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Greenhouse gas emissions from wetlands are significantly promoted by global nitrogen input for
changing the rate of soil carbon and nitrogen cycling, and are substantially affected by soil labile carbon
and nitrogen conversely. However, the driving mechanism by which soil labile carbon and nitrogen affect
greenhouse gas emissions from wetland ecosystems under global nitrogen input is not well understood.
Working out the driving factor of nitrogen input on greenhouse gas emissions fromwetlands is critical to
reducing global warming from nitrogen input. Thus, we synthesized 72 published studies (2144 paired
observations) of greenhouse gas fluxes and soil labile compounds of carbon and nitrogen (ammonium,
nitrate, dissolved organic carbon, soil microbial biomass nitrogen and carbon), to understand the effects
of labile carbon and nitrogen on greenhouse gas emissions under global nitrogen input. Across the data
set, nitrogen input significantly promoted carbon dioxide, methane and nitrous oxide emissions from
wetlands. In particular, at lower nitrogen rates (<100 kg ha�1$yr�1) and with added ammonium com-
pounds, freshwater wetland significantly promoted carbon dioxide and methane emissions. Peatland
was the largest nitrous oxide source under these conditions. This meta-analysis also revealed that ni-
trogen input stimulated dissolved organic carbon, ammonium, nitrate, microbial biomass carbon and
microbial biomass nitrogen accumulation in the wetland ecosystem. The variation-partitioning analysis
and structural equation model were used to analyze the relationship between the greenhouse gas and
labile carbon and nitrogen further. These results revealed that dissolved organic carbon (DOC) is the
primary factor driving greenhouse gas emission from wetlands under global nitrogen input, whereas
microbial biomass carbon (MBC) more directly affects greenhouse gas emission than other labile carbon
and nitrogen.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, nitrogen input into ecosystems has
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substantially increased at the global scale due to atmospheric
deposition, agricultural input, fossil fuel combustion, and other
anthropogenic activities [1e3]. Not only can nitrogen be a limiting
nutrient [4], but it can also be a pollutant in many terrestrial eco-
systems [5e7]. The wetland ecosystem is the key ecotone between
terrestrial and aquatic ecosystems, and nitrogen can move from
wetland ecosystems to rivers or lakes, leading to water eutrophi-
cation [5,8,9]. The nitrogen trapped by wetlands could also impact
element cycling by changing the soil physicochemical properties
[10,11] and microbial communities [12,13]. The soil physicochem-
ical properties (e.g. temperature, moisture content, electrical con-
ductivity and so on) and microbial communities usually determine
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Acronyms and symbols

DOC dissolved organic carbon
SMD the standardized mean difference
MBC microbial biomass carbon
CIs the confidence intervals
CNKI China National Knowledge Infrastructure
kg kilogram
N2O nitrous oxide
ha Hectares
CH4 methane
yr year
CO2 carbon dioxide
NH4

þ/NH4
þeN ammonium

cm centimeter
NO3

�/NO3
�eN nitrate

C the control treatment
NH4NO3 ammonium nitrate
E the experimental treatment
QM the between-group heterogeneity
d the effect size

N the number of observations
v variance
SEM The structural equation model
XC the mean values of an index in the control treatment
X2 Chi-Square value
XE the mean values of an index in the experimental

treatment
df degree of freedom
NC the sample size of an index in the control treatment
GFI high goodness-of-fit index
NE the sample size of an index in the experimental

treatment
CFI the comparative fit index
SC the standard deviation of an index in the control

treatment
RMSEA the low root means square errors of approximation
SE the standard deviation of an index in the

experimental treatment
MBN microbial biomass carbon
wi weight factor
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the availability of soil carbon and nitrogen [14], thereby deter-
mining the biomass of vegetation communities [15]. Therefore, soil
carbon and nitrogen availability play key roles in the substance
cycling of wetland ecosystems. Nitrogen input typically alters the
soil nitrogen and carbon availability by affecting labile carbon and
nitrogen, including ammonium, nitrate [16,17], dissolved organic
carbon [2], soil microbial biomass carbon and nitrogen [18]. How-
ever, how the availability of soil carbon and nitrogen in wetlands
responds to nitrogen input is often controversial [19e21]. For
example, Song et al. [21] pointed that DOC content reduced and
ammonium augmented with the increase of nitrogen input rate,
but Cui et al. [19] revealed an opposite trend in the peatlands of
Northeast China. Song et al. [22] found that nitrogen addition
increased nitrate content and MBC, which results contrast with the
study of Kastovska et al. [20] and Song et al. [2]. Therefore,
exploring the influence of nitrogen enrichment on the availability
of soil labile carbon and nitrogen is critically important to under-
standing substance cycling inwetland ecosystems on a global scale.

Although previous studies have verified that terrestrial ecosys-
tems act a sink/source of greenhouse gases and have quantitatively
analyzed the effect of nitrogen input on greenhouse gas emissions
[23e25], these results might not accurately describe the effect of
wetlands on greenhouse gas emissions because the wetland
ecosystem is very different from other types of terrestrial ecosys-
tems [9]. The wetland ecosystem is located at the junction of the
terrestrial-aquatic interlaced zone, and has some special charac-
teristics, including frequent changes in water level, great redox
fluctuation from highly anaerobic to highly aerobic conditions, and
interception of partial nitrogen runoff [26e28]. These characteris-
tics lead to the distinct greenhouse gas emission regulars from
wetlands compared to other types of terrestrial ecosystems.
Although wetlands occupy only 6%e8% of the earth’s land surface,
they are an important sink/source of greenhouse gas [29,30]. For
example, the IPCC [31] reported that methane emissions from
wetlands account for an estimated 63% of all natural methane
emissions. Thus, understanding how nitrogen input affects green-
house gas emissions from wetlands is critically important when
attempting to understand the future global climate.

Nitrogen input could not only influence greenhouse gas emis-
sions from wetland ecosystems by altering the soil nitrogen and
2

carbon cycling [23,32], but could also affect soil microbes due to its
influences on soil nitrogen and carbon availability, thereby affecting
greenhouse gas emissions [33e35]. Thus, revealing the interactions
between soil labile carbon and nitrogen and greenhouse gases will
contribute to understanding the mechanism of greenhouse gas
emissions fromwetland ecosystems to the atmosphere, resulting in
elucidating the contribution of wetland ecosystems to the global
greenhouse effect. However, previous studies found that soil labile
carbon and nitrogen showed both positive and negative effects on
greenhouse gas emissions from wetland ecosystems under global
nitrogen input [36e39]. The wetland types and climates also
affected the relationships between soil labile carbon and nitrogen
and greenhouse gas under nitrogen input. Therefore, the mecha-
nism of soil labile carbon and nitrogen on greenhouse gas emis-
sions from wetland ecosystems is complicated and currently not
well understood under nitrogen input at global scales. Thus, there is
a desperate need to clarify the driving mechanism of labile carbon
and nitrogen on greenhouse gas emission under global nitrogen
input by combining the conclusions from various studies using a
meta-analysis.

To untangle these controversial and uncertain issues, we used a
meta-analysis to analyze studies on nitrogen input experiments
published prior to September 2019. We used soil carbon dioxide
emissions, methane emissions, nitrous oxide emissions, soil labile
carbon and nitrogen, and soil microbial biomass to address the
following questions: (i) How do the soil greenhouse gas emissions
from wetland ecosystems fluctuate as a result of varying nitrogen
input in terms of rates, compounds and environmental factors? (ii)
What key factors affect soil greenhouse gas emissions as a response
to nitrogen input? (iii) What is the major effect of labile compounds
on greenhouse gas emissions from wetland ecosystems under
global nitrogen input?

2. Materials and method

2.1. Meta data collection

The IPCC [40] indicated that the increase of nitrogen deposition
could promote greenhouse gas emissions into the atmosphere, and
Liu et al. [41] and Deng et al. [23] utilized meta-analyses to reveal
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the effects of nitrogen input on soil greenhouse gas from terrestrial
systems. However, these studies had some limitations and con-
straints. First, these studies covered a variety of terrestrial ecosys-
tems. However, the wetland ecosystem is the key ecotone between
terrestrial and aquatic ecosystems, and therefore its response to
nitrogen input is greatly different from that of other types of
terrestrial ecosystems. A new meta-analytical study needs to
consider the particular pattern of greenhouse gas emissions in
wetland ecosystems. Second, Liu et al. [41] and Tian et al. [64]
utilized global models to determine the emission patterns and ef-
fects of different factor prior to 2009. Deng et al. [23] focused on the
relationships between greenhouse gas emissions and carbon pools.
Thus, we conducted a literature search in September 2019 for all
papers published over the past decade on greenhouse gases, ni-
trogen input and wetland ecosystems. This literature search used
the Web of Science, ScienceDirect, Google Scholar, and CNKI. The
keywords for the online search were: (wetland OR peatland OR
marsh OR bog OR fen) AND (nitrogen input OR nitrogen addition OR
nitrogen enrichment OR nitrogen deposition OR nitrogen fertilizer)
AND (greenhouse gas OR nitrous oxide OR N2O ORmethane OR CH4
OR carbon dioxide OR CO2). The selected studies satisfied the
following criteria: (a) the control experiment was defined by no
nitrogen input or atmospheric nitrogen deposition; (b) non-
repetitive experimental studies were excluded; (c) non-
experimental studies (such as modeling, meta-analyses, and re-
views) were excluded.

Based on these criteria, approximately 2144 paired observations
(Fig. 1) from 72 papers published from 2009 to 2019 on greenhouse
gas emissions (including CO2, CH4 and N2O) and labile carbon or
nitrogen (mainly including dissolved organic carbon, ammonium,
nitrate, microbial biomass carbon and nitrogen) under global ni-
trogen input were selected for data collection. Data sources
included tables, text, figures and supplementary files. The data in
figures were collected using the GetData 2.25 software (http://
getdata-graph-digitizer.com/). If the key data was not directly ac-
quired, we obtained the data from the authors. The rate of nitrogen
input, types of nitrogen input, climate, nitrogen compounds, and
types of wetlands were collected. The labile compounds were also
collected, including ammonium, nitrate, dissolved organic carbon,
soil microbial biomass carbon, and soil microbial biomass nitrogen
Fig. 1. Geographical distribu
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from the surface soil (the depth ranges from 0 to 20 cm). We
summarized the latitude and longitude of each site from the pub-
lished papers, or we extracted these data online (http://www.
worldclim.org/; Table. A1).

2.2. Meta data analysis

The effect size was calculated using Hedges’ d, which is a
measurement of the unbiased standardized mean difference be-
tween the control (C) and experimental (E) means [42,43]. The
equations for the effect size (d) and variance (v) are listed as in the
follows:

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNE � 1ÞðSEÞ2 þ ðNC � 1ÞðSCÞ2

NE þ NC � 2

s
(1)

d¼ðXE � XCÞ
S

�
�
1� 3

4ðNC þ NE � 2Þ � 1

�
(2)

v¼NC þ NE

NCNE
þ d2

2ðNC þ NEÞ
(3)

XC and XE represent the mean values of an index in the control
and experimental treatment, respectively. NC and NE represent the
sample size of an index in the control and experimental treatment,
respectively. SC and SE represent the standard deviation of an index
in control and the experimental treatment, respectively.

The weight factor (wi) was determined as follow:

wi ¼ 1
=v (4)

The d of the control and nitrogen input treatments were used to
calculate the weighted standardized mean difference (SMD):

SMD¼
Pn

i¼1widiPn
i¼1wi

(5)

where n refers to the number of observations, wi and di represent
the weight factor and effect size of observation i, respectively.

The calculated mean effect size considered the confidence
tion of the study sites.

http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/
http://www.worldclim.org/
http://www.worldclim.org/
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intervals (Bootstrap CIs, bootstrapping by 4999 iterations). If the
Bootstrap CIs had nonzero overlap, the nitrogen input significantly
influenced the greenhouse gas emissions [44,45]. Negative
Hedges’d values indicated that the nitrogen input decreased the
greenhouse gas emissions. Positive Hedges’d values indicated that
nitrogen input increased the greenhouse gas emissions [46].

To test the effects of nitrogen input on greenhouse gas emis-
sions, we categorized the nitrogen input treatments into four
groups: nitrogen input rates (0e50, 50e100, 100e200, 200e300,
>300 kg ha�1$yr�1), climate (alpine climate, temperate continental
climate, temperate marine climate, monsoon climate of medium
latitudes, subtropical monsoon climate, subtropical humid
climate), nitrogen compounds (NH4

þ, NO3
�, NH4NO3, organic nitro-

gen fertilizer) and type of wetland (freshwater marsh, alpine
wetland, estuary wetland, peatland, salt marsh). The data were
analyzed using a mixed-effects model [47]. There are random var-
iations in effect sizes among all the observations, whereas each
individual observation is weighted by the reciprocal of the mixed-
model variance [48,49]. If the between-group heterogeneity (QM)
test was smaller than 0.05, it indicates that significant differences
exist among the different groups. We tested the QM of CO2, CH4 and
N2O and the results are shown in Table .1. Meanwhile, we also
tested the QM of ammonium, nitrate, soil microbial biomass nitro-
gen, dissolved organic carbon and soil microbial biomass carbon
(Table. B1).

2.3. Publication bias

Publication bias means there is a higher possibility of publishing
highly positive or negative results or not reporting non-significant
effects [43]. We tested the publication bias for greenhouse gas
emissions using weighted histograms and a fail-safe number.
Weighted histograms consist of the effect sizes and weight of data
(Eq. (4)), rather than the frequency of effect size [50]. The fail-safe
number is substantially larger than 5 N þ 10 (N represent the
number of observations in this study), where 5 N þ 10 was defined
using the acceptable threshold in the literature. The results indicate
that the observations from this study can be treated as a reliable
estimate of the true effect [43,51]. Therefore, the results shown in
Fig. B1 indicate that there were no biases in the selected
publications.

2.4. Statistic analysis

All of the standardized mean differences, the between-group
heterogeneity, Bootstrap CIs and fail-safe number were counted
using MetaWin 2.1.3 software (http://www.metawinsoft.com/,
Sinauer Associates Inc., Sunderland, MA, USA). The figures were
Table 1
Results of statistical comparisons among groups for greenhouse gas.

Item CO2 CH4 N2O

QM p-value QM p-value QM p-value

Rate of nitrogen input 24.03 <0.001 13.94 <0.001 28.21 <0.001
Climate 37.52 <0.001 28.52 <0.001 31.18 <0.001
Nitrogen compounds 9.81 <0.05 30.29 <0.001 38.09 <0.001
Types of wetlands 29.00 <0.001 24.35 <0.001 43.01 <0.001

Notes: All data were grouped into five nitrogen input rates (0e50, 50e100,
100e200, 200e300, >300 kg ha�1$yr�1), six climate types (alpine climate,
temperate continental climate, temperate marine climate, monsoon climate of
medium latitudes, subtropical monsoon climate, subtropical humid climate), four
nitrogen compounds types (NH4

þ, NO3�, NH4NO3, organic nitrogen fertilizer) and five
wetlands types (freshwater marsh, alpine wetland, estuary wetland, peatland, salt
marsh). CO2 is carbon dioxide, CH4 is methane, and N2O is nitrous oxide. QM: het-
erogeneity in group cumulative effect sizes.
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constructed using OriginPro 2017 and R (3.6.1) software. The
variation-partitioning analysis was conducted using R (3.6.1) soft-
ware for the effects of soil labile carbon and nitrogen on greenhouse
gas emissions. The Pearson correlation analysis was performed
using SPSS 20.0 (IBM Corporation, Armonk, NY, USA) for indicating
the relationships between greenhouse gas and labile carbon and
nitrogen, where p values smaller than 0.05 are considered statis-
tically significant. The regression analysis was conducted using the
OriginPro 2017 software for the effect size of greenhouse gas
emission andmean annual precipitation, mean annual temperature
at the global level.

The structural equation model (SEM) could reveal the driving
factors and impacts of greenhouse gas emissions under nitrogen
input and be constructed using Amos (Version 21). Several tests
were used to determine the adequacy of model fitting, including
the X2 test (0.05 < p < 1.00, 0 � X2/df � 2), high goodness-of-fit
index (GFI, 0.9 < GFI < 1.0), the comparative fit index (CFI,
0.9 < CFI < 1.0), and the low root means square errors of approxi-
mation (RMSEA, < 0.05). The effect value and pathway of the model
were obtained after the model was constructed. The obtained test
results, including X2/df < 2, p > 0.05, GFI and CFI close to1, and
RMSEA <0.05, for the SEM (Fig. 7) indicated that the SEM could be
considered to be a perfect fit.

3. Results

3.1. Greenhouse gas emissions from wetland ecosystems under
nitrogen input

Across all observations, the overall standardized mean differ-
ence (SMD) of carbon dioxide (CO2), methane (CH4) and nitrous
oxide (N2O) were 1.41, 0.58 and 1.74, respectively (Fig. 2; Bootstrap
CIs of 1.24e1.57, 0.31 to 0.85, and 1.52 to 1.97, respectively), and
presented a significantly positive effect because the Bootstrap CIs
had nonzero overlap. Nitrogen input increased greenhouse gas
emissions for all types of wetlands, except for the Alpine wetland,
which had significantly decreased methane emission
(SMD ¼ �1.41, Bootstrap CIs ¼ �2.14 to �0.74). Compared to CO2
and CH4, all types of climate significantly and positively promoted
N2O emissions. Specially, the SMD of CO2 and CH4 were negative
under temperate continental climate. This suggested that nitrogen
input under temperate continental climate decreased CO2 and CH4
emissions in comparison to that no nitrogen addition in the
wetland.

Nitrogen input via NH4
þ and NH4NO3 significantly promoted

greenhouse gas emissions (Fig. 2). However, organic nitrogen fer-
tilizer significantly reduced CH4 emissions (SMD ¼ �0.76, Boot-
strap CIs ¼ �1.36 to �0.30). We also found that different nitrogen
input rates had a positive effect on the CO2 and N2O emissions in
wetlands ecosystem (SMD ¼ 0.069 to 2.32 in Bootstrap CIs).
Specially, the nitrogen input rate of 50e100 kg ha�1$yr�1 had the
largest impact on CO2 and N2O emissions among all nitrogen input
rates. Meanwhile, nitrogen input rate of 0e50 kg ha�1$yr�1

(SMD ¼ 1.16 in Bootstrap CIs) had the largest effect on CH4 emis-
sions among all nitrogen input rates. This suggested that lower
nitrogen input rates (<100 kg ha�1$yr�1) significantly promoted
greenhouse gas emissions.

3.2. Changes in soil labile carbon and nitrogen under nitrogen input
in wetland ecosystems

As illustrated in Fig. 3, the overall SMD of dissolved organic
carbon (DOC), ammonium (NH4

þeN), and nitrate (NO3
�eN) range

from 0.64 to 3.58 indicated that the nitrogen input augmented soil
labile carbon and nitrogen contents in wetland ecosystems. For all

http://www.metawinsoft.com/


Fig. 2. Standardized mean difference for greenhouse gases emissions from different
wetland environments under nitrogen inputs. The numbers in the figure represent the
number of case studies. A standardized mean difference >0 reveals a positive effect on
greenhouse gas emissions, whereas values < 0 reveal negative effects. Error bars are
the bootstrap confidence intervals (CIs). CIs that do not include 0 and do not overlap
indicate a significant effect on greenhouse gas emissions and significant differences
among groups, respectively. SMD represents the standardized mean difference, which
is a type of effect size. The unit of nitrogen input rate is kg$ha�1$yr�1.

Fig. 3. Standardized mean difference for DOC, NH4
þeN, NO3�eN from different wetland

environments under nitrogen inputs. The numbers in the figure represent the number
of case studies. For details on effect size interpretation, refer to Fig. 2.
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wetland types, nitrogen input dwindled the soil NH4
þeN and

NO3
�eN contents. For peatland, the soil DOC was significantly

increased by nitrogen input, whereas the soil DOC was reduced by
nitrogen input for freshwater marshes, alpine wetlands and salt
marshes. Fig. 3 shows that for all types of climates except the
temperate marine climate, the nitrogen input significantly
augmented the soil NO3

�eN contents. The nitrogen input signifi-
cantly increased the soil NH4

þeN content for the alpine climate,
temperate continental climate, monsoon climate of medium lati-
tudes and subtropical monsoon climate. The soil DOC was signifi-
cantly added by nitrogen input for the alpine climate (SMD ¼ 1.72,
Bootstrap CIs ¼ 1.36 to 2.11), whereas the nitrogen input under the
temperate marine climate diminished the soil DOC content.

For all types of nitrogen compounds, nitrogen input added the
soil NH4

þeN and NO3
�eN (Fig. 3). The effect of nitrogen input in

terms of NH4
þ, NH4NO3 and NO3

� on the soil NH4
þeN and NO3

�eN
content was larger than that of organic nitrogen fertilizer. This
means that inorganic nitrogen input significantly and directly
promotes soil NH4

þeN and NO3
�eN formation. Similarly, the soil

DOC content was increased by adding inorganic nitrogen, and
significantly lessened by adding organic nitrogen fertilizer. We also
revealed that all nitrogen input rates promoted NH4

þeN and
NO3

�eN formation. However, nitrogen input rate of 0e50 and
5

50e100 kg ha�1$yr�1 had larger impacts on the soil NH4
þeN and

NO3
�eN formation than other input rates. It signifies that lower

nitrogen input rates significantly expanded the soil nitrogen
availability. Similarly, lower nitrogen input rates showed significant
and positive effects on the soil DOC contents. In contrast, a nitrogen
input rate of 100e200 kg ha�1$yr�1 (SMD ¼ �0.96, Bootstrap
CIs ¼ �1.66 to �0.35) significantly decreased the soil DOC content.

3.3. Changes in soil microbial biomass under nitrogen input in
wetland ecosystems

Fig. 4 shows that the overall SMD of soil microbial biomass
carbon (MBC) and nitrogen (MBN) were 1.24 and 3.01 (Bootstrap
CIs of 0.87e1.61 and 2.47 to 3.56, respectively), and presented
positive effects of nitrogen input on MBC and MBN significantly.
The results showed that for estuary wetlands and peatlands, ni-
trogen input significantly added the MBC (means of SMD ¼ 3.54 to
4.33 in Bootstrap CIs) and the MBN (means of SMD¼ 1.91 to 3.65 in
Bootstrap CIs). For freshwater marsh and alpine wetland, nitrogen
input reduced the MBC and MBN. Compared to other climates, the
alpine climate had the largest SMD of MBC (SMD ¼ 2.10, Bootstrap
CIs ¼ 1.51 to 2.73) and MBN (SMD ¼ 3.44, Bootstrap CIs ¼ 2.80 to
4.14 in). It suggests that for the alpine climate, nitrogen input
significantly multiplied the activity of soil microbes. Similarly, the
effect of nitrogen deposition on soil microbial biomass was greater
than that of fertilization.

As shown in Fig. 4, inorganic nitrogen input significantly
increased the MBC (SMD range from 1.79 to 4.27 in Bootstrap CIs)
and MBN (means of SMD range from 1.00 to 1.88 in Bootstrap CIs).



Fig. 4. Mean effect size for MBC and MBN from different wetland environments under
nitrogen inputs. The numbers in the figure represent the number of case studies. For
details on effect size interpretation, refer to Fig. 2.

Fig. 5. Variation-partitioning analysis of the effects of soil labile carbon and nitrogen
on greenhouse gas emissions. NH4

þ-N, ammonium; NO3�-N, nitrate; DOC, dissolved
organic carbon; MBN, microbial biomass nitrogen; MBC, microbial biomass carbon.
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Specially, the SMD was the largest for nitrogen input as NH4
þ

compared to the other compounds. This means that NH4
þ input

could significantly multiply soil microbial biomass formation. As
seen from Fig. 4, nitrogen input rates of 0e100 kg ha�1$yr�1

significantly added the MBC (means of SMD ¼ 1.28, 2.86 in Boot-
strap CIs) and MBN (means of SMD ¼ 3.01, 4.79 in Bootstrap CIs). In
contrast, nitrogen input rates of more than 100 kg ha�1$yr�1

dwindled the MBC and MBN, except for the case of nitrogen input
rates of more than 300 kg ha�1$yr�1. This indicated that lower ni-
trogen input rates significantly increased the soil microbial biomass
contents.

4. Discussion

4.1. Impact of soil labile carbon and nitrogen compounds on
greenhouse gas emissions

4.1.1. The effect of soil labile carbon and nitrogen on greenhouse gas
emissions

Themeta-analysis indicated that the nitrogen input significantly
augmented the soil labile carbon and nitrogen content at the global
scale (Fig. 3). The increase of soil labile carbon and nitrogen maybe
because the nitrogen input changed the stability of soil aggregates
and promoted the leaching of DOC, NH4

þeN and NO3
�eN from soil

[39,52]. The meta-analysis also revealed that nitrogen input
significantly multiplied decomposition of organic matter and sub-
sequent gas formation (Figs. 2 and 3). However, nitrogen input
influenced the activity of soil microbe by altering the ratio of
6

available carbon to nitrogen [53]. This study clarified that NH4
þeN

and DOC play leading roles in greenhouse gas emissions according
to a variation-partitioning analysis (Fig. 5). Higher NH4

þeN and DOC
promoted CH4 emission due to the increase in carbon availability,
which resulted in more substrate being available for methanogens
[54]. However, excessive NH4

þ-N competitively inhibited CH4
oxidation [55,56]. Meanwhile, ammonium oxidation produced
toxic byproducts that noncompetitively inhibit CH4 oxidation [57].
Additionally, the DOC could regulate carbon availability, thereby
affecting the soil microbial activity [14,58]. The increase of DOC also
altered the content of the soil inorganic nitrogen under the
rewetting system because changing carbon availability would affect
organic nitrogen mineralization and inorganic nitrogen assimila-
tion [59]. Therefore, the effect of DOC on the CH4 and CO2 emissions
is more important than NH4

þeN, and higher DOC content could
stimulate bacteria that are responsible for organic matter decom-
position andmethanogenesis [54], leading to promote CH4 and CO2
emissions.

It is known that N2O is mainly produced during nitrification but
some N2O can also be formed during denitrification, which is
affected by nitrogen availability [60]. However, with the increase of
anthropogenic activities, nitrogen input disrupted the balance of
soil elemental stoichiometry, thereby affecting nitrogen availability
[61,62]. The soil elemental stoichiometry determines the concen-
tration and fractions of soil carbon and nitrogen [63,64]. A Pearson
correlation analysis revealed the effect of soil labile nitrogen and
carbon on N2O emissions. The results showed that DOC had a sig-
nificant and positive effect on N2O emissions (Table .2) because
higher DOC increased the nitrogen utilization rate and microbial
activity [14]. Meanwhile, NH4

þeN also showed a significant and
positive effect on N2O emissions (Table .2) because soil microbes
utilize NH4

þeN at a lower energy cost than NO3
�eN [14,65].

To elucidate which soil labile carbon and nitrogen are the main
drivers of greenhouse gas emissions from wetland ecosystems
under global nitrogen input, a structural equation model was
established. Structural equation models are often utilized to
investigate “latent” effects among various measured variables
[9,66]. This research indicated that NH4

þeN showed a positive and



Fig. 6. Structural equation model (SEM) evaluating the direct effects on greenhouse gases (aec) and the standardized total effect (direct plus indirect effects) derived from the SEM
(def) on a global scale. The number represents the direct effects on greenhouse gas emissions. The various widths of the gray lines represent p < 0.001, p < 0.005, p<0.01 and
p>0.01.

Fig. 7. The driving mechanisms of labile carbon and nitrogen on greenhouse gas emissions from wetland ecosystems under nitrogen input. The black numbers represent the effect
size of various parameters, the red numbers represent the total effects of ammonium on greenhouse gas emissions, the brown numbers represent the direct effects of labile carbon
and nitrogen on greenhouse gas emissions and the direct effects between various labile carbon and nitrogen.
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significant direct effect on CO2 emissions based on the structural
equation model (Figs. 6 and 7), because higher NH4

þ-N could in-
crease the availability of carbon [67,68]. In addition, higher soil
NH4

þ-N could also promote plant photosynthesis and increase plant
biomass, leading to an increase in the autotrophic respiration of
plants [41]. However, the study revealed that NH4

þeN significantly
and indirectly affected CH4 and N2O emissions by affecting the DOC
(Table .3, Fig. 6). Additionally, the total effect of NO3

�eN
(0.112e0.339) on a single greenhouse gas emission was larger than
that of DOC (�0.02 to 0.093) according to Fig. 6(d, e, f) and Fig. 7.
The effect of NO3

�eN on greenhouse gas emissions was significant
and was indirectly shown by its effect on DOC (Table .3). These
results reveal that DOC was the most important factor for
7

greenhouse gas emission. The results also suggested that DOC
affected microbial activity more directly than NH4

þeN and NO3
�eN.

The soil DOC is an organic carbon source directly utilized by mi-
crobes [69,70], and it is the main substrate and energy source for
microbial metabolism [71]. Thus, DOC concentrations directly
determine greenhouse gas emissions by regulating microbial
metabolism in comparison to soil ammonium and nitrate [72e74].

4.1.2. The effect of soil microbial biomass on greenhouse gas
emission

Although soil microbial biomass only accounts for 1%e5% of soil
organic matter, it plays an important role in promoting material
transformation and energy flow in the soil [18,75]. This research



Table 2
The Pearson relationships between greenhouse gas and labile carbon and nitrogen.

Parameters NH4
þeN NO3

�eN DOC MBN MBC

CO2 Pearson Correlation 0.567 0.381 0.53 0.508 0.428
p-value <0.001 0.002 <0.001 <0.001 <0.001

CH4 Pearson Correlation 0.512 0.459 0.501 0.394 0.431
p-value <0.001 <0.001 <0.001 0.001 <0.001

N2O Pearson Correlation 0.383 0.282 0.43 0.175 0.277
p-value 0.001 0.022 <0.001 0.159 0.024
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showed that the global nitrogen input significantly added the soil
microbial biomass carbon and nitrogen in wetland ecosystems
(Figs. 4 and 7). It might be that nitrogen input multiplies nitrogen
sources for microbial metabolism [76]. Nitrogen input could also
change greenhouse gas production and emission by increased
decomposition rates [77,78]. Thus, based on the Pearson correlation
analysis (Table .2), the MBC and MBN showed a significant rela-
tionship with CH4 and N2O (p < 0.01). The soil microbial biomass is
a sensitive measure of microbial activity [79]. Soil microbial
biomass is more easily utilized by the microorganism for mineral-
ization and assimilation than other fractions of soil organic matter
[80]. Therefore, soil microbial biomass influenced greenhouse gas
production and emission by changing the substrate content for
organic matter mineralization and methanogenesis.

To clearly elucidate the effect of soil microbial biomass carbon
and nitrogen on greenhouse gas emission, this research utilized the
structural equation model to determine that MBN significantly and
indirectly influenced the CH4 and CO2 emission by affecting MBC
(Fig. 7, Table .3). The total effect of MBC on greenhouse gas showed
that MBC negatively affected CO2 and N2O emissions and positively
affected CH4 emissions. Nitrogen input typically accelerated the
anaerobic decomposition of MBC [14], and greater MBC provided
more biologic residues as substrates for methanogens, which pro-
moted the CH4 generation [21,81]. This SEM also illustrated that
MBC is the main pathway by which DOC affects greenhouse gas
emissions (Figs. 6 and 0.507 to 0.714, p < 0.001). Soil microbial
biomass carbon is the labile fraction of soil organic carbon, and has
some particular characteristics including poor stability, fast turn-
over rate, easy mineralization and decomposition [82,83]. MBC can
act as metabolism substrate for soil microbes and can sensitively
affect the activity of functional microorganisms, resulting to pro-
mote greenhouse gas production and emission. By combining a
variation-partitioning analysis and a structural equation model,
this study inferred that MBC was the most direct indicator of the
response of greenhouse gas emissions to nitrogen input inwetlands
ecosystems.
4.2. Impact of environmental factors on greenhouse gas emissions

4.2.1. The effect of wetland type and climates on greenhouse gas
emissions

Greenhouse gas emission is affected by the different physico-
chemical properties (including plant types, water table, saline level
and so on) of wetlands [84e86]. As seen in Fig. 2, for freshwater
wetlands, nitrogen input significantly promoted CH4 and CO2
Table 3
The indirect effect of labile carbon and nitrogen to greenhouse gas emissions from
wetland ecosystem under nitrogen input.

Parameters NH4
þ-N NO3

�-N MBN DOC MBC

CO2 0.177 0.112 0.021 �0.023 0
CH4 0.145 0.037 0.063 0.067 0
N2O 0.045 �0.009 �0.02 �0.011 0
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emissions compared to other types of wetlands. This may be
because freshwater wetlands could decrease the effect of osmotic
stress due to their lower saline level, leading to multiplying mi-
crobial activity and the decomposition rate of organic matter
[30,87]. These results also revealed that for peatland, nitrogen input
significantly promoted N2O emission compared to other wetlands
(Fig. 2). Although peatlands cover only 3% of the Earth’s surface,
they store one-third of the global organic carbon pool and conserve
the higher nitrogen stocks [88,89]. Previous studies indicated nat-
ural peatlands display negligible N2O emissions and can even act as
net sinks for N2O [89]. The external nitrogen enhanced microbial
activity and triggered a priming effect that further facilitated the
release of available nitrogen [105]. Thus, nitrogen input has a
greater effect on N2O emission from peatlands than other wetlands.

Climate can influence greenhouse gas emissions from wetlands
by changing rainfall and temperature. A regression analysis
revealed that greenhouse gas emission reduced as the mean annual
precipitation (MAP) increased (Fig. 8 a, c, e). Fig. 2 shows that for
temperate continental climate, nitrogen input dwindled CH4 and
CO2 emissions. Although nitrogen input promoted N2O emissions
for all types of climate, it was significantly lower for temperate
continental climate than other types of climates. These results
indicated that nitrogen input promoted greenhouse gas emissions
the least for the temperate continental climate. In particular, the
regression analysis of the effect size and MAP as it ranged from
400 mm to 700 mm (typical for the temperate continental climate)
indicated that the CH4 and N2O emissions increased with the in-
crease of mean annual precipitation (Fig. 8). Therefore, lower
greenhouse gas emissions in the temperate continental climate
were likely due to soil drought and osmotic stress caused by lower
MAP [90], which would destroy the microbial community and
restrain the microbial activity in the wetland ecosystem [91].

The regression analysis revealed that greenhouse gas emissions
reduced with the increase of mean annual temperature (MAT),
except for N2O (Fig. 8 b, d, f). As we know, temperature could in-
fluence the soil microbial activity and thereby affect N2O emissions.
It is likely that higher temperatures altered the content of the soil
oxygen and available carbon, thus producing anoxic conditions for
denitrifying bacteria [92,93]. In addition, when the soil tempera-
ture ranged from 10 to 35 �C, the denitrification activity increased
with the increase in environmental temperature [94,95]. Contrary
to N2O emissions, the CO2 and CH4 emissions decreased as the
environment warming. It is likely that the interaction of warming
and nitrogen input increased the content of soil available nitrogen
and carbon and decreased the soil pore water, leading to promote
the activity of methanotrophs higher than methanogens [36].
Warming increased the soil carbon mineralization and nitrogen
turnover rate, whereas nitrogen input promoted the assimilation of
labile carbon by soil microbes and led to carbon sequestration and
lower rates of nitrogen cycling [96,97]. It was probably that the soil
carbon sequestration was greater than mineralization under the
interaction of warming and nitrogen input, leading to a decrease in
CO2 emissions.



Fig. 8. Regression analysis for the effect size of greenhouse gas emission and mean annual precipitation, mean annual temperature at the global level. The red short dash represents
the regression analysis of the effect size and mean annual precipitation and mean annual temperature among all studies. The black short dash represents the regression analysis of
the effect size and mean annual precipitation in the range from 400 to 700 mm. d-CO2 is the effect size of carbon dioxide, d-CH4 is the effect size of methane, d-N2O is the effect size
of nitrous oxide.
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4.2.2. The effect of nitrogen input on greenhouse gas emission
The continual increase of anthropogenic nitrogen inputs has

already altered the rates of nitrogen cycling and nitrogen avail-
ability [19,98,105], which are affected by different nitrogen com-
pounds and nitrogen input rates [99e101]. For different nitrogen
compounds (Fig. 9 a, c, e), greenhouse gas emissions are promoted
by nitrogen input as inorganic nitrogen (NH4

þ-N, NO3
�-N and

NH4NO3). Nitrogen input as organic nitrogen fertilizer suppresses
CH4 and CO2 emissions and promotes N2O emissions. This may be
because soil microorganisms have different capacities to use the
various nitrogen compounds, leading to the differences in green-
house gas emissions [47]. Compared to other nitrogen compounds,
9

nitrogen input as NH4
þ-N and NH4NO3 largely promoted green-

house gas emissions (Fig. 9 a, c, e). The microbial utilization of
ammonium is preferred over nitrate due to the low energy cost,
implying that soil ammonium oxidation and organic matter
decomposition were stimulated with the input of ammonium
[102]; Tao et al., 2018). Notably, nitrogen input rates of
0e50 kg ha�1$yr�1 significantly promoted CH4 emissions than
other nitrogen input rates (Figs. 2 and 9 d). The CO2 and N2O
emissions for nitrogen input rates of 50e100 kg ha�1$yr�1 were
larger than for the other nitrogen input rates (Fig. 9 b, f). These
results illustrated that lower nitrogen input significantly promoted
greenhouse gas emissions from wetland ecosystems. This arose



Fig. 9. The effect size of greenhouse gas emission among different nitrogen compounds and the nitrogen input rate. d-CO2 is the effect size of carbon dioxide, d-CH4 is the effect size
of methane, and d-N2O is the effect size of nitrous oxide. NH4

þ-N represents ammonium, NO3�-N represents nitrate, NH4NO3 represents ammonium nitrate, ONF represents organic
nitrogen fertilizer. The red point represents the mean effect size of greenhouse gas emission under different nitrogen inputs and nitrogen input rates.
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mainly because higher nitrogen input reduced the microbial
biomass and activity by increasing the effect of osmotic stress and
electrical conductivity [30,87]. Additionally, continuous and
massive nitrogen input led to soil acidification, thereby directly or
indirectly affecting the composition of the soil microbial diversity
and community [103,104].
5. Conclusions

This meta-analysis found that nitrogen input significantly pro-
moted greenhouse gas emissions from wetlands on a global scale.
The driving effect of soil labile carbon and nitrogen and nitrogen
10
inputs on greenhouse gas emissions fromwetlands ecosystems are
summarized as follows:

(1) DOC is the most important driving factor for greenhouse gas
emissions from wetlands under global nitrogen input.

(2) MBC is the most direct driving factor for greenhouse gas
emissions from wetlands under global nitrogen input.

(3) Nitrogen input to freshwater wetlands shows the most sig-
nificant and positive effects on CH4 and CO2 emissions from
wetlands under global nitrogen input, whereas nitrogen
input to peatland largely and significantly promotes N2O
emissions compared to other wetlands.
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(4) Nitrogen input as ammonium compounds and at lower rates
show the most significant and positive effects on greenhouse
gas emissions from wetlands under global nitrogen input.
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