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Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associ-

ated with repetitive mild head impacts characterized by perivascular

hyperphosphorylated tau (p-tau) in neurofibrillary tangles (NFTs)

and neurites in the depths of the neocortical sulci. In moderate to ad-

vanced CTE, NFTs accumulate in the hippocampus, potentially

overlapping neuroanatomically with primary age-related tauopathy

(PART), an age-related tauopathy characterized by Alzheimer

disease-like tau pathology in the hippocampus devoid of amyloid

plaques. We measured p-tau burden using positive-pixel counts on

immunohistochemically stained and neuroanatomically segmented

hippocampal tissue. Subjects with CTE had a higher total p-tau bur-

den than PART subjects in all sectors (p¼ 0.005). Within groups,

PART had significantly higher total p-tau burden in CA1/subiculum

compared to CA3 (p¼ 0.02) and CA4 (p¼ 0.01) and total p-tau bur-

den in CA2 trended higher than CA4 (p¼ 0.06). In CTE, total p-tau

burden in CA1/subiculum was significantly higher than in the den-

tate gyrus; and CA2 also trended higher than dentate gyrus

(p¼ 0.01, p¼ 0.06). When controlling for p-tau burden across the

entire hippocampus, CA3 and CA4 had significantly higher p-tau

burden in CTE than PART (p< 0.0001). These data demonstrate dif-

ferences in hippocampal p-tau burden and regional distribution in

CTE compared to PART that might be helpful in differential diagno-

sis and reveal insights into disease pathogenesis.
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INTRODUCTION
Abnormal accumulation of hyperphosphorylated tau

(p-tau) in the human brain is the key pathological feature of a
spectrum of conditions termed tauopathies (1). Alzheimer dis-
ease (AD) is a common secondary tauopathy characterized by
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comorbid amyloid-b pathology; other tauopathies include
chronic traumatic encephalopathy (CTE), which is associated
with exposure to repetitive head impacts, and an age-
associated tauopathy, primary age-related tauopathy (PART)
(2). While there are neuropathological features that enable de-
lineation of the tauopathies, overlaps in symptomatology, neu-
roanatomical vulnerability, cellular features, molecular
changes, and genetic risk are barriers to the identification of
specific pathogenetic pathways that might enable the develop-
ment of novel biomarkers and therapeutics. Understanding the
differential hippocampal neuroanatomical vulnerability to p-
tau pathology in PART and CTE has the potential to improve
diagnosis, provide mechanistic insights, and inform therapeu-
tic strategies (3).

The hippocampal formation, a component of the limbic
system, is a complex multifunctional brain region in the me-
dial aspect of the temporal lobe that has critical roles in learn-
ing, memory, and cognition (4). The hippocampal formation
consists of several histologically distinct and functionally spe-
cialized subfields, including the dentate gyrus, cornu ammonis
(CA), and subiculum. The subfields are selectively vulnerable
in different neurodegenerative tauopathies. For example, the
dentate gyrus is selectively involved in Pick disease, a 3
microtubule-binding domain (3R) dominant tauopathy; CA2
is involved in 4 microtubule-binding domain repeat (4R)-dom-
inant tauopathies, including progressive supranuclear palsy;
and CA1 involvement is predominant in AD, a combined 3R/
4R tauopathy (5–7). Recent refinements in neuropathological
criteria for PART and CTE have allowed clearer delineation
of these entities (8, 9), although both are reported to exhibit
high levels of phosphorylated tau (p-tau) in CA2 and other
hippocampal sectors (10–14).

The goal of this study was to compare the regional hip-
pocampal p-tau pathology in CTE and PART. To accomplish
this, we used age- and sex-matched cases from each entity, as
defined by recent neuropathological consensus criteria, and
segmented the hippocampus into subfields on digitized whole
slide images of immunohistochemically stained brain tissue
sections (9). We then deployed a quantitative positive pixel
burden measure of p-tau pathology that we previously found
to be highly predictive of clinical outcomes in PART (15). Us-
ing this computational approach to measure p-tau pathology
minimized bias and highlighted neuropathological-related dif-
ferences in p-tau neurofibrillary degeneration.

MATERIALS AND METHODS

Subjects
Postmortem human brain tissue was obtained from for-

mer American football players, following a comprehensive
neuropathological workup using the published NINDS-NIBIB
criteria for the diagnosis of CTE in 2021 and staged using the
McKee criteria which we found to be highly correlated with
exposure and symptomatology (9, 16, 17). Next-of-kin pro-
vided written consent for participation and brain donation.
IRB approval for brain donation was obtained through the
Boston University School of Medicine and VA Boston Health-
care System. CTE cases were selected based on the availabil-

ity of paraffin-embedded hippocampal sections at the level of
the lateral geniculate nucleus. PART cases were selected from
a collection derived from domestic and international brain
banks and were also taken at the level of the lateral geniculate
nucleus (15, 18). Neuropathological inclusion and exclusion
for PART cases have been detailed elsewhere (11, 18). The
PART cases were sex-matched to the CTE group but given
that PART is associated with aging and the CTE cases avail-
able were ascertained from younger donors, the samples could
not be individually age-matched. There was, however, no sta-
tistical difference between the average age of each group. All
PART subjects had a CERAD score of 0 (19) and a Braak
stage of 0–IV (20) to represent the full range of age-related tau
pathology.

Immunohistochemistry
Whole mount immunohistochemistry was performed as

previously described using the CP13 antisera, a generous gift
of Dr. Peter Davies (21). Formalin-fixed paraffin-embedded
tissue sections (5 lm in thickness) mounted on charged slides
were baked at 70�C and immunohistochemistry was per-
formed on a Leica Bond III (Leica Biosystems, Buffalo Grove,
IL) for all cases. Antigen retrieval was done using citric acid
buffer for 1 hour followed by primary antibody incubation for
40 minutes. Slides were stained for phospho-tau (AT8;
MN1020, Thermo Fisher Scientific, Waltham, MA). Because
the Leica bond III can only stain 30 slides per batch, each
batch included a case of severe AD, CERAD plaque score 2,
Braak stage VI to ensure uniform pixel staining intensity.

Segmentation of the Hippocampal Subfields
A hematoxylin and eosin slide counterstained with

Luxol fast blue (LH&E) was prepared using routine protocols
to assist in segmentation. All slides were scanned using an
Aperio CS2 Scanner (Leica Biosystems, Buffalo Grove, IL) at
20� magnification and digital analysis including segmenta-
tion of the subfields and pixel counting (see below) was done
using the ImageScope v12.3 software (Leica Biosystems).
Given that no validated standardized protocol exists for hippo-
campal segmentation on routine neuropathological staining,
we developed the following protocol to maximize uniformity
and reproducibility (Fig. 1). The subregions of the hippocam-
pus were defined based on cell morphology and density.
LH&E-stained hippocampal sections were scrutinized and
compared to an adjacent AT8-immunostained section. Then
segmentation was performed. The cornu ammonis 2 (CA2)
was first annotated with the medial and lateral boundaries
drawn encompassing the most compact region. The cornu
ammonis 4 (CA4) boundaries were drawn closing the opening
of the dentate and circling only cell bodies within the dentate
gyrus. The cornu ammonis 3 (CA3) was drawn as the area be-
tween CA4 and CA2. The cornu ammonis 1 (CA1) and subic-
ulum were combined (termed CA1/sub) and drawn from CA2
to the recess of the hippocampal fissure where a straight line
was drawn. The CA layers included in the annotation were the
stratum oriens, stratum pyramidale, stratum lucidum, stratum
radiatum, stratum lacunosum, and stratum moleculare ending
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at the hippocampal sulcus. The dentate gyrus was outlined
with the outer boundary at the hippocampal sulcus (following
blood vessels) and inner boundary in CA4 not including the
cell bodies.

Computer-Assisted Quantitative Assessment of
Hyperphosphorylated Tau (p-Tau) Burden

The Aperio positive pixel count algorithm (version 9)
was used to quantify p-tau burden (Fig. 1). The parameters of
the algorithm were defined by the user based on the intensity
of the signal in the positive control AD case run in each stain-
ing batch and the thresholds remained the same for each case.

The output values were low (proxy for delicate threads), me-
dium (proxy for dense/coarse threads), and high intensity
(proxy for neurofibrillary tangles [NFTs]) pixels. P-tau burden
was assessed in 2 ways. First, each p-tau positive pixel con-
tained in the subregion was divided by the total pixels (p-tau
positive and negative) contained in the subregion producing a
0-1 p-tau burden score (1 indicating the entire region was posi-
tive, and 0 no positive pixels). Second, we used the p-tau bur-
den score and divided it by the total p-tau positive pixels in the
entire hippocampus (CA1/subiculum, CA2, CA3, CA4, and
dentate) divided by the total pixels (p-tau positive and nega-
tive). This value represented a proportion of p-tau intensity. A
score greater than 1 indicated that the region had more total

FIGURE 1. Neuroanatomical segmentation strategy and p-tau burden quantification. (a) Schematic illustrating the hippocampal
subregions. (b) Representative Luxol fast blue-counterstained hematoxylin and eosin section (LH&E) from a control showing the
hippocampal subregions. (c) Example of a fully segmented hippocampal formation following application of the positive pixel
algorithm. (d) Example of quantification of the positive pixel count algorithm in CA2. (e) Higher-power images of CA2 are
shown at 4� (f, g) as well as 10� showing that the pixel thresholds capture intracellular tangles (red) threads and dots (orange
and yellow). The example case shown above had a diagnosis of PART.
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p-tau relative to the entire hippocampus, with the rational that
the relative proportion of p-tau could assist in differentiating
the 2 conditions when viewing a slide at a low magnification.

Statistical Analysis
Data were statistically analyzed and visualized using the

statistical software GraphPad Prism 8 (San Diego, CA). P-tau
burden across hippocampal subregions were compared within
PART and CTE groups using Kruskal-Wallis one-way analy-
sis of variance. The hippocampal subregional total p-tau bur-
den (modeled to consider p-tau burden in the entire
hippocampus) was compared in PART versus CTE using the
Mann-Whitney test. Statistical significance was defined as
a< 0.05 (2-tailed).

RESULTS

Overlapping Medial Temporal Lobe
Neurofibrillary Pathology in PART and
Advanced CTE

Neuropathologically, PART has NFTs predominantly in
the medial temporal lobe in the absence of or with sparse neu-
ritic b-amyloid pathology (Fig. 2). CTE displays patchy peri-
vascular p-tau pathology at the depths of the cortical sulci in
early disease stages and extends to include diffuse neurofibril-

lary p-tau pathology in the medial temporal lobe in more ad-
vanced stages (17, 21).

Selective Vulnerability of Hippocampal Regions
in PART and CTE

For the quantitative analyses, 32 neuropathologically
confirmed PART and 32 neuropathologically confirmed CTE
cases were included (Table). The overall median age at death
of the cohort was 72.5 years with a range of 25–84 years.
There was no significant difference between the average age
of each cohort and most of the cases in each cohort were be-
tween 66 and 85 years old (78.1% in PART, 65.6% for CTE).
All cases were male. Four PART cases were cognitively im-
paired, whereas 18 CTE cases had clinical evidence of cogni-
tive impairment. The average age of the CTE subjects with
cognitive impairment was 72.38 and 10 of those cases had a
CERAD score of 1. All the PART and 56.2% of the CTE
lacked neuritic plaques (CERAD 0). The remaining 40.6%
CTE cases had sparse neuritic plaques (CERAD A1). Nineteen
of the PART cases had a Braak NFT stage of I–II and 9 were
III–IV. Four cases in the PART group were designated Braak
0 with too few p-tau positive neural structures to categorize as
Braak I. Twenty-four of the CTE cases had a CTE stage of
III–IV and 8 were stage I–II.

CTE cases had significantly higher p-tau burden in the
hippocampus compared to PART cases across all comparisons

FIGURE 2. Selective vulnerability of the hippocampal formation in PART and CTE. (a) Whole mount hemibrain stained for p-tau
from a 92-year-old woman with PART showing significant p-tau burden confined to the medial temporal lobe with scant
neocortical p-tau (CP13 antisera). (b) A 67-year-old male professional football player with CTE stage 3 with low cortical p-tau
burden and scattered cortical lesions (see arrow).
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(Fig. 3), although there were unique subregion differences. In
PART, there was a significantly higher total p-tau burden in
CA1/subiculum compared to CA3 (p¼ 0.02) and CA4
(p¼ 0.01). Total p-tau burden trended higher in CA2 than
CA4 (p¼ 0.06). All other total p-tau burden comparisons
amongst subregions of the hippocampus in PART were not
different. In CTE, we saw that CA1/subiculum had signifi-
cantly higher total p-tau burden than dentate (p¼ 0.01). CA2
p-tau burden showed a trend toward higher total p-tau burden
compared to the dentate (p¼ 0.06). All other comparisons
amongst subregions of the hippocampus were not significantly
different in the CTE group. The data suggest regional differen-
ces in p-tau burden in each disease.

Differences in Regional Vulnerability between
PART and CTE

Finally, we examined differences in subfield regional
vulnerability using a model that accounted for the total p-tau
burden observed across the entire hippocampus (Fig. 4). We
observed that subfields CA3 and CA4 had significantly higher
p-tau burden in CTE compared to PART (p< 0.0001 in both
cases). PART cases had significantly higher total p-tau burden
in CA1 than CTE cases (p¼ 0.005). Total p-tau burden did not
differ in CA2 (p¼ 0.68) and dentate (p¼ 0.26) between
PART and CTE. The data suggest a distinctive regional signa-
ture when adjusting for the total burden across the entire hip-

pocampus, with relatively more p-tau in CA3 and CA4 in CTE
than in PART.

DISCUSSION
The ability to differentiate ubiquitous aging-related

changes from preventable causes of injury has numerous
implications (22). This is exemplified by PART and CTE, two
tauopathies with both similar and divergent clinical and neuro-
pathological profiles (8, 9, 11, 14, 21, 23). In CTE, there is a
strong and independently replicated link with repetitive head
impacts (24, 25), and its pathological signatures have been ob-
served across the adult lifespan independent of age. By con-
trast, PART is observed in the brains of advanced age (26) and
has not been associated with a specific environmental expo-
sure. To our knowledge, this study is the first to directly com-
pare the selective p-tau deposition in the hippocampus in these
two tauopathies. Our findings suggest that there is a divergent
pattern of regional vulnerability in the hippocampus that dis-
tinguishes CTE from PART.

Previous work has highlighted regional p-tau deposition
in the hippocampus in PART (11–13) and CTE (10, 14). Jel-
linger (12) reported that PART diverges from AD in that there
are more p-tau positive neurons in CA2 than CA1. We also ob-
served selective vulnerability of CA2 to p-tau pathology in
PART (11). However, a small quantitative study by Zhang and
colleagues found that CA1 and subiculum had the highest p-
tau burden in PART, followed by entorhinal cortex, CA2/3
(which were combined and possibly obscured potential differ-
ences), CA4, and the dentate (13). Selective vulnerability of
CA2 has also been reported in CTE (11, 14). Furthermore, a
high p-tau burden across the entire hippocampal formation ex-
cept for the dentate gyrus has been observed in CTE (14).
Here, our quantitative analysis showed a striking vulnerability
of the CA1/subiculum and CA2 for p-tau pathology in CTE
compared to other subfields. Neuroimaging studies in sus-
pected CTE cases have reported the CA1/subiculum to be
highly atrophic (27). Our analysis revealed a significantly
higher p-tau burden in the CA1/subiculum in PART compared
to CTE, and a higher p-tau burden in CA3 and CA4 in CTE,
which is consistent with recent work (9).

Although there are similarities, these findings suggest
that the hippocampal p-tau pathology in CTE and PART can
be differentiated neuropathologically, a distinction that has
been previously questioned (28). These data also provide
more information about the diagnostic features of CTE in ad-
dition to the pathognomonic lesion. These selective patterns of
hippocampal involvement in PART and CTE might be useful
in the interpretation of neuroimaging studies, for example tau
PET tracers that are increasingly being applied to CTE (29). It
is unclear why CA1/subiculum and CA2 are selectively vul-
nerable in PART and CTE and understanding the cellular or
molecular factors native to these neuronal populations might
be helpful in understanding the pathogenesis of these
tauopathies.

There are several limitations to this study. The sample
size was limited due to the inherent restrictions of autopsy
studies. The PART subjects were from a collection derived
from many brain banks, while the CTE cases all came from

TABLE. Patient Data

PART CTE Total

Clinical features

Sample size, n 32 32 64

Average age of death (range) 74 (55–82) 70 (25–84)

25–45 (%) 0 (0) 4 (12.5) 4 (6.5)

46–65 (%) 7 (21.9) 7 (21.9) 14 (22.6)

66–85 (%) 25 (78.1) 21 (65.6) 46 (74.2)

Sex, male (%) 32 (100) 32 (100) 64

Cognitively impaired* (%) 4 (12.5) 18 (60) 22 (35.5)

Neuropathological features

CERAD score (%)†

No neuritic plaques (C0) 32 (100) 18 (56.2) 50 (79.4)

Sparse (C1) 0 (0) 13 (40.6) 13 (20.6)

Moderate (C2) 0 (0) 0 (0) 0 (0)

Frequent (C3) 0 (0) 0 (0) 0 (0)

Braak stage (%)

0 4 (12.5) NA —

I–II 19 (59.4) NA —

III–IV 9 (28.1) NA —

V–VI 0 (0) NA —

CTE stage (%)

I–II NA 8 (25) —

III–IV NA 24 (75) —

NA, not applicable.
*Two CTE cases have unknown cognitive status.
†

One CTE case has unknown CERAD stage.
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one center, which might have introduced bias. The dataset was
restricted to males due to the less frequent reporting of CTE in
females. Future studies including female CTE brain donors,
such as have been reported in the context of intimate partner
violence (30, 31), are needed. Segmentation of the hippocam-
pus is also challenging on routine paraffin sections. Special-
ized techniques (e.g., thick sections), could assist in providing
the highest degree of confidence in accurate segmentation. In
addition, there are numerous co-pathologies that occur along-
side CTE and PART, which might have influenced our find-
ings; additional multidimensional analyses will be helpful to
address this. Specifically, some CTE cases had neuritic pla-
ques, implying an additional neuropathological diagnosis of
AD neuropathologic change. It could also be inferred that
some of the older CTE cases had age-related tau deposition
and the results of this study should be viewed in this context.
To overcome these issues, we anticipate that the use of digital
approaches including AI and machine learning will enable

larger and more granular, quantitative analyses of multiple
brain regions, including the entorhinal cortex and amygdala,
to understand the differences between pathological and age-
related neurodegenerative features of both these conditions.
Nevertheless, these data show striking and robust differences
between CTE and PART in the hippocampus that are consis-
tent with previous publications.

In summary, in a cohort of age- and sex-matched PART
and CTE subjects, we demonstrated a divergent pattern of re-
gional p-tau vulnerability in the hippocampal subfields. These
data represent a deep analysis of two unique tauopathies and
might assist those practicing diagnostic neuropathology as
well as provide insights into their differing pathogeneses.
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