10−16), validating
the effectiveness of BGW in human samples. In addition,
we have also found that BGW is positively correlated with
gene network degree and gene conservation rate, which
is shown in Supplementary Figure 5.

The calculation of SSGW and the validation of
FitDevo
According to the study of CytoTRACE, sample-specific
information can significantly improve the performance
of inferring DP [21]. We therefore build a workflow to cal-
culate SSGW (Figure 3A) and evaluate its performance.
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Firstly, we use a well-established computational frame-
work named Seurat [5–8] to preprocess data and conduct
PCA. Next, we calculate the correlation between gene
expression and the top 50 (default number in Seurat)
PCs to build a gene-PC correlation matrix. Then, we use
a general linear model (GLM) to predict BGW based on
the gene-PC correlation matrix (Figure 3A). Finally, we
define SSGW as the sum of BGW and predicted BGW
(pBGW) (we use an example to illustrate the difference
between BGW and pBGW, see Supplementary Figure 7).
To demonstrate the usefulness of SSGW, we apply SSGW
to our training dataset. As shown in Figure 3B, SSGW has
a higher average SCC than BGW in 14 out of 17 samples,
and the SCCs of SSGW (average SCC: 0.669) are signifi-
cantly higher than that of BGW (0.647) (P-value = 0.002).
For example, in a mouse sample of embryonic stem
cells [35], the DP inferred by SSGW is more positively
correlated with the reverse order of timepoint label than
that of BGW (SSGW:0.891, BGW:0.846). The above results
indicate that SSGW can further improve the performance
of BGW. It is worth noting that SSGW is designed for data
optimization: SSGW is defined as ‘BGW + pBGW’ rather
than ‘pBGW’ alone, because the performance of using
pBGW alone can be influenced by the insufficient num-
ber of used PCs (Supplementary Figures 8 and 18). After
applying top 3, 5, 10 and 50 PCs to generate pBGW and
SSGW, we find that the average SCCs of pBGW range from
0.615 to 0.683, whereas the average SCCs of SSGW range
from 0.658 to 0.669, suggesting that the performance of
SSGW is more independent of the number of used PCs
than pBGW.

In the following study, we name the method of using
SSGW as FitDevo. The performance of FitDevo is vali-
dated by using a testing dataset that contains 28 samples
collected by the study of CCAT [20] (Supplementary Table
1 and Material and Methods). Notably, this testing dataset
only contains cells with starting and ending labels,
which is different from our training dataset. Of those 28
samples, 10 samples are already covered by the training
dataset, whereas 18 samples are not. Here, we separately
present the results of 10 overlapped samples and 18 novel
samples. As shown in Figure 3C and D, FitDevo shows
the highest average SCC among all used methods in 10
overlapped samples (0.753 against 0.007–0.741) and 18
novel samples (0.660 against 0.126–0.641) (after param-
eter tuning of CCAT and CytoTRACE, FitDevo still shows
the best performance, see Supplementary Figure 9).
In addition, we notice that FitDevo has significantly
higher SCCs than BGW in novel samples (P-value = 0.019)
(Supplementary Figure 10), indicating that the use of
sample-specific information can further improve the
performance in novel developmental scenarios. Con-
sidering the testing dataset only has cells with starting
and ending labels, following the study of CCAT [20], we
also use the area under the curve (AUC) to measure
the performance. In Supplementary Figure 11, FitDevo
consistently shows the highest averaged AUC among all
used methods in 10 overlapped samples (0.942 against

0.501–0.934) and 18 novel samples (0.923 against 0.570–
0.911). The study of CCAT has already shown that CCAT
outperforms other published methods [20], and we also
find that FitDevo outperforms those published methods
(Supplementary Figure 8). Furthermore, we make a
computational scalability evaluation and show that
FitDevo can achieve high performance with a relatively
high computational speed (Supplementary Figure 12).

FitDevo facilitates tissue-specific deconvolution
analysis
Since cells can be classified into different developmental
stages based on the inferred DP, the accurate inference
of the cell’s DP is essential for deconvolution analysis in
developmental studies. Here, we collect both scRNA-seq
and bulk expression data from human epidermal studies.
The study of scRNA-seq data contains samples of human
epidermal tissues, but does not have a timepoint label
[36]. The study of bulk data contains samples derived
from a time-course epidermal regeneration experiment
(from day0 to day7) [37]. Because the single-cell study
does not provide a cell type label [36], we reanalyze the
scRNA-seq data and annotate cells using markers pro-
vided by the original research (e.g. KRT14, KRT5, TP63, etc.)
(Figure 4A). As shown in Figure 4B, the inferred DP of Fit-
Devo and CCAT shares a similar pattern with the pseudo
time order inferred by the original study (BAS.I and BAS.II
have higher DP than others), whereas the inferred DP of
CytoTRACE shows a different pattern (BAS.III and BAS.IV
have higher DP than others). It suggests that FitDevo and
CCAT may be more suitable for analyzing epidermal dif-
ferentiation than CytoTRACE. However, since the pseudo
time order of the original study is predicted using the
computational method, we still need to use the timepoint
label of bulk data to further evaluate the performance.

To use bulk data’s timepoint label, we first assign all
epidermal cells of scRNA-seq data into 10 bins based
on the inferred DP (bin0 to bin9, bin9 has the highest
DP). Next, we use CIBERSORTx [27] to estimate each bin’s
percentage in each bulk sample (Figure 4C). Because bins
with large serial numbers (e.g. bin9) have higher DP than
bins with small serial numbers (e.g. bin0), there should
be a strong positive correlation (bin’s PCC) between the
estimated percentage and the reverse order of timepoint
label when the bin’s serial number is large (e.g. bin9).
Then, we calculate the correlation (global PCC) between
the bin’s serial number and the bin’s PCC, and use the
global PCC to evaluate the final performance of dif-
ferent methods. As shown in Figure 4D, FitDevo gets a
higher global PCC (0.711) than CCAT (0.672) and Cyto-
TRACE (0.414), suggesting the outperformance of FitDevo
in deconvolution analysis of the epidermis (using SCC
shows similar result, see Supplementary Figure 13). In
addition, we notice that the outcome of CIBERSORTx may
depend on a lot of adjustable parameters, and therefore
apply a correlation-based method to conduct deconvolu-
tion analysis. FitDevo consistently shows the best perfor-
mance (Supplementary Figure 14).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac293#supplementary-data
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Figure 3. The calculation of SSGW and the validation of FitDevo. (A) The workflow of calculating SSGW. ‘X’ stands for the gene-PC correlation matrix.
‘glm’ stands for the generalized linear model. ‘pred’ stands for the ‘predict’. (B) The difference between SSGW’s SCCs and BGW’s SCCs. On the line
chart, the upper dot-line, middle line and lower dot-line are the 75%, 50% and 25% quantile of the inferred DP (PCC between GW and gene expression),
respectively. (C) and (D) show the comparison results using overlapped (overlapped with training dataset) and novel testing samples, respectively. We
name the method of using SSGW as FitDevo. We only compare FitDevo with CCAT and CytoTRACE as they have better performance than other methods
[20, 21]. Considering the testing dataset only has cells with starting and ending labels, following the study of CCAT, we also use the AUC to measure the
performance (Supplementary Figure 11).

Inferring DP with spatial transcriptomic data by
FitDevo
In spatial RNA-seq data, several adjacent cells are
defined as a spot and sequenced together, which brings
difficulties in inferring DP. To test the performance
of inferring DP in spatial data, we download spatial
RNA-seq data from studies of chicken hearts [28] and
human intestines [29]. In the study of chicken heart, the
authors have generated spatial data of chicken heart
at four time points (D4, D7, D10 and D14) (Figure 5A).
They identified a signature, IRX4, for labeling immature
myocardial cells that should have higher DP than others
[28]. First, we apply FitDevo, CCAT and CytoTRACE to
the spatial RNA-seq data of chicken hearts. FitDevo
gets the highest correlation (SCC and PCC) between
inferred DP and the reverse order of timepoint label
(SCC of FitDevo: 0.431, CCAT: 0.302, CytoTRACE: 0.122)
(Figure 5A). Then, we test the difference of inferred DP
between IRX4 positive and negative spots and find that
FitDevo shows the most significant difference in all
four time points (positive spots have higher DP than

negative spots) (for other markers and time points, see
Supplementary Figure 15). For example, in the sample
of D14, the P-value of FitDevo is <2.2 × 10−16, which
is much smaller than that of CCAT (8.3 × 10−7) and
CytoTRACE (0.768) (Figure 5B). Furthermore, we calculate
the correlation between IRX4’s expression and inferred
DP. As shown in Figure 5C, in all four time points, FitDevo
achieves the highest correlation value. In the study
of human intestines, the authors have collected eight
samples from different locations of the intestine [29]
(Figure 6A and Supplementary Figure 16). As shown in
Figure 6B, in all eight samples, FitDevo gets the highest
correlation between the inferred DP and a well-known
marker of intestinal stem cells (LGR5 [38, 39]). Taken
together, the above results indicate the high effectiveness
of FitDevo in inferring DP using spatial RNA-seq data.

The DP analysis of cancerous tissue
Cancer tissues are revealed as heterogeneous popula-
tions with different developmental origins and distinct
functions in tumor progression. Here, we would like to
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Figure 4. The deconvolution analysis of epidermis. (A) The UMAP and violin plot of human epidermal cells. On the UMAP, ‘BAS’, ‘SPN’, ‘GRN’ and ‘MEL’
stand for basal cells, spinous cells, granular cells and melanocytes, respectively. All marker genes and cell types are selected and annotated based
on the original research [36]. (B) The pseudo time inferred by the original research and the DP inferred by FitDevo, CCAT and CytoTRACE. (C) The
workflow of conducting deconvolution analysis using CIBERSORTx. First, we infer cells’ DP using the scRNA-seq data and assign cells into 10 bins based
on the inferred DP. Then, we use CIBERSORTx to estimate the percentage of each bin in each bulk sample. In addition, we notice that the outcome
of CIBERSORTx may depend on a lot of adjustable parameters, and therefore apply a correlation-based method to conduct deconvolution analysis
(Supplementary Figure 14). (D) The results of deconvolution analysis. We use ‘scale’ function in R to get the standardized percentage for each column. In
this plot, the ‘reverse time’ stands for the reverse order of timepoint label. The result of correlation-based method is shown in Supplementary Figure 14.
‘D0 to D7’ stands for ‘Day0 to Day7’.

check whether FitDevo can be applied to quantify the
DP of cells in breast cancer tissues. Firstly, we download
scRNA-seq data of 20 breast cancer patients from a
recent atlas study conducted by Wu et al. [40]. Then, we
apply FitDevo to all cancer cells (labeled by the original
study) to infer the cell’s DP (Figure 7A). Finally, we assign
cancer cells into 10 bins based on the inferred DP (bin0
to bin9, bin9 has the highest DP). As shown in Figure 7B,
bins with large serial numbers (bin7, bin8 and bin9) have
significantly more cells expressing well-known cancer
stemness markers (CD44, PROM1 and ALDH1A1) [41–44]
than those bins with small serial numbers (bin0, bin1 and
bin2), suggesting that FitDevo can quantify cancer cell’s
DP in breast cancer. Results of more stemness markers
are shown in Supplementary Figure 17.

Because the study of scRNA-seq data does not have
patient survival information, we use the bulk data in
the cancer genome atlas (TCGA) to testify the clinical
relevance of the DP inferred by FitDevo (Figure 7A).

Firstly, we download well-organized bulk expression
data and survival information of 1061 TCGA breast
cancer patients from the UCSC Xena database (http://
xena.ucsc.edu/). We notice that the range of patient’s
age is quite wide (ranging from 26 to 90 years old).
Considering the mechanisms of tumor progression in
very young and old patients may be different, we only
choose patients with middle age (>49 and < 67 years
old). Next, we use scRNA-seq data to identify each bin’s
signatures, and use the patient’s bulk expression data
to calculate each bin’s signature score. For each bin,
the signature score is defined as the average expression
of the bin’s signatures. Finally, we calculate each bin’s
hazard ratio (HR) using each bin’s signature score (set
median as the threshold). As shown in Figure 7A, the
bin’s serial number is positively correlated with the
bin’s HR (PCC: 0.716), and bin9 achieves the highest
HR (1.616), demonstrating that bins with large serial
numbers tend to have higher clinical relevance than bins

http://xena.ucsc.edu/
http://xena.ucsc.edu/
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Figure 5. The spatial transcriptomic data analysis of hearts. (A) The data analysis workflow with the spatial transcriptomic data of chicken hearts. (B)
The expression value of IRX4, a marker for immature myocardial cells [28] and the DP, inferred by FitDevo, CCAT and CytoTRACE, on the spatial image.
Results of other markers and developmental stages are provided in Supplementary Figure 15. (C) The correlation between the expression of IRX4 and
the DP inferred by FitDevo, CCAT and CytoTRACE. ‘D4’, ‘D7’, ‘D10’ and ‘D14’ stand for ‘Day4’, ‘Day7’, ‘Day10’ and ‘Day14’, respectively.

with small serial number. It should be noticed that bulk
tumor samples may contain normal breast stem cell, or
other stem cells, thus bin9 may not strictly represent
the breast cancer stem cell. Detailed cell-type-specific
information and experimental characterization are
needed to tease them out. Furthermore, after applying
CCAT and CytoTRACE to this practical scenario, we only
get smaller correlation values (CCAT: 0.692, CytoTRACE:
0.637) and lower bin9’s HRs (CCAT: 1.389, CytoTRACE:
1.227), suggesting the superiority of FitDevo in identifying
clinically important signatures. In addition, we have also
used SCC to measure the correlation between the bin’s
serial number and the bin’s HR, and find that FitDevo
(0.660) and CCAT (0.672) consistently have higher SCCs
than that of CytoTRACE (0.563). Although CCAT shows a
slightly higher SCC than that of FitDevo, the average of
SCC and PCC of FitDevo (0.688) is still higher than that of
CCAT (0.680).

What’s more, we have conducted gene set enrich-
ment analysis using signatures of FitDevo’s bin9, and
get four biological processes, including ‘DNA repair’,
‘negative regulation of protein modification process’,
‘alcohol metabolic process’ and ‘chromatin organization’
(Figure 7C). Many signatures in those four biological

processes have been associated with breast cancer’s
‘stemness’ by previous studies, such as EGFR [45], BMP4
[46], DNMT1 [47], ALDH1A3 [48] and TCF7L1 [49]. For
instance, Choi et al. reported that BMP4 can enhance the
epithelial–mesenchymal transition and the cancer stem
cell properties of breast cancer cells [46]. Another case in
point is DNMT1 that plays an important role in mammary
and cancer stem cell maintenance and tumorigenesis
[47]. The above results imply the possibility of using
FitDevo to identify potential therapeutic targets of breast
cancer, which still needs further investigation.

Discussion
As we know, the biggest concern of the supervised
method is about its effectiveness in dealing with novel
situations. Therefore, we have conducted a series of
analyses to illustrate the versatility of our method. Firstly,
we have found that, for each gene, different samples
tend to have similar correlation values between gene
expression and the reverse order of timepoint label,
suggesting that our GW may be a general template for
a wide range of developmental scenarios. Secondly, we
have shown that BGW can identify fetal cell types from
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Figure 6. The spatial transcriptomic data analysis of intestines. (A) The expression value of LGR5, a marker for intestinal stem cells [38, 39], and
the DP, inferred by FitDevo, CCAT and CytoTRACE, on the spatial image of the human intestine (A2). The results of other samples are shown in
Supplementary Figure 16. We use the white dot-line to indicate the potential layer of intestinal stem cells. (B) The correlation between the expression
of LGR5 and the DP inferred by FitDevo, CCAT and CytoTRACE. ‘RowMin’ stands for the minimum value of each row.

adult cell types in HCL, suggesting the effectiveness
of BGW in dealing with human samples that are
not covered by our training dataset. Thirdly, we have
used different benchmark datasets to train and test
FitDevo separately and have shown that FitDevo has the
best performance among current methods, indicating
FitDevo’s superiority in dealing with novel samples.
Fourthly, we have illustrated that FitDevo is able to infer
the spot’s DP using spatial RNA-seq data, which further
demonstrates its broad application scope. Finally, we
have applied FitDevo to quantify tumor cell DP in breast
cancer and have shown the high clinical relevance of
signatures identified by using FitDevo. As such, we have
rigorously validated the effectiveness of our method in
dealing with novel situations.

The main innovative points of FitDevo are in its algo-
rithm design: the generation of GW, the discovery of BGW
and the calculation of SSGW. The underlying rationales
of its high performance can be summarized into two
points: (i) Unlike previous methods, FitDevo is a super-
vised method. The effective learning process is the key
point for accurately inferring the DP. The high perfor-
mance of GW and BGW in our testing dataset indicates

the effectiveness of our learning process. In addition, we
use the novel tissues (not covered by training dataset)
in HCL to show that our BGW is able to identify fetal
cell types from adult cell types, which further illustrates
the effectiveness of our learning process. (ii) The use of
sample-specific information further improves the perfor-
mance of FitDevo. In addition to use the testing dataset
to show the contribution of sample-specific information,
we have also explored the difference between BGW and
pBGW. By investigating a heart sample in HCL database,
we find that pBGW is more effective in identifying fetal
cells from adult cells, suggesting that pBGW is more
suitable for accurately inferring the DP. However, the
computational speed of FitDevo is not the best among
all tested methods, and we will try to improve its effi-
ciency in future studies. In addition, current FitDevo
is only focusing on the one-dimensional problem, and
people can combine FitDevo with other trajectory tools
to investigate the multiple branches of developmental
trajectories, which still requires further exploration and
validation.

Besides algorithm design, the construction of bench-
mark datasets is also crucial for bioinformatics studies.
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Figure 7. The developmental potential analysis of breast cancer. (A) The workflow of DP analysis with the scRNA-seq and TCGA bulk data of breast
cancer. Data from patients with middle age (>49 and < 67 years old) are selected to analyze. We use DESeq2 to identify the signatures of each bin. We
use DESeq2 [52] to identify signatures of each bin in the scRNA-seq data of breast cancer. Because the computational efficiency of DESeq2 is low when
dealing with tens of thousands of single cells, we generate pseudo-bulk samples to improve the efficiency. Firstly, we merge all 24 489 cancer cells into
2450 pseudo-bulk samples by aggregating the read counts of neighbor cells. For each bin, we get 245 pseudo-bulk samples (around 10 cells per pseudo-
bulk sample). Then, we use DESeq2 to get signatures of each bin by comparing the expression values between the given bin and other bins. The cutoffs
of foldchange, adjusted P-value and baseMean are 2, 0.05 and 0.5, respectively. Considering the generation of pseudo-bulk sample requires a random
seed when defining neighbor cells, we therefore use three different random seeds to generate three sets of signatures and define the bin’s signatures
as the intersection of those three sets. (B) The percentage of the marker gene (CD44, PROM1 and ALDH1A1) positive cells in each bin of FitDevo. ‘ALL’
indicates the percentage of all cells in each bin. The sum of each column is 100. ‘Triple’ stands for triple-positive (CD44, PROM1 and ALDH1A1) cells.
Results of other markers are provided in Supplementary Figure 17. (C) The gene set (GO BO) enrichment results with the signatures of FitDevo’s bin9.
‘GO’ and ‘BP’ stand for gene ontology and biological process, respectively. We only show the terms covering > 50 signatures of FitDevo’s bin9.

In this study, our training and testing datasets are derived
from previous studies [20, 21], which eliminates the pos-
sibility of ‘cherry-picking’. We have also provided three
practical scenarios to demonstrate the practical value
of DP inferred by the in silico method. In this study,
we aim to provide novel ideas about the computational
algorithm design and have used a series of benchmarks
and practical scenarios to validate the effectiveness of
our algorithm design. By using FitDevo, we are trying to
get novel biological discoveries (e.g. novel signatures in
bin9 of breast cancer), but the novel biological discoveries
are required to be validated by using abundant data and
solid experiments, which is a major focus of our future
plan. In addition, the sample size of our training dataset
is relatively small (17 samples). To solve this problem,
we have decided to collect more scRNA-seq data with
timepoint label, which is a part of our ongoing single-cell
database study. Once we get a large number of training

samples, more powerful machine learning methods (e.g.
deep learning) can be used to generate BGW with higher
accuracy. Nevertheless, FitDevo has already shown a bet-
ter performance than previous methods in both stan-
dard benchmarks and practical scenarios using current
training dataset. As such, FitDevo should be of great use
for accelerating both computational and experimental
studies relating to the inference of DP.

Material and methods
Data preparation
Training and testing datasets

We build our training and testing datasets based on
the studies of CytoTRACE [21] and CCAT [20], respec-
tively (Supplementary Table 1). When building our train-
ing dataset, we directly get the well-organized expression
matrices and differentiation labels from the authors of



FitDevo infers single-cell developmental potential | 11

CytoTRACE. Considering timepoint label is objective and
has been widely used to indicate the correct develop-
mental order, our training dataset only contains samples
with a timepoint label. In the paper of CytoTRACE, the
authors totally describe 17 samples with a timepoint
label. In those 17 samples, there are 16 mammal samples
(mouse, human and macaque) and 1 zebrafish sample.
Considering zebrafish and mammals only share a lim-
ited number of homologous genes, the zebrafish sample
is not included in our training dataset. Meanwhile, we
notice that a mouse hematopoietic sample (regarded as a
sample with phenotype label in the study of CytoTRACE)
has both phenotype and timepoint labels [50], and we
therefore add this sample into our training dataset. In
total, our training dataset contains 17 samples. When
building our testing dataset, we first obtain a supple-
mentary table, containing the identifier of each testing
sample, from the author of CCAT. Then, according to that
table, we search and download the expression matrices
and differentiation labels one-by-one. Finally, following
the study of CCAT, we only keep cells with starting and
ending labels. In total, our testing dataset contains 28
samples. In those 28 samples, 10 samples are covered
by our training dataset, whereas the others are novel
samples. To enhance the reproducibility of our study,
the expression matrices and differentiation labels of our
training and testing datasets are well-organized and pre-
sented at https://github.com/jumphone/fitdevo.

Datasets in practical scenarios

Seurat [5–8] is used to process the expression matrix of
scRNA-seq data. We use the option named ‘LogNormalize’
to normalize gene expression value, use the ‘vst’ method
in the function named ‘FindVariableFeatures’ to find
most variable genes, use the function named ‘ScaleData’
to standardize expression value, use the function named
‘RunPCA’ to conduct PCA analysis and use the function
named ‘RunUMAP’ to generate UMAP. The scRNA-
seq data of human epidermis are generated from five
samples (41), and we use BEER [51] to remove batch
effect and generate the final UMAP. Because the single-
cell epidermal study does not provide cell type label, we
cluster cells by using the function named ‘FindClusters’
and annotate each cluster using markers provided by
the original study (e.g. KRT14, KRT5, TP63, etc.) (41).
The bulk data of human epidermis are microarray data
[37], and we use the function called ‘rma’ in ‘affy’
package to process the raw data. When analyzing the
spatial RNA-seq data (Visium spatial platform) of chicken
hearts and human intestines, spatial-related functions
in Seurat [8] are used to simultaneously process the
expression data and image data. The function named
‘SpatialFeaturePlot’ is used to visualize features on the
spatial image. The processed bulk RNA-seq data (FPKM)
of TCGA breast cancer patients are downloaded from
https://xenabrowser.net/datapages/ (cohort: GDC TCGA
Breast Cancer). There are 1217 samples, and 1061 of them
have survival information. For scRNA-seq data of HCL,

cells sharing same cell types are merged together to get
the expression matrix of 1336 cell types.

Competing methods
CCAT is downloaded from https://github.com/aet21/
SCENT. We use the function named ‘CompCCAT’ to
run CCAT. Because CCAT does not include a normal-
ization step, we use ‘LogNormalize’ function in Seurat
to normalize data. The network named ‘net17Jan16’,
provided by the authors of CCAT, is used to calculate
gene network degree. The source code of CytoTRACE
is downloaded from https://cytotrace.stanford.edu/. We
use the function named ‘CytoTRACE’ to run CytoTRACE
with default parameters. Because CytoTRACE has a
normalization step, we directly use read count matrix
as the input of CytoTRACE. We follow the documents
of SCENT (https://github.com/aet21/SCENT), StemID
(https://github.com/dgrun/StemID), cmEntropy (https://
github.com/skannan4/cm-entropy-score), and SLICE
(https://research.cchmc.org/pbge/slice.html) to install
and apply them to our datasets.

The usage of FitDevo
A detailed instruction of FitDevo is provided at https://
github.com/jumphone/fitdevo. We use the 18 novel
samples in our testing dataset to test the influence of PC
numbers (ranging from 3 to 70) (Supplementary Figure 18).
In addition, we make a summarization table to summa-
rize the advantage and disadvantage of FitDevo and other
methods (Supplementary Figure 19).

Statistical analysis
In this study, statistical analysis is done by using
functions and packages implemented in R. PCC and
SCC are used to quantify the correlation level and
are calculated by using ‘cor’. Student’s t-test is used
to evaluate the difference and is calculated by using
‘t.test’. ‘DESeq2’ package in R is used to identify signa-
tures [52]. AUC is calculated by using ‘pROC’ package.
Survival analysis is conducted by using ‘survival’ and
‘survminer’ packages. Gene set enrichment is done
by using ‘clusterProfiler’ package [53]. Heatmaps are
generated by using ‘ComplexHeatmap’ package [54].

Key points

• We proposed a method, named FitDevo, for accurately
inferring single-cell DP using SSGW.

• FitDevo was validated using a testing dataset with
scRNA-seq data from 28 previously published datasets,
and FitDevo was shown to outperform previous methods.

• To enhance the reproducibility of our study, the expres-
sion matrices and differentiation labels of our training
and testing datasets were well-organized and presented
at https://github.com/jumphone/fitdevo.

• The practical value of FitDevo was illustrated using three
practical scenarios, including deconvolution analysis of
epidermis, spatial transcriptomic data analysis of hearts
and intestines and DP analysis of breast cancer.

https://github.com/jumphone/fitdevo
https://xenabrowser.net/datapages/
https://github.com/aet21/SCENT
https://github.com/aet21/SCENT
https://cytotrace.stanford.edu/
https://github.com/aet21/SCENT
https://github.com/dgrun/StemID
https://github.com/skannan4/cm-entropy-score
https://github.com/skannan4/cm-entropy-score
https://research.cchmc.org/pbge/slice.html
https://github.com/jumphone/fitdevo
https://github.com/jumphone/fitdevo
https://github.com/jumphone/fitdevo
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