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ABSTRACT Mitochondrial biology has seen a surge in popularity in the past 5 years, with the
emergence of numerous new avenues of exciting mitochondria-related research including
immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early
1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental
models of chronic and acute respiratory diseases. However, it is only in the past decade with the
emergence of more sophisticated tools and methodologies that we are beginning to understand how
this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In
this review, we highlight the diverse role of mitochondria in individual lung cell populations and what
happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung
disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for
mitochondrial dysfunction in the ageing and diseased lung.
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Introduction
Mitochondria are parasymbiotic organelles that contain their own DNA, metabolome, transcriptome and
proteome, but rely on their host for replication, energy intermediates and proteins. Mitochondria supply
energy and metabolites to the “host” cell by regulating the continuous aerobic oxidation of fatty acids,
while at the same time consuming the end products of glucose, glutamine and amino acid degradation
from the “host”, generating energy (adenosine triphosphate; ATP) via the electron transport chain (ETC).
Mitochondria form an interconnected intracellular network changing their shape, size and location inside
the cell in response to a plethora of stimuli, including nutrient availability from the “host” [1, 2]. Such
movement relies on a series of membrane remodelling events involving cycles of fusion and division
(fission) which also allows for the generation of new mitochondria (biogenesis) to supply the “host” cell
with a constant reserve of healthy mitochondria; processes reliant on both nuclear-encoded and
mitochondrial-encoded proteins [3]. When a healthy pool of mitochondria is threatened, such as loss or
damage of the mitochondrial genome, defective mitochondria are removed by the “host” through selective
encapsulation into autophagosomes, that are in turn delivered to the lysosome for degradation, a process
termed mitophagy. Under conditions of intense stress, mitochondria also play a central role in extrinsic/
intrinsic apoptosis, necrosis/necroptosis and pyroptosis programmed cell death pathways [4, 5].

Mammalian mitochondrial DNA (mtDNA), which encodes merely 37 genes, is highly susceptible to
oxidative DNA damage and acts as a damage-associated molecular pattern (DAMP) when found outside
the mitochondrial compartment [6]. Cytosolic or extracellular oxidised, fragmented mtDNA is one of the
most important mitochondrial DAMPs (mtDAMPs) associated with the regulation of innate immunity.
N-formyl peptides, ATP, the mitochondrial transcription factor TFAM, the mitochondrial specific
phospholipid cardiolipin, reactive oxygen species (ROS) and other mitochondrial derived messengers also
behave as mtDAMPs. In moderation, these mitochondrial-derived factors also serve as important
intracellular second messengers, signalling to the rest of the cell in a retrograde fashion to ensure survival
and adaptation. Such processes have a symbiotic co-dependency on the nuclear genome and serve to
regulate homeostatic processes from cell death and antioxidant signalling to inflammatory cascades.

Mitochondrial function and ageing are intricately linked; however, this relationship is complex.
Mitochondrial function and ROS production are considered to be important modulators of lifespan and
mitochondrial biogenesis and turnover are important for slowing down the ageing process. In general,
with ageing, homeostatic mitochondrial processes decline or become dysfunctional; whereby mitochondria
exhibit structural abnormalities, reduced biogenesis, increased mtDNA mutations and less ETC capacity
and ATP production [7, 8]. Conversely, mild impairment of mitochondrial function may extend lifespan
in yeast, worms and mice supporting a role for mitohormesis in longevity [9]. While the contribution of
both mitochondria and ageing to the pathogenesis of acute and chronic lung diseases have been elegantly
appraised by many before [7, 10–12], this review serves as an update for the lung community on the
ever-increasing importance of the mitochondrion in lung ageing and disease. Lung ageing is accompanied
by unique pathobiological changes that lead to functional, mechanical and structural alterations in the
lung [13], yet how mitochondria contribute to these phenomena is an ever-evolving question. Importantly,
lung diseases such as COPD, idiopathic pulmonary fibrosis (IPF), cancer or acute respiratory distress
syndrome (ARDS) occur more frequently and with greater severity in older populations when compared to
younger individuals [14–16].

To distinguish this review from others, we have focused our attention on the role of the mitochondrion in
different sub-populations of cells in the lung and their related diseases. With the arrival of single cell
sequencing and other sophisticated technologies, our characterisation and understanding of individual
lung cell populations in the lung is just beginning. As the majority of mammalian cells rely on the
mitochondrion for energy derivatives and/or metabolites, we will continue to uncover distinctive roles for
this unfathomable organelle in ageing as well as in lung biology and disease. From ciliated epithelial cells
to endothelial cells of the lung microvasculature, this review will discuss the importance of mitochondrial
biology to specific specialised cellular functions (figure 1), as well as dissecting what ensues when
mitochondrial-regulated critical processes inside these cells become dysfunctional.

Diseases of the trachea, bronchi and bronchioles
Luminal surfaces of the trachea, bronchi, and bronchioles are predominantly lined with a ciliated
pseudostratified columnar epithelium intertwined with secretory goblet cells and lined by basal epithelial
cells. Their combined mucociliary function is to secrete and move mucus along with foreign particles and
pathogens out of the airways, a process that is sensitive to ageing [17–19]. Mitochondria with highly
folded cristae and a dense matrix are abundant among the ciliary rootlets in apical regions of ciliated
epithelial cells and are crucial for ciliary beating and mucociliary function [20]. Upon branching into the
respiratory bronchioles, the epithelium acquires a simple cuboidal structure with the appearance of
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non-ciliated club cells. Goblet, basal and club cells display relatively low densities of mitochondria
distributed throughout the cytoplasm at baseline but this may change in response to injury and little is
known about how mitochondria contribute to their specialised functions [21]. Similarly, ageing reduces
tracheal epithelial thickness and decreases the number of tracheal basal stem cells which may be
independent to the numbers of mitochondria in these cells [22]. Mitochondria in cells of the trachea,
bronchi and bronchioles have been implicated in a number of diseases as discussed in detail below.

Asthma
Asthma is the most common chronic disease of the respiratory system and is characterised by inflammation,
bronchial hyperresponsiveness (BHR) and remodelling of the bronchus [23]. Mitochondria have been
associated with each of the above pathobiological features of asthma. Mitochondrial changes are observed in
remodelled lung epithelium of a rat model of asthma [24] and in a murine ovalbumin model of asthma
and have generally been associated with a loss in mitochondrial-related ATP production. However, the
relationship between mitochondrial activity and BHR is debated with increased BHR correlating with a decline
in the activity of cytochrome c oxidase (COX) subunit III and depletion of ATP [25], yet inhibition of COX4–
2 subunit impairs ATP generation and reduces BHR [26]. ETC complex III dysfunction in mast cells also leads
to enhanced histamine and serotonin secretion upon cell ragweed pollen extract exposure [27]. Conversely,
mitochondrial dysfunction has largely and extensively been documented in bronchial smooth muscle (BSM)
remodelling. The behaviour and proliferation of airway smooth muscle (ASM) cells are dependent on
mitochondrial activity and contribute to the pathogenesis of asthma by secreting pro-inflammatory cytokines
and other mediators [28]. In general, heightened mitochondrial mass and function associate with more BSM
remodelling in asthma. Some specific examples include: increased expression of ATP5b of complex V of the
ETC stimulates ASM cell proliferation and thickening in a murine model of asthma [29]; increases in
mitochondrial mass are observed in the BSM of both severe [30] and mild asthmatic patients [31];
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FIGURE 1 Mitochondria as regulators of cellular homeostasis in the lung. Mitochondria are important for the correct functioning of a number of
well characterised and specialised lung cells. Mitochondria regulate mucociliary function, mucus secretion and senescence in airway epithelial
cells. A number of important pathways in alveolar type two epithelial cells are regulated by the mitochondrion including surfactant production,
senescence, programmed cell death and regeneration. Alveolar macrophages as well as other immune cells utilise the mitochondrion to respond
to infection and release mitochondrial-related danger signals (damage-associated molecular patterns). Phagocytosis and immune-metabolic
shifts in immune cell polarisation are also dependent on the mitochondrion. Differentiation of fibroblasts to myofibroblasts involves the
up-regulation of a number of mitochondrial pathways and proteins and endothelial cells utilise the mitochondrion to responds to injury. ROS:
reactive oxygen species.
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mitochondrial mass positively correlates with BSM surface area and clinical outcomes such as rate of
exacerbation in asthma patients [30, 31]; in severe asthmatic patients increases in mitochondrial mass are
associated with increased mitochondrial biogenesis induced by abnormal calcium homeostasis [30]. In
addition, Bnip3, a member of Bcl-2 family, which regulates mitochondrial function is overexpressed in
asthmatic BSM cells and also participates in BSM cells proliferation [32, 33]. Similarly, increased myeloid cell
mitochondrial fatty acid oxidation (FAO) modulates bronchial inflammation in asthma, whereby inhibiting
FAO is associated with decreased inflammation and immune responses [34]. Whether or not these increased
mitochondrial features are homeostatic and increased as a protective response or really driving disease
pathogenesis remains to be fully determined. The role of mitochondria in the pathogenesis of asthma is
therefore cell type specific and requires further thorough examination. Finally, the role of mitochondria in
asthma may also implicate ageing mechanisms and accelerated cellular senescence. For example, increased
number of senescence-associated-β-Gal positive fibroblasts has been observed [35] and could be targeted by
senolytic drugs such as azithromycin [36] or metformin [37] that also improve major clinical features of
asthma such as peak expiratory flow and severe asthma exacerbations. Likewise, restoring oxidative metabolism
by stimulating more arginine metabolism in the bronchial epithelium may also have therapeutic relevance via
inhibition of proinflammatory signalling and suppression of T-helper (Th)2 inflammation [38, 39].

Cystic fibrosis
Cystic fibrosis (CF) is a genetic pathology attributed to a mutation of the CFTR gene on chromosome 7
which results in an abnormality of chloride channels in mucus producing cells. This leads to chronic
bacterial airway infection, prominent neutrophilic inflammation and excess thick mucus in the airways, which
may lead to progressive bronchiectasis [40, 41]. Mitochondria play an important role in CF physiopathology.
CFTR-mutated tracheobronchial gland epithelial cells display decreased ETC activity associated with
dysfunction in complex I [42]. In fibroblasts isolated from patients with CF decreased activity of complex I is
associated with an increase in oxygen consumption and mitochondrial calcium [43, 44] and in human and
murine lung epithelial cells is associated with increased ROS [45, 46]. Increased ROS further decreases
complex I activity and as a result, a vicious cycle may ensue [47]. Such increases in ROS may also facilitate
Pseudomonas aeruginosa colonisation of the airway epithelium, as well as inflammatory responses [48].The
precise source of ROS in these studies is yet to be attributed to the mitochondrion and alternative
mechanisms may also contribute to the observed increases in ROS, including a loss in glutathione and
superoxide dismutase pathways [49, 50], impairment of PTEN/CF transmembrane conductance regulator
complex formation [51] and increased NADPH oxidase activity [52]. While ROS clearly play a role in the
pathogenesis of CF, the source of this ROS and the cell-specific production of ROS and whether targeting
ROS for therapeutic benefit in CF remains to be elucidated.

Diseases of the alveoli
Alveoli, the basic units for gaseous exchange are lined by a thin squamous epithelial cell layer surrounded by
extracellular matrix, vascular endothelial cells and capillaries. The alveolar epithelium is composed of alveolar
type 1 (AEC1) and alveolar type 2 (AEC2) epithelial cells. AEC2 cells are highly specialised, metabolically
active secretory progenitor cells that contain significantly more mitochondria compared to their AEC1
counterparts [53–55]. AEC1 cells function as a gas exchange surface as well as maintaining the permeability
barrier function of the alveolar membrane. Ageing is associated with a reduction in the lung elastic recoil,
which may be associated with loss of alveolar epithelial surface area [56]. Alveolar size, widening of alveolar
ducts and late alveolarisation all decline in murine ageing lungs; however, the absolute number of AEC2 cells
in the alveolus appears to be relatively stable with ageing [13]. In lung parenchymal cells, ageing reduces
mitochondrial number and function and increases ROS levels [22]. Similarly, the number of enlarged fused
mitochondria increases with ageing in AEC2 cells [7] and AEC2 cells are predisposed to age-related mitophagy
dysregulation which may directly affect their regenerative capacity [57]. In AEC2 cells mitochondrial biogenesis
driven by the mammalian target of rapamycin/peroxisome proliferator-activated receptor-γ complex 1α/β
(mTOR/PGC-1α/β) axis is upregulated in senescent lung epithelial cells [58]. Surfactant production and
secretion by AEC2 cells is reliant on the mitochondrion [59, 60] and in response to injury, AEC2 differentiate
into AEC1 cells concomitantly reducing the number and size of mitochondria [61, 62]. Similarly, while alveolar
endothelial cells contain less mitochondria than AEC2 cells, they also require functional mitochondria to
respond to injury [63, 64]. Mitochondria also play a key role in the correct functioning of immune cells in the
alveoli, including alveolar macrophages, CD4+ Th2 and CD8+ (T-cytotoxic) cells [27, 65–69]. Mitochondria in
cells of the alveoli have been implicated in a number of diseases as discussed in detail below.

COPD
COPD is a chronic inflammatory lung disease associated with cigarette smoking and other environmental
exposures. Dysregulation of mechanisms controlling mitochondrial function are widely appreciated in
COPD and have been comprehensively reviewed elsewhere [70, 71]. There is increasing recognition that
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COPD represents accelerated ageing of the lung with an accumulation of senescent cells, including airway
epithelial cells, fibroblasts, endothelial cells and AEC2 cells [72]. It is likely that oxidative stress from
cigarette smoking or biomass smoke exposure, as well as ROS generated by activated inflammatory cells in
the lungs, are the major drivers of senescence in COPD patients [73]. Senescent cells are metabolically
active and release a variety of inflammatory proteins described as senescence-associated secretory
phenotype (SASP), including proinflammatory cytokines (tumour necrosis factor (TNF)-α, interleukin
(IL)-1, IL-6), chemokines (CXCL1, CXCL8, CCL2), proteases (matrix metalloproteinase (MMP)2, MMP9)
and growth factors (transforming growth factor (TGF)-β, insulin-like growth factor-binding protein,
vascular endothelial growth factor), all of which are increased in COPD lungs. COPD is associated with a
loss of several anti-ageing molecules, of which sirtuin-1 is predominant [74]. Reduced sirtuin-1 provides a
mechanism for accelerated ageing in COPD by increasing cellular senescence through the acetylation of
many key regulatory proteins that are linked to ageing.

This accelerated ageing process is associated with marked mitochondrial dysfunction (figure 2), which
contributes to the pathophysiology of the disease in several ways [10]. Repeated cell divisions result in
progressive shortening of telomeres, which eventually activates the DNA damage response, leading to
activation of p53, resulting in cell cycle arrest or cellular senescence. Telomere shortening also leads to
mitochondrial dysfunction through the activation of p53 and through mammalian target of rapamycin
(mTOR) signalling [75]. Activated p53 and mTOR signalling inhibit PGC-1α, a transcription factor that is
a key regulator of mitochondrial function, which is reduced in COPD [58, 76]. Dysfunctional
mitochondria generate mitochondrial ROS (mROS), which may further damage telomeres to accelerate
senescence [77]. When cells are depleted of mitochondria by Parkin-mediated mitophagy, there is a

Telomere

Cell replication

Telomere shortening

DNA damage signalling Extracellular

vesicle

mtDNA

P

P

P

P
P

Mitochondrial dysfunctionCell senescence

Cell cycle arrest

↑ SA-βGal

Elongation

Fusion

↑ Leakiness
↓ Mitophagy

↓ PINK1

↓ Parkin

NLRP3

inflammasome

SASP

↑p21CIP1

↑p16INK4

↑p53

H2AXATM ↑mTOR

↑PI3K

↓SIRT1

↓PGC1α

mROS

Oxidative

stress

FIGURE 2 Mitochondrial dysfunction in COPD. Repeated cell division causes progressive telomere shortening which activates the DNA damage
response, resulting in activation of p53, which activates the cyclic kinase inhibitor p21CIP1, which puts the cell into cell cycle arrest or cellular
senescence and also induces mitochondrial dysfunction. In COPD these effects are accelerated as oxidative stress causes further shortening and
damage of telomeres, activates p16INK4a, which increase cellular senescence. Oxidative stress also activates phosphoinositide 3-kinase (PI3K),
leading to activation of the key molecule mammalian target of rapamycin (mTOR), which further increases mitochondrial dysfunction by inhibiting
peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α), a key regulator of mitochondrial biogenesis and function. mTOR also leads
to a reduction in the anti-ageing molecule sirtuin-1 (SIRT1), which further inhibits PGC-1α and mitochondrial function. Mitophagy is impaired in
COPD so that damaged mitochondria accumulate in the cell as a result of reduced PTEN-inducible putative kinase-1 (PINK-1) and Parkin due to
mTOR activation. Leaky mitochondria release mitochondrial reactive oxygen species (mROS), which are a major source of oxidative stress in
COPD. Leaky mitochondria also release mitochondrial DNA (mtDNA), which may activate the NLRP3 inflammasome and also be released from
the cell in extracellular vesicles. Senescent cells secrete a senescence-associated secretory phenotype (SASP) with multiple inflammatory
proteins that are characteristically increased in COPD.
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reduction in cellular senescence and release of SASP mediators, indicating that mitochondria are
important in driving senescence [78].

Mitochondria may be a major source of endogenous oxidative stress in COPD and therefore play a key role
in driving its pathophysiology. ASM cells from COPD patients show abnormal metabolic activity with
increased mROS generation at baseline and after exposure to inflammatory stimuli such as TNF-α and
IL-1β and a reduction in ATP generation [79]. Similarly, ASM cells treated with cigarette smoke extract have
impaired mitochondrial fission/fusion which may control ASM proliferation [80, 81]. Mitochondria show
abnormal morphology in COPD cells, with increased mitochondrial mass, fragmentation, branching and
loss of cristae [76]. This is mimicked in airway epithelial cells by cigarette smoke exposure in vitro, which
also increased markers of senescence and SASP secretion [5, 76, 82]. These morphological mitochondrial
abnormalities may reflect a reduction in PGC-1α, a key regulator of mitochondrial biogenesis, which is
regulated by sirtuin-1 and may also be due to dysregulation of mitophagy [5, 83–85]. Importantly, impaired
mitophagy is linked to senescence in small airway epithelial cells and fibroblasts [84].

Increased mitochondrial iron may also contribute to mitochondrial dysfunction in COPD patients [86].
Defective mitochondrial function in macrophages from COPD patients may contribute to the
characteristic defect in bacterial phagocytosis that may underlie bacterial colonisation of the lower airways
in COPD patients [65–67]. Mitochondrial damage may release mtDNA, which is able to activate the
NLRP3 inflammasome and release IL-1β, which is increased in COPD [87–89] and mtDNA also activates
the cytosolic DNA sensor cyclic guanosine monophosphate–adenosine monophosphate synthase, which
results in activation of innate immunity and the secretion of interferons, which are also increased in
COPD [90]. In an epithelial cell line, oxidative stress releases mtDNA in extracellular vesicles which may
be taken up by untreated epithelial cells resulting in the release of IL-6 [91]. Increased mtDNA has been
detected in the urine of COPD patients and correlates with some markers of disease severity [92].
Mitochondrial dysfunction may also contribute to the skeletal muscle weakness that is commonly found in
COPD patients [93]. Overall there is accumulating evidence that mitochondrial dysfunction plays a key
role in the pathogenesis of COPD and therefore may be a target for future therapies [70].

Lung cancer
Lung cancer is the most common cause of cancer-related death in men and the second most common in
women. Smoking is the causal mechanism in 85% of lung cancers. It has long been recognised that cancer
cells preferentially produce ATP by glycolysis rather than by mitochondria-mediated oxidative
phosphorylation as in normal cells (Warburg effect). This metabolic shift leads to increased glucose uptake
which leads to increased DNA and protein synthesis though increased generation of nucleic acids and amino
acids. This suggests that mitochondrial dysfunction may play an important role in carcinogenesis and
somatic mutations of mitochondrial genes are common in many types of cancer, including lung cancers [94].
Mutations of mtDNA are reported in lung cancer [95–97]. Cigarette smoke exposure may lead to damage
and mutation of mtDNA, which seems to be more susceptible to oxidative damage than genomic DNA [98].

There is a greatly increased incidence of lung cancers in patients with COPD and this may reflect common
molecular pathways [99]. Mitochondrial dysfunction in COPD may be an important factor increasing the
development and spread of lung cancers [100]. Cigarette smoke exposure may cause damage and mutations
in DNA, including mtDNA, but this is normally repaired by different DNA repair mechanisms. However, in
COPD patients some of these repair mechanisms may be defective, as a result of decreased sirtuin-1 [101].
Dysfunctional mitochondria may also contribute to the acceleration of lung cancer because of chronic
inflammation induced by mROS release from damaged mitochondria and due to the SASP as a consequence
of cellular senescence. The hypoxia in severe COPD patients activates hypoxia-inducible factor-1α, which is
overexpressed in a high proportion of nonsmall cell lung cancer patients, potentially increasing the risk of
metastasis through promotion of increased epithelial-mesenchymal transition factors [102]. Activation of
NLRP3 inflammasome as a consequence of mitochondrial dysfunction may also promote the growth and
spread of lung cancers [103]. Mitochondria have a clear pathogenic role in the development and progression
of lung cancer; however, the mechanism surrounding this relationship remains to be extensively determined.
For example, does mtDNA sequence contribute to tumorigenicity or will targeting mROS or other
mitochondrial related SASP processes hold therapeutic promise?

Pneumonia
Bacterial and viral community-acquired pneumonia (CAP) is a leading cause of morbidity and death
worldwide. CAP is a syndrome in which acute infection of the lungs involves fever, cough, sputum
production, shortness of breath, physical findings of consolidation, and leukocytosis [104]. Streptococcus
pneumoniae remains the most commonly identified bacterial source of CAP with Haemophilus influenzae,
Staphylococcus aureus, Moraxella catarrhalis and Pseudomonas aeruginosa also being causative. During
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influenza outbreaks, influenza virus becomes the principal cause of CAP increasing susceptibility to
secondary bacterial infection. Respiratory syncytial virus, parainfluenza virus, human metapneumovirus,
adenovirus, coronavirus and rhinovirus have also been implicated in CAP [104]. Pneumonia, both
bacterial and viral, is a leading cause of morbidity and age-adjusted death and accounts for the majority of
hospitalisations in patients aged >65 years, suggesting ageing plays an important role in the progression of
CAP [105].

Mitochondria have an important role to play in the above bacterial and viral infections. Loss of
mitochondrial-derived ATP, dysregulated mitochondrial complex expression, enhanced oxidative stress,
diminished antioxidant responses, and decreased numbers of healthy mitochondria have been observed in
response to S. pneumoniae [106]. More intriguingly, mitochondria are often targeted by virulence factors
during infection to promote bacterial or viral replication [107, 108]. Pneumolysin, a major virulence factor of
S. pneumoniae targets the mitochondria of AEC cells leading to metabolic and morphological changes
involving host mitochondrial calcium influx, loss of mitochondrial membrane potential and release of
mtDNA [109]. Similarly, S. pneumoniae-derived hydrogen peroxide promotes mtDNA leakage and mediates
interferon-β expression in lung macrophages [109, 110]. S. aureus infection increases the mitophagy protein
PINK1 and decreases the availability the mitochondrial specific phospholipid cardiolipin [111]. A number of
influenza A virulence factors translocate to the mitochondrial inner membrane, interact with mitochondrial
antiviral-signalling protein, regulate fission/fusion processes, accelerate mitochondrial fragmentation, induce
mitophagy and hijack mitochondrial-derived NADPH, ultimately resulting in suppression of innate immune
signalling pathways [112–117]. Finally, age-associated deterioration in mitochondrial ATP, oxidative stress
and antioxidant responses in macrophages also increase susceptibility to S. pneumoniae infection [106].
From the above studies it is clear that mitochondrial responses are essential for the response of the host to
infection but how to therapeutically support and sustain mitochondrial function in the context of infection
remains an open-ended question.

Tuberculosis
Tuberculosis is the leading cause of death in the world among infectious diseases [118]. Mycobacterium
tuberculosis, the aetiologic agent, is transmitted via inhalation of droplets which are readily phagocytised by
innate immune cells in the lung, yet only a fraction of infected persons show disease symptoms [119, 120].
Aging is a major risk factor for M. tuberculosis infection [121]. Similar to S. pneumoniae, M. tuberculosis
targets mitochondria to enhance bacterial replication. One way is altering cellular death pathway in alveolar
macrophages. Mitochondria play a vital role in apoptosis. With unclear mechanism, M. tuberculosis
promotes necrosis and inhibits apoptosis upon infection [122]. M. tuberculosis contains tuberculosis
necrotising toxin (TNT), a secreted nicotinamide adenine dinucleotide (NAD+) glycohydrolase, that
induces necrosis in infected macrophages. TNT has been shown to activate key mediators of necroptosis
RIPK3 and MLKL pathway [123]. In addition, M. tuberculosis damages the mitochondrial membrane upon
infection and promotes release of cytochrome c from the intermembrane space, further promoting necrosis.
Virulent M. tuberculosis inhibits crosslinking of annexin 1 and inhibits the formation of the apoptotic
envelope [124]. Ageing inhibits the normal response of host alveolar macrophages to M. tuberculosis [125]
and M. tuberculosis also induces a shift from oxidative phosphorylation to aerobic glycolysis and depresses
the rate of mitochondrial respiration in macrophages. It also depresses the rate of glycolysis and OXPHOS
to enter a state of metabolic quiescence and consequently decreases the rate of ATP production of the
macrophage [126, 127]. In a similar manner to other bacteria, M. tuberculosis manipulates host
mitochondrial homeostasis for its own benefit; how to therapeutically support and sustain mitochondrial
function in the context of M. tuberculosis infection requires further attention.

Critical care illness
Acute lung injury (ALI), ARDS and sepsis are all associated with high morbidity and mortality in the
critically ill patient population [67]. ALI is associated with the rapid onset of bilateral pulmonary infiltrates
and hypoxaemia of noncardiac origin and is associated with sepsis, hyperoxia, trauma, pharmacological or
xenobiotic exposures, and mechanical ventilation [128]. ALI and ARDS result from an aberrant
inflammatory response of the lung with older patients at a significantly greater risk [129]. Diffuse alveolar
damage, capillary congestion, atelectasis, intra-alveolar haemorrhage, alveolar oedema, hyaline-membrane
formation, epithelial-cell hyperplasia, and interstitial oedema are all common histopathological features of
ARDS [130, 131].

Bioenergetic dysfunction of mitochondria in the lung and skeletal muscle are a component of ARDS
development [132]. mtDAMPs are higher in the bronchoalveolar lavage fluid (BALF) and circulation of
individuals with sepsis and ARDS, as well as in experimental models [133–135]. Mitochondrial
dysfunction is implicated in a number of animal models of ARDS (e.g. ventilator-induced lung injury
(VILI) or hyperoxic-induced lung injury) and sepsis. Animals exposed to chronic hyperoxia have an
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increased number of swollen mitochondria with abnormal cristae [136]. Targeted depletion of fatty acid
synthase FASN, a key enzyme in the synthesis of fatty acids, in AEC2 cells resulted in altered
mitochondrial bioenergetics and more severe lung injury with hyperoxic exposure [137]. Similarly, VILI is
associated with mitochondria damage, mitophagy, release of mtDNA and impaired FAO [138–140].
Mitochondrial dysfunction along with increased release of mtDAMPS, mitophagy and increased biogenesis
have also been observed in a number of experimental sepsis models including Staphylococcus aureus- and
LPS-induced sepsis [141–145]. Mitochondrial regulation in macrophages also plays an important role in
the pathobiology of ALI, ARDS and sepsis with mitochondrial proteins regulating innate immune
responses, including caspase-1 activation and phagocytic activity [146–148]. To summarise, loss of
mitochondrial integrity and function is a common pathobiological theme in critical care illness. Whether
or not this loss of integrity and consequent release of mtDAMPs into the extracellular space and /or
circulation is a selective and programmed mechanism or merely a by-product of cell death/injury remains
to be fully evaluated.

Cells of the interstitium
The pulmonary interstitium predominantly consists of the alveolar epithelium, pulmonary capillary
endothelium, basement membrane, fibroblasts and perivascular and perilymphatic tissues. Quiescent
elongated fibroblasts found in the interstitium regulate extracellular matrix remodelling and the repair
following injury through agonist-dependent (e.g. TGF-β) transformation into myofibroblasts. Contractile
myofibroblasts produce extracellular matrix proteins and can remodel tissues through the expression of
α-smooth muscle actin (SMA). Cellular senescence, a classic signature of the ageing process, plays an
important role in lung fibroproliferative disorders. Disease-related changes in fibroblast behaviour rely on
the upregulation of a number of key mitochondrial processes and the transformation of fibroblasts to
myofibroblasts is accompanied by an increase in functioning mitochondrial content, activation of the
mitochondrial stress response pathway via the transcription factor ATF4, as well as increases in glycolysis
and mitochondrial biogenesis [149–152].

IPF
IPF is an irreversible progressive interstitial lung disease characterised by excessive formation of scar tissue
in lungs and destruction of alveolar structure and pulmonary interstitium [153]. The exact aetiology
remains unknown, however it is considered to be a disease of ageing whereby a genetically susceptible
individual incurs AEC injury or damage, which in turn results in the activation and proliferation of
myofibroblasts that secrete excessive extracellular matrix, driving abnormal lung architecture and gaseous
exchange [154]. Age-associated changes in mitochondrial function may promote IPF development and
progression [7] and fibroblasts and AT2 cells from IPF patients have senescent like phenotypes [155, 156].

Dysregulation of mechanisms controlling mitochondrial function are widely appreciated in IPF and have
been comprehensively reviewed recently elsewhere [7, 157]. Briefly, mitochondrial dysfunction is evident in
AEC2 cells of individuals with IPF [57, 59, 158] and extracellular mtDNA is detected in the BALF and
plasma of these individuals [159]. Experimental models of IPF demonstrate extensive mitochondrial-related
in injury in AEC2 cells of the lung [57, 59, 158, 160, 161]. Targeted induction of mitochondrial damage in
AEC2 cells via depletion of mitochondrial fusion results in spontaneous fibrosis, loss of the mitophagy
regulator PINK1 or the mitochondrial-regulating transcription factor NRF2 promotes experimental fibrosis
which may be age dependent, whereas loss of the mitochondrial protein phosphoglycerate mutase family
member 5 (PGAM5) reduces lung fibrosis [57, 59, 158, 160, 162]. Inhibition of the mTORC1 complex with
rapamycin restores mitochondrial homeostasis and reduces cellular senescence to bleomycin in lung
epithelial cells [58].

Whether or not mitochondrial-associated injury in AEC2 cells directly regulates the activation and
proliferation of myofibroblasts remains to be determined. However, a recent study has suggested that
extracellular mtDNA which is found to be higher in the BALF of individuals with IPF may play a role in
α-SMA expression and metabolic changes in response to TGF-β1 in normal human lung fibroblasts [159].
Mitochondrial related calcium changes may also regulate fibroblast to myofibroblast differentiation [163],
which is consistent with fibroblasts from IPF lung fibroblasts having reduced mitochondrial mass,
disrupted membranes, and altered cristae and oxygen consumption [155]. The master mitochondrial
biogenesis regulator PGC1α is stably repressed in IPF fibroblasts and in fibroblasts isolated from mice
treated with bleomycin; an effect that is restored prior to fibrosis resolution in young but not aged mice
[164]. TGF-β-induced glycolysis and mitochondrial oxygen consumption in human lung fibroblasts
requires mTORC1 [165]. Finally, mitochondria in alveolar macrophages from IPF patients display
prominent morphological defects with lower expression of PINK1, PARK2 and NRF1, however loss of
mitophagy in macrophages in murine models of fibrosis is anti-fibrotic [166, 167]. The above studies
demonstrate that a number of these highly conserved homeostatic mitochondrial pathways have distinctive
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TABLE 1 Potential mitochondrial targeting treatments for lung diseases

Disease Cell target Therapeutic compounds Mitochondrial target Model Main finding

Asthma
Smooth

muscle cell
Gallopamil Mitochondrial

biogenesis
Human Decrease of SMC mass and

exacerbation rate
Macrophage Etomoxir Fatty acid oxidation

pathway
Mouse Decreased TH2 inflammation

Fibroblast Azithromycin Senescence Human Improved peak expiratory flow,
symptoms and quality of life

NA Metformin ROS production Human Decreased severe
exacerbations

NA Roxithromycin Senescence Rat Decreased airway remodelling
NA Rapamycin Senescence Mouse Decreased eosinophilic airway

inflammation
NA Resveratrol Senescence Mouse Decreased fibrotic responses

and airway inflammation
NA L-arginine NO pathway Mouse Decreased AHR and

inflammation
PAH

NA Metformin Senescence Rat Increased endothelial function
and decrease arterial
remodelling

NA Rapamycin Senescence Rat Decreased pulmonary artery
smooth muscle cell
proliferation

NA MitoQ ROS production Mouse Decreased right ventricular
hypertrophy

Acute lung
injury

NA NA Adaptive
mitochondrial
biogenesis and

mitophagy stimulation

Mouse Removes damaged
mitochondria and increases
tissue repair and cell
survival

Alveolar
epithelial cell

Bone marrow–derived
mesenchymal stem cells
mitochondria transfer

NA Mouse Restoration of alveolar
bioenergetics and protection
against LPS-induced ALI

NA Fusion protein targeting the
DNA repair enzyme

8-oxoguanine-DNA glycosylase
1 to the mitochondria

Mitochondrial ROS Mouse Enhanced survival under
ventilator-induced lung
injury

Epithelial cell Mildronate Carnitine synthesis Mouse Improves lung function
NA MitoTEMPO Mitochondrial ROS Influenza A virus

infected mouse
Reduction in lung
inflammation, neutrophil
infiltration, viral titre and
mortality

Epithelial cell MitoQ Mitochondrial ROS Human
Epithelial cells
and mouse

Reduced epithelial RSV
production and inflammation

Epithelial cell Targeting dynein motor protein Mitochondrial ROS Human
Epithelial cells

Reduced epithelial RSV
production and inflammation

IPF
Alveolar

epithelial cell
Thyroid hormone mimetics

Sobetirome
Mitochondria
biogenesis

Mouse Decreased bleomycin-induced
pulmonary fibrosis

Alveolar
epithelial cell

Genetic over expression of
mitochondrial-targeted catalase

Mitochondrial ROS Mouse Decreased asbestos or
bleomycin-induced
pulmonary fibrosis

Fibroblast Carbon monoxide Heme oxygenase Mouse Decreased bleomycin-induced
pulmonary fibrosis

Alveolar
epithelial cell

Rapamycin Mitochondrial
biogenesis

Epithelial cells Reduces mitochondrial
biogenesis and cellular
senescence in cultured
alveolar epithelial cells

Continued
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functions that are cell type specific highlighting the complexities of targeting these pathways for
therapeutic benefit in IPF.

Vascular endothelial cells
The lung microvasculature is an evolutionarily conserved system consisting of a dense network of
capillaries that line the branched airways, alveolar ducts and alveoli. This expansive capillary surface is
covered by a thin layer of capillary endothelial cells. Delicate alveolar–capillary membrane interactions
involving precise epithelial-endothelial crosstalk mediate gaseous exchange, delivery of nutrients and
regulation of immunosurveillance. Lung capillary endothelial cells are embedded within grooves of AT1
cells producing paracrine factors to stimulate the propagation of alveolar progenitor and mesenchymal
cells, ultimately guiding regeneration and repair of the lung [168–170]. Ageing results in a loss in the
density of pulmonary capillaries [171] and cellular senescence-elevated oxidative stress plays a role in
age-associated vascular endothelial dysfunction [172]. Despite their close proximity to circulating oxygen

TABLE 1 Continued

Disease Cell target Therapeutic compounds Mitochondrial target Model Main finding

Myofibroblast Pirfenidone PARK2-mediated
mitophagy

Mouse and cells Inhibits lung fibrosis
development in the setting
of insufficient mitophagy

COPD
Macrophage Carbon monoxide Heme oxygenase Human Reduced sputum eosinophilia

and improved methacholine
responsiveness

NA SkQ1 Mitochondrial ROS Rats Prevent and partially reverse
age-related decline

Ciliated
epithelial cell

Mdivi-1, a pharmacological
inhibitor of Drp1

Mitophagy Mice Restores mucociliary
dysfunction

Epithelial cell MitoTEMPO Mitochondrial ROS Human epithelial
cells

Inhibition of cigarette smoke
extract induce mitochondria
fragmentation

Smooth
muscle cell

MitoQ Mitochondrial ROS Human smooth
muscle cells

Decrease TGF-β induce ASM
cell proliferation and CXCL8
release in HSMC

Smooth
muscle cell

MitoQ Mitochondrial ROS Mouse Reduced inflammation and
airway hyperresponsiveness
in ozone treated mouse

Endothelial
cell

Mitochondria-targeted H2S
donors AP39, AP123 and RT01

Mitochondria proteins
persulfidation

Human
endothelial cells

Decrease cellular senescence

Mononuclear
blood cell

Rapamycin mTOR pathway Human
peripheral blood
mononuclear

cells

Restoring corticosteroid
sensitivity

NA Deferiprone Mitochondrial iron
redistribution

Mouse Restoring mucociliary function,
inhibiting BAL infiltrates

NA Resveratrol Mitochondrial ROS Mouse Delayed the loss of lung
compliance, maintained lung
structure and blocked
parenchymal cell DNA
damage

Lung
cancer

Epithelial cell Mitochondria-targeted
mito-lonidamine

Oxidative
phosphorylation

Human epithelial
cell line

Improved mitochondrial
function and restores
autophagy
Metastasis reduction in
experimental lung tumours

PAH: pulmonary arterial hypertension; IPF: idiopathic pulmonary fibrosis; SMC: smooth muscle cell; TH: T-helper; NA: not addressed; ROS:
reactive oxygen species; NO: nitric oxide; AHR: airway hyperreactivity; LPS: lipopolysaccharide; ALI: acute lung injury; RSV: respiratory syncytial
virus; TGF: transforming growth factor; ASM: airway smooth muscle; HSMC: human smooth muscle cells; mTOR: mammalian target of
rapamycin.
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and nutrients, endothelial cells oxidise only a minor fraction of glucose in their mitochondria,
metabolising 90% of cellular glucose anaerobically to produce lactate, a phenomenon that appears to
facilitate expansion of vascular networks during organ growth [173–175]. Endothelial cells have active
mitochondria (5% of the cellular volume) and rely on their mitochondria for essential functions as hubs
for second messenger signalling and in response to injury, however, the role of mitochondria in
pulmonary capillary endothelial cells has not been extensively investigated [63, 64, 176].

Pulmonary arterial hypertension
Mitochondrial dysfunction is associated with pulmonary arterial hypertension (PAH), an incurable disease
characterised by pulmonary arterial endothelial cell apoptosis, decreased microvessels and occlusive vascular
remodelling [177]. PAH is characterised by increased pulmonary arterial pressure associated with remodelling
of the pulmonary arteries that may in turn lead to right ventricular hypertrophy increasing the risk of right
heart failure and death [178]. Mitochondrial dysfunction has been described in endothelial cell and
pulmonary arterial smooth muscle cells (PASMC) of individuals with PAH and mitochondrial ETC
dysfunction associated with a metabolic shift towards increased glycolysis has also been observed [179–181].
PAH-PASMCs display increased expression of ENO1, a key enzyme in glycolysis, leading to a shift away from
mitochondrial oxidative phosphorylation in favour of glycolysis [182]. Similarly, PAH-endothelial cells have
increased glucose uptake in parallel to diminished oxygen consumption [179]. PDH, the enzyme permitting
the entry of pyruvate into mitochondria, is decreased in PAH-endothelial cells and PAH-PASMC [179, 183].
Metabolic shifts toward increased glycolysis in PAH-PASMC are also associated with a loss in activity of

Metformine MitoQ Carbon

monoxide

Etomoxir Mildronate

Fatty

acids

Carnitine

C
P

T
2

C
P

T
1

Krebs

cycle

SkQ1

ResveratolMitoTempo

NADH
FADH2

ATP

Cyt C

Q

1

2

3 4

5

mtROS

SOD2 NRF2

β-oxidation

FIGURE 3 Schematic diagram of drugs targeting mitochondria developed in lung disease. Red arrows/lines
represent the activation/inhibition site of action of drugs. NADH: nicotinamide adenine dinucleotide; FADH:
flavin adenine dinucleotide; ATP: adenosine triphosphate; SOD2: superoxide dismutase 2; NRF2: nuclear
factor erythroid-2-related factor; mtROS: mitochondrial reactive oxygen species; CPT: carnitine
palmitoyltransferase; Q: ubiquinone/ubiquinol; Cytc: cytochrome c.
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complex I and III of the ETC [184–186]. Since disruption of ETC is an important contributor to mROS
release, the absence of oxygen consumption may lead to a retrograde accumulation of electrons and
generation of superoxide production in PAH-PASMC [187, 188]. Such an increase of mROS also activates
ageing pathways. Ageing is an important risk factor for cardiovascular disease and senescence has been
implicated in the development or aggravation of PAH [189]. ROS production is associated with DNA damage
leading to PAH-endothelial cell and PAH-PASMC cell cycle arrest [190]. Moreover, pro-inflammatory SASP
is increased in PAH [189]. Interestingly, modulation of SASP expression with mitochondrial drugs such as
metformin has been shown to inhibit SASP expression and prevent PAH [191, 192]. Also, rapamycin,
interferes with the development of PAH reducing SASP and PAH-PASMC remodelling [193]. To summarise
metabolic switching to glycolysis has been identified as an important pathobiological feature in
PAH-endothelial cells and PAH-PASMCs; however, whether or not this process is a pathogenic or protective
response and how this relates to the generation of ROS and mROS remains to be investigated.

Conclusion
Mitochondrial dysfunction is a hallmark of ageing and is observed in the majority of acute and chronic
lung diseases. However, as this review highlights, a significant amount of these ground-breaking studies
infer conclusions from whole lung experimental systems (global deletion of a gene rather than targeted
deletion in cell types) or in vitro models. In the past 5 years we are beginning to appreciate the opposing
and diverse responsibilities that many central mitochondrial proteins have in specialised cells of the lung
and this is a rapidly evolving field. Fortunately, as the awareness of this essential organelle in disease
pathology has increased, a demand for new approaches to measure mitochondrial function and
metabolites has resulted in the development of new forms of microscopy and spectroscopy that open
windows into previously unknown aspects of mitochondrial biology. Marrying these technologies with the
isolation of pure and distinct lung cell populations will expand our knowledge even further, allowing us to
better explore the feasibility of targeting the mitochondrion for therapy in lung disease. At the time of
writing, a number of potential mitochondrial pathways have already been proposed for promising
therapeutic exploration (table 1). From the use of senolytics to reverse senescence, to stimulating
mitochondrial biogenesis and mitophagy [143], to mitochondrial transplantation approaches to repair the
injured alveolar epithelium [194], to targeting mROS [195, 196] or stimulating mitohormesis with carbon
monoxide (figure 3) [197], an array of promising pre-clinical studies may provide opportunities to deliver
mitochondrial-based therapeutics to the bedside to treat acute and chronic lung disease. However, until we
uncover more about the distinctive functions of mitochondria in individual lung cell populations, we must
proceed with cautious enthusiasm.
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