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ABSTRACT Bacterial and viral infections (exacerbations) are particularly problematic in those with
underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary
disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of
the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this
patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens
and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium
and specific factors found in the airway lumen. Granulocyte-macrophage colony-stimulating factor,
interleukin-10, transforming growth factor-p, surfactant proteins and signalling via the CD200 receptor,
for example, all raise the threshold above which airway macrophages can be activated. We highlight that
following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to
baseline and may leave airway macrophages more restrained than they were at the outset. This excessive
restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix.
This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage
responsiveness to allow earlier bacterial recognition.
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Introduction

Airway macrophages are 95% pure in the healthy murine and human lung. These sentinel cells must select
contradictory responses which are dependent on the requirement of the tissue at that time; such as
inflammation to pathogens, or anti-inflammatory responses when clearing self-apoptotic cells and
components of extracellular matrix turnover and degradation. Their function is exquisitely tuned by the
airspace microenvironment which is rich in soluble (granulocyte-macrophage colony-stimulating factor
(GM-CSEF), interleukin (IL)-10, transforming growth factor (TGF)-B) and surfactant proteins and
contact-dependent (CD200) immune-regulatory signals. Macrophages colonise the airways shortly after
birth, originating from fetal monocytes [1], and are particularly long-lived compared to those from other
sites [2, 3]. Due to current technical limitations in the ability to trace lineage, it is difficult to ascertain the
percentage of turnover of tissue-resident macrophages. In addition, alveolar macrophages have a
remarkable capacity for self-renewal, and it is suggested that they are replenished from circulating
monocytes following their ablation by severe irradiation [4-7] or infection [8]. Alveolar macrophages are
also unusual in that they express a unique repertoire of receptors [9]. These include CD11c, which is an
integrin that is otherwise only expressed on mucosal macrophages such as those found in the gut [10],
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SiglecF, which has only previously been described on eosinophils [11] and Axl, which is not found on
other macrophage populations [12].

The activation of alveolar macrophages must be tightly regulated to prevent unwanted immune responses
to innocuous inhaled antigens, and this is mediated by both soluble factors in the lumen of the airways
and through cell-cell interactions [9]. The dominant cell-cell interactions in the healthy airways are
between alveolar macrophages and respiratory epithelial cells, including the bronchial epithelium as well as
type I and type II alveolar epithelial cells, which can exert a range of immunomodulatory stimuli over
macrophages. The human bronchial epithelial cell line BEAS-2B restricts alveolar macrophage responses in
vitro through both cell contact- and soluble factor-mediated interactions [13] and exemplifies the complex
crosstalk between the epithelium and luminal macrophages.

Negative regulators of alveolar macrophages

Alveolar macrophages are highly regulated to prevent unwanted inflammatory responses to innocuous
inhaled antigens. This is achieved through soluble factors such as IL-10 and surfactant proteins A and D,
as well as physical interactions between alveolar macrophages and the respiratory epithelium via CD200R
and owvP6-tethered TGF-p. Interactions between hyaluronan and CD44 may also inhibit Toll-like receptor
(TLR) signalling through the induction of the TLR-negative regulators A20 and IL-1 receptor-associated
kinase (IRAK)-M.

Little is known about airway macrophage heterogeneity or regulation following inflammatory resolution.
Macrophages are significantly depleted during influenza infection. Replenishment occurs from the
interstitial lung macrophage pool rather than from blood monocytes [14]. Though this return to immune
homeostasis leaves an airway macrophage population essentially phenotypically identical to those at the
beginning (CD11c", CD11b intermediate, F4/80", Siglec F"), their responsiveness is significantly
dampened [15]. We referred to this inhibition as “innate imprinting” in 2004 [16], but more recently the
concept of “trained immunity” has been proposed, whereby monocytes acquire a tolerant phenotype after
stimulation that is associated with a switch from oxidative metabolism to glycolysis [17, 18]. Interestingly,
this refractory airway macrophage response exists across a wide spectrum of pathologies (post-viral,
allergic, fibrotic, efc.) in mice and humans, which implies that it is not driven by the “antigen” or immune
response to it, but by specific features of the repairing lung.

Infection risk

The spectrum of pathologies in which we identified a refractory macrophage phenotype is coincidentally
associated with recurring bacterial complications (exacerbations) leading to increased sepsis, hospitalisation,
morbidity and death, and accounts for some of the most prevalent diseases in the world today. These
patients account for a large fraction of overall cost, and most of the unmet need remains at the severe end
of the disease spectrum. Despite the diversity in pathology, the bacterial species responsible for exacerbation
of disease are remarkably reproducible, suggesting a common underlying deficient process(es). This is
irrespective of the initial causative agent or the immune response induced.

Respiratory viral infection often causes bacterial complications that increase disease morbidity [8, 19, 20].
Bacterial species such as Streptococcus pneumoniae, Staphylococcus aureus and Haemophilus influenzae
normally exist commensally within the lung, but can act as opportunistic pathogens during viral infection
[21]. These secondary bacterial infections are sometimes termed superinfections, and are a leading cause
of increased mortality following viral infection. During the 1918 “Spanish flu” and 1957 “Asian flu”
pandemics, up to 20% of patients infected with influenza also harboured a secondary bacterial infection
[22]. Post-mortem examinations revealed that during the 1918 pandemic >93% of deaths were associated
with bacterial complications [23]. Similarly, a retrospective study of medical records from various United
States army bases described an onset of bacterial infection 7-10 days after initial influenza infection in
~20% of patients [24]. In addition, during the 2009 HIN1 pandemic, secondary bacterial infections
accounted for 20-41% of deaths [25, 26]. While not as prevalent during seasonal influenza, bacterial
co-infections still account for 40% of all respiratory viral infections resulting in hospitalisation [27].

Various animal infection models have confirmed the link between respiratory virus infection and
susceptibility to secondary bacterial superinfection, but the complex underlying mechanisms remain
poorly understood [28, 29]. It is likely that physical damage to the lung itself, long-lasting changes to
innate immunity and synergistic interactions between virally infected host cells and bacteria all play a role
in susceptibility to bacterial infection.

Mechanisms of susceptibility to infections

Whatever the mechanism following severe inflammation, negative interactions between alveolar
macrophages and the airway epithelium increase. CD200R on alveolar macrophages and IL-10 are
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increased, both of which provide strong inhibitory signals [30, 31] and lead to heightened susceptibility to
bacterial infections [32].

Overproduction of interferon-y during viral infection impairs the phagocytosis of bacteria by alveolar
macrophages, and reduces their expression of the bacterial scavenger receptor MARCO (macrophage
receptor with collagenous structure) [33], and similarly the presence of type I interferons generated during
influenza infection can limit antibacterial immunity [34]. Alveolar macrophage TLR responses are
restricted for several months following the resolution of influenza, highlighted by reduced nuclear
translocation of nuclear-factor (NF)-kB in response to the TLR5 ligand flagellin [15]. Depleting and
regenerating the resident macrophage pool after viral infection restores antibacterial immunity [15],
highlighting the importance of alveolar macrophages in the susceptibility to bacterial complications.
Asthmatic patients can also suffer from bacterial complications, and increased susceptibility to bacterial
infection is observed in mouse models of allergic airway disease. As with viral infections, this is associated
with increased expression of the negative regulators such as CD200R on alveolar macrophages [35] (fig. 1).

Another contributing generic process relevant to all pulmonary inflammatory conditions is the need to
remove apoptotic cells before they undergo secondary necrosis. The Tyro3, AXL and MerTK (TAM)
receptor tyrosine kinase family [36] recognise phosphatidylserine on apoptotic cells via the bridging
molecules protein S and growth arrest specific (GAS)-6 proteins. TAM receptors are expressed on
phagocytic cells [36, 37] and inhibit inflammation during apoptotic cell efferocytosis via a negative
feedback loop involving activation of suppressor of cytokine signalling-1 and -3 that in turn inhibit
cytokine and Toll-like receptor signalling pathways [38-40]. Although inhibition of innate inflammation is
essential to prevent autoimmunity during apoptotic cell clearance, prolonged engagement of TAM
receptors may cause a state of unresponsiveness in antigen presenting cells required to clear pathogenic
micro-organisms. To support this hypothesis, elevated GAS-6 plasma levels are observed in patients with
severe sepsis [41, 42], and MerTK is elevated on monocytes from patients with septic shock, and is linked
to an adverse outcome [43]. The consequences of these observations remain as yet unexplored. We have
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FIGURE 1 Resident alveolar macrophages in health (green) are influenced by the airway microenvironment to express a
unique phenotype high in regulatory receptors that prevent responses to innocuous antigens. During inflammation
airway macrophages are depleted and may be replaced in resolution by recruited monocytes that differentiate to
macrophages and adapt to the airspace microenvironment (yellow). Generic processes include removal of extracellular
matrix and efferocytosis of apoptotic cells. GAS: growth arrest specific protein; PS: phosphatidylserine; CCR: chemokine
receptor.
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FIGURE 2 Axl is constitutively expressed on murine airway macrophages (M®). Granulocyte-macrophage
colony-stimulating factor (GM-CSF), polyinosinic-polycytidylic acid (polyIC) or interferon (IFN)-o. upregulate Axl
expression to mediate efferocytosis of apoptotic cells. Axl signalling induces suppressor of cytokine signalling-1 and -3
which impair tumour necrosis factor receptor associated factor (TRAF)3, TRAF6 and Mal, required for Toll-like
receptor-4 signalling. This prevents autoimmunity to self-proteins. However, ongoing removal of apoptotic cells causes
macrophage insensitivity to subsequent bacterial infection.

published several novel concepts that relate to TAM receptor function in the lung: 1) in health AXL
is exclusively expressed on airway macrophages due to the presence of high levels of GM-CSF;
2) AXL-lacking human monocyte-derived macrophages (MDMs) can be induced to express AXL in the
presence of GM-CSF; and 3) unlike AXL, the bridging molecule GAS-6 is exclusively expressed in
macrophage-CSF-driven MDMs. It thus appears that macrophages either express AXL (and efferocytose
apoptotic cells) or produce GAS-6 (and assist other cells in efferocytosis). This suggests a previously
undiscovered functional dichotomy in macrophage subsets and that only those expressing AXL may be
blunted in their response to bacteria (fig. 2).

Another process common to all lung inflammatory conditions is the alteration of the matrisome through
damage and repair of extracellular matrix. Similar to apoptotic cell efferocytosis, clearance of self-matrix
requires processes to prevent inadvertent autoimmune reactions. Damaged extracellular matrix provides
cues to surrounding cells to drive a protective response. In a dysregulated state, the excess production of a
pathological matrix is likely to contribute to chronic inflammatory conditions, aberrant airway
macrophage training and subsequent bacterial exacerbation.

Concluding remarks

There is a real possibility that generic treatments may alleviate exacerbations common in inflammatory
lung conditions. An over-regulated airway macrophage will not be able to alert the presence of a
pathogenic micro-organism quickly. Thus, replacement of the initial mediators produced may be one
strategy. This is supported by our observation that instillation of the neutrophil chemoattractant KC
(keratinocyte chemoattractant) restores neutrophil recruitment and reduces bacterial load in allergic mice
by several logs [35]. Alternatively, the fact that airway macrophages are so long lived presents a problem in
that if they are over-regulated they will not be able to respond to a pathogenic micro-organism quickly.
This suggests that macrophage replenishment may also be beneficial, i.e. repopulating the pool with less
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regulated macrophages so that they are more responsive and able to sense more readily a pathogenic
micro-organism. However, this assumes that the defect or alteration is within the macrophage, but we
believe the change is in the repaired epithelium/matrix and so any incoming macrophage would be
similarly affected. Finally, extracellular matrix components, such as hyaluronan, dominates the airspace
matrisome in a number of situations. This hyaluronan can be complexed to other self-proteins and, in
some cases, assume the functions of that adopted protein. For example, the hyaluronan complexes with
heavy chains derived from inter-o inhibitor catalysed by TNF-stimulated gene 6 [44]. The complex of
inter-o. inhibitor with heavy chains functions to limit complement-mediated phagocytosis [45] and so it is
tempting to speculate that this function is transferred to hyaluronan during inflammation. Discovering the
molecular mechanisms of macrophage adaptation in the airspaces has the potential to open entirely new
avenues amenable to therapeutic intervention that target the host.
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