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ABSTRACT Since the discovery of severe alpha-1 antitrypsin deficiency as a genetic risk factor for
emphysema, there has been ongoing debate over whether individuals with intermediate deficiency with
one protease inhibitor Z allele (PiMZ, or MZ) are at some risk for emphysema. This is important, because
MZ individuals comprise 2–5% of the general population. In this review we summarise the evidence about
the risks of the MZ population to develop emphysema or asthma. We discuss the different study designs
that have tried to answer this question. The risk of emphysema is more pronounced in case–control than
in population-based studies, perhaps due to inadequate power. Carefully designed family studies show an
increased risk of emphysema in MZ smokers. This is supported by the rapid decline in lung function of
MZ individuals when compared to the general population after massive environmental exposures. The risk
of asthma in MZ subjects is less studied, and more literature is needed before firm conclusions can be
made. Augmentation therapy in MZ individuals is not supported by any objective studies. MZ smokers are
at increased risk for emphysema that is more pronounced when other environmental challenges are
present.

Introduction
Alpha-1 antitrypsin (AAT) is a proteinase inhibitor produced by the SERPINA1 gene that protects the
alveoli against the destructive effects of neutrophil elastase and other proteases [1]. In 1963, LAURELL and
ERIKSSON [2] described five cases with severe AAT deficiency diagnosed using agar gel electrophoresis,
three of whom developed emphysema at a young age (ranging from 30 to 42 years). A unique
nomenclature is used in AAT deficiency in which the proteins are named using the prefix “Pi” (protease
inhibitor), and their variants are assigned letters based on the position of the serum protein bands on acid
starch gel electrophoresis, with M being the normal variant and Z the most common pathogenic one [3].
Individuals in whom both alleles make Z type protein (PiZZ, often abbreviated to ZZ) have severe AAT
deficiency, with sera levels reaching only 10–15% of those in whom both proteins are M (PiMM, or MM)
[4]. After the SERPINA1 genes on chromosome 14 were discovered, the protein nomenclature was
adopted for the individual alleles and, by inference, the population affected by these genes. ZZ individuals,
and especially smokers, have a faster decline in forced expiratory volume in 1 s (FEV1) and a shorter life
expectancy than the normal population [5, 6]. The goal here is to review the evidence concerning the risk
for chronic obstructive pulmonary disease (COPD) and asthma in individuals that carry one Z allele and
one M allele (MZ), who have serum AAT levels intermediate between MM and ZZ individuals (figure 1).
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Currently, AAT augmentation therapy is recommended for ZZ individuals based on evidence from some
observational studies that show improved survival [8, 9] and randomised controlled trials that show slower
progression of emphysema [10, 11].

As the debates about the efficacy of intravenous augmentation therapy for ZZ individuals come to a close,
individuals with serum levels higher than the ZZ population but lower than MM subjects remain more
controversial. Serum AAT levels in MZ individuals are about 60% of the levels in their MM counterparts
[12]. Because MZ individuals constitute larger portions of the overall population than ZZ individuals, any
testing programme that is focused on COPD cohorts will find many individuals with emphysema and MZ
genotypes. The frequency of MZ individuals in the general population depends, in part, on population
ethnicity, but ranges from 1.8% to 5% in most cohorts with significant European descent [13]. This is
compared to an average PiZZ prevalence of 0.07–0.1% for Caucasian populations [13]. In a review of
worldwide databases that have studied PIMZ prevalence, the MZ population was estimated to be at least
27 million [14]. In screening programmes, the percentage of MZ individuals varies significantly, even
within the same country, from 3.6% to up to 22% (figure 2) [15, 16].

Prevalence of COPD in MZ individuals
Several studies have evaluated whether COPD is more prevalent in MZ individuals than in MM ones.
Although this seems like a simple task, there are many biases that can interfere with study design. The
main sources of bias include ascertainment bias and differential smoking prevalence or age as
confounders. When coupled with a rare disease that does not have universal testing and the many ways
that COPD has been diagnosed over the past 40 years, the data become more difficult to interpret.

Population-based cross-sectional studies
Many different study designs have been used to study the hypothesis that MZ individuals have an
increased risk for COPD. The strongest data would emerge from population-based studies. Some
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FIGURE 1 Distribution of alpha-1 antitrypsin (AAT) levels among an MZ cohort (n=2923). Bars and numbers
represent subjects with the corresponding level of AAT depicted on the x-axis. Data obtained from the Alpha-1
Coded Testing Study at the Medical University of South Carolina (Charleston, SC, USA) [7].
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FIGURE 2 Frequency of the alpha-1 antitrypsin phenotypes in the targeted screening programme carried out
by GREULICH et al. [15] in Germany over the period 2003–2015. Reproduced and modified from [15] with
permission.
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population-based cross-sectional studies show significantly lower lung function and evidence of
emphysema in MZ smokers than in MM smokers [17, 18]. Other similar studies do not show any
difference in spirometry in MZ compared to MM populations [19, 20]. The extent to which these data are
attributable to inadequate matching for COPD risk factors, such as age and smoking, remains under
debate. One cross-sectional study from Tulsa, a mining centre in Bosnia, found statistically less smoking
and working in mining among MZ individuals when compared to MM ones [21]. One explanation
proposed was that self-awareness of respiratory symptoms leads MZ individuals in this cohort to avoid
mining and smoking [21]. However, the majority of studies that have used population-based cohorts to
match MZ to MM individuals failed to show any difference in spirometry [22–28]. Some of these studies
included subjects aged <50 years in their statistical analyses [22, 25, 26, 28]. Because some ZZ individuals
may not experience decline in lung function until the age of 50 years [29], it seems reasonable not to draw
strong conclusions from spirometry-based studies that include young MZ individuals. HERSH et al. [30]
conducted a meta-analysis of 16 studies to estimate the net risk of COPD in MZ as compared to
MM individuals. Five studies were population-based in design and showed an odds ratio of 1.50 (95% CI
0.97–2.31) that MZ individuals had increased risk for COPD. In contrast, 11 case–control studies had a
higher odds ratio of 2.97 (95% CI 2.08–4.26) that MZ individuals did have an excess risk for COPD [30].

Because FEV1 and FEV1/forced vital capacity (FVC) are not sensitive measurements for individuals destined
to advance to defined airway obstruction, some investigators evaluated other lung function parameters. LAM
et al. [31] examined a group of 22 MZ individuals aged ⩾30 years and found a statistically significant
decrease in peak expiratory flows and an increase in pulmonary resistance in MZ subjects who smoked when
compared to nonsmokers. Because smoking is a major confounder of COPD risk, some studies compared
MZ nonsmokers to MM nonsmokers and found lower peak expiratory flows in the former [32, 33].
However, other studies did not show any decrease in mid-expiratory flow rates among MZ subjects [22, 34,
35]. This was also true when MZ were carefully matched to MM, and even when smokers from each group
were compared [22, 35]. Other studies showed increased closing capacity and residual volume as well as
small loss in elastic recoil in MZ individuals (including nonsmokers) compared to MM individuals [33, 36].

In some of these cross-sectional studies there was no difference in the reported respiratory symptoms
suggestive of obstructive lung disease [18, 19, 22, 25]. This can be explained by the fact that it takes a
significant drop in lung function before respiratory symptoms ensue. In addition, some studies on the
prevalence of respiratory symptoms in MZ individuals included a significant number of subjects aged
<40 years among their samples [19, 22, 25].

Case–control studies
Many case–control studies have shown a higher prevalence of MZ subjects among patients with COPD
compared to normal controls without COPD [37–44]. A significant limitation in some of these studies is
the lack of adjustment for important confounders such as age and smoking [37, 39, 41–44]. Some studies
matched for age and smoking and still found an increased prevalence of MZ among COPD cases,
identified by spirometry and/or chest radiography [38, 40, 45]. In a cohort of smokers, SANDFORD et al. [45]
found more MZ individuals in the group with COPD, identified based on FEV1/FVC <0.7, than the
smoker control group that did not have COPD. The mean age of the two groups ranged from 59 to
64 years [45]. In the meta-analysis by HERSH et al. [30], the studies that adjusted for smoking had a less
pronounced odds ratio of 1.61 (95% CI 0.92–2.81).

The higher odds ratio in case–control studies when compared to population cross-sectional studies is not
uncommon in rare genetic diseases. One critical issue is to find a large enough population-based sample
to include an adequate number of individuals with the genetic and environmental risks for clinical disease.
If no effort is made to ascertain that cases and controls are from the same at-risk population, genetic
differences may exist and there may be genes other than MZ responsible for the obstructive lung disease in
the COPD arms in case–control studies.

Subsequent to the meta-analysis of HERSH et al. [30], a case–control study including 1669 subjects from
Norway was published by SØRHEIM et al. [46]. Global Initiative for Chronic Obstructive Lung Disease
(GOLD) spirometric stage II COPD subjects (n=834; 790 MM and 44 MZ) and controls with normal
spirometry (n=835; 801 MM and 34 MZ) were Caucasians aged ⩾40 years with current or ex-smoking of
⩾2.5 pack-years. Standardised high-resolution computed tomography (CT) scans of the chest were
obtained in 50% of the subjects. Quantitative assessment of low attenuation areas showed more disease in
MZ individuals, a mean 3.5% lower FEV1/FVC, but no difference in the age, sex, height and pack-years of
smoking adjusted COPD risk by genotype [46].

In summary, the data from case–control studies find more emphysema and lower lung function in MZ
than in MM populations when appropriately adjusted for age and smoking covariates. The strength of
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these studies is moderate, and better when emphysema is quantified independently of spirometric
variables. Because CT emphysema is correlated to mortality in AAT deficiency while lung function is not
[47], these studies are sufficient to demonstrate an increased risk for COPD in MZ subjects.

Family-based studies
Family-based studies attempt to compare siblings who have different genes at the SERPINA1 locus to
determine if the COPD risk is different. The advantage to these studies is that childhood environmental
exposures and some other genetic variations are shared in these populations. In a study conducted by
KUEPPERS et al. [48], 114 siblings of COPD patients were compared to 114 siblings of healthy controls and
found no difference in MZ prevalence. Of note, the percentage of MZ in controls was higher than is
usually reported in such populations, which raises a concern about selection bias. In fact, the authors
found a higher percentage of MZ subjects in siblings of index cases when compared to normal blood
donors from the same institution (7.9% versus 2.4%; p<0.02) [48]. In some family studies, MZ subjects
had abnormal ventilation–perfusion scans in the lower lobes, even among MZ children [49, 50]. SØRHEIM

et al. [46] conducted a multicentre family-based study in Europe and North America and included 2707
subjects. COPD probands had a smoking history of ⩾5 pack-years and had at least one sibling who had
smoked for ⩾5 pack-years. They were also required to have a FEV1 of <60% predicted and a FEV1/vital
capacity (VC) ratio of <90% predicted. Most of the included relatives were siblings of their respective
probands. Chest CT, spirometry and respiratory questionnaires were obtained in all subjects [46, 51]. The
COPD proband group had 984 subjects (941 MM and 43 MZ) and the relatives group included 1723
subjects (1651 MM and 72 MZ). After adjusting for covariates, MZ individuals had more emphysema on
CT scan and a 3.9% lower FEV1/VC ratio than MM individuals [46]. In another family study MOLLOY

et al. [52] demonstrated that MZ subjects are at increased risk for COPD only if they smoke. This study
adjusted for sex, age and years of smoking. Most importantly, in this study, the MZ COPD probands were
excluded from analysis. In family-based genetic studies, selection bias can influence results. Because this
study included a homogeneously ethnic group, adjusted for important covariates, and avoided sampling
bias, it provides strong and clear evidence that ever-smoker MZ individuals are at higher risk for COPD
than MM counterparts [52].

Complications of our understanding by common biases in genetic studies
In addition to the usual biases encountered in general epidemiological studies, distinctive biases exist when
studying genetic epidemiology. For instance, genotyping errors have been reported to range from 0.5% to
30% in some studies [53]. Genotyping errors have been reported during the diagnosis of AAT deficiency
[54, 55].

Because SERPINA1 is known to be associated with COPD, this gene has been purposefully removed from
some genetic association analyses by excluding known AAT-deficient patients [56]. However, when this
was not done, the MZ genotype was seen to be associated with COPD and COPD progression in some
open-ended genome-wide association studies when SERPINA1 was included as one of the loci studied
[57]. In summary, case–control studies, family studies and genome-wide association studies all suggest that
MZ individuals are more susceptible to COPD than those with MM genotypes, particularly if cigarette
smoking is present during ageing.

Progression of obstructive lung disease in MZ individuals
Whether lung function and respiratory symptoms worsen more over time in MZ than in MM individuals
has been studied in a few cohorts (table 1). Some of these longitudinal studies are limited by short interval
follow-up (2–3 years), and this may explain their negative results [58, 59]. In a 6-year longitudinal study,
MADISON et al. [60] found 20–40 mL more yearly FEV1 decline in MZ than in MM individuals, regardless
of smoking status. In a prospective cohort that followed iron-ore miners for 5 years, MZ individuals had
more decline in FEV1/FVC than MM ones, but there was no difference in respiratory symptoms [61]. In
another 10-year longitudinal study among a cohort of nonsmokers matched for age, height and body
weight, pulmonary elasticity was measured and was found to decrease significantly over time in the MZ
group when compared to the MM group [62]. In smokers there was a significant difference in FEV1, with
annual decline of 75 mL in MZ versus 53 mL in MM subjects [63]. In an 11-year prospective cohort, the
annual decline in forced expiratory flow at 25–75% of FVC (FEF25–75%) among persistent smokers was
108.2 mL·s−1·year−1 versus 66.8 mL·s−1·year−1 in MZ and MM subjects, respectively [64].

SILVA et al. [58] followed a randomly selected population from Arizona (USA) for an average of 15 years
and found no difference in the annual decline of lung function in 58 MZ and 1802 MM individuals in this
potentially underpowered study [65]. The longest longitudinal study was the population-based prospective
cohort study conducted by DAHL et al. [66]. They randomly selected 9187 adults from the Danish general
population and followed them over 21 years. One of the strengths of the study is that the frequency of
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alleles did not differ significantly from that predicted by Hardy–Weinberg equilibrium [66]. The MZ
genotype was found in 451 participants. After adjusting for age, sex, tobacco consumption and FEV1 at
study entry, MZ individuals had 50% more incidence of COPD, as well as 50% more chance of
hospitalisation and death from COPD, when compared to MM subjects. Although there was a statistical
difference in the annual decline of FEV1 in MZ compared to MM individuals, the mean difference was
only 4 mL, with mean±SD annual decline of 25±1.9 mL in MZ versus 21±0.5 mL in the MM population.
Interestingly, when grouped based on smoking status, the decline in FEV1 was similar among MZ and
MM smokers. When nonsmokers were compared, the difference in annual decline in FEV1 was worse by
7 mL every year in MZ (20±2.9 mL) compared to MM individuals (13±0.7 mL) [66]. SANDFORD et al. [57]
found a threefold increased frequency of MZ individuals among smokers with rapid decline in FEV1

(−154±3 mL·year−1) versus smokers that did not have rapid decline (+15±2 mL·year−1). The association of
MZ with rapid decline in lung function among smokers was more pronounced, with an odds ratio of 9.7,
among currently smoking MZ individuals who had a family history of COPD [57].

Effects of environmental and occupational exposures
Environmental and occupational exposures are linked to the development of COPD in the general
population [67–70]. In homozygous ZZ individuals, exposure to dust, gas and fumes leads to a greater
decline in lung function, even in nonsmoking ZZ subjects, particularly after the age of 50 years [71, 72]. In
children exposed to passive smoking, MZ individuals had a greater decline in lung function than MM
children [73, 74]. To account for environmental exposures, some population-based cross-sectional studies
compared MZ to MM groups among industry workers [18, 61, 75]. Some of the studies that found an
increased frequency of MZ genotypes in industry workers with COPD lacked matching for age and
smoking [61, 76]. HORNE et al. [18] compared MZ and MM grain workers and matched for age, years of
employment and smoking. FEV1 and FEV1/FVC were worse in the MZ group, but there was no difference
in respiratory symptoms [18]. In another group of saw mill and grain workers there was no difference in
respiratory symptoms or spirometry between MM and MZ subjects. However, their mean age was
<40 years and there was no adjustment for smoking [75]. A group of MZ and MM individuals who
worked in the New York City Fire Department rescue workforce during the World Trade Center collapse
on September 11, 2001, were followed for 4 years. The average age was 46 years and 40 years in MZ and
MM individuals, respectively. After September 11, the MZ subjects exhibited a 110 mL annual decline in

TABLE 1 Studies that compare the decline of lung function over time between MM and MZ individuals

First author [ref.] Year Average
follow-up

duration years

Population Adjustment for
confounders

Faster decline in lung
function in MZ compared

to MM individuals?

DE HAMEL [59] 1981 3 499 MM compared to 32 MZ
individuals from New Zealand

Matched a subgroup of
population to adjust for

confounders

No

MADISON [60] 1981 6 82 MM compared to 42 MZ
individuals

Yes Only in MZ men

ERIKSSON [63] 1985 6 31 MM compared to 32 MZ
individuals

Yes Only in MZ smokers

PIERRE [61] 1988 5 757 MM compared to 21 MZ
iron-ore miners

No difference in age,
length of employment, or

smoking

Yes

TARJÁN [62] 1994 10 28 nonsmoking matched MM and
MZ pairs

Yes Yes

SANDFORD [57] 2001 5 283 subjects with rapid decline
compared to 308 subjects with no

decline in lung function

Yes More MZ individuals were
found in the rapid decline

group
DAHL [66] 2002 21 9187 adults randomly selected from

the Danish general population: 7037
MM compared to 451 MZ

Yes Yes

SILVA [58] 2003 15 1802 MM compared to 58 MZ
individuals selected randomly from

an Arizona population

Yes No

THUN [64] 2012 11 4207 MM compared to 112 MZ
individuals

Yes Only in FEF25–75% among
persistent smokers

FEF25–75%: forced expiratory flow at 25–75% of forced vital capacity.
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FEV1, compared to 25–50 mL in their MM counterparts [77]. MEHTA et al. [78] also found that exposure
to dust, vapour, gas and fumes was associated with a greater decline in lung function among 97 MZ when
compared to 3546 MM individuals with the same level of exposure. In the same study, MZ subjects
exposed to small particulate matter (⩽10 µm) also trended towards more decline in lung function
compared to their MM counterparts with the same level of exposure [78]. Cumulatively, the data suggest
that MZ individuals may lose lung function faster than the MM population when exposed to air and
industrial pollution.

MZ level heterogeneity and impact of the acute phase response
During the acute phase response, AAT serum concentrations increase above the normal range [79]. In
states of infection or inflammation, neutrophils are recruited into the lungs and the plasma concentration
of AAT increases [80, 81]. The imbalance between neutrophil elastase and AAT is implicated in the
pathogenesis of emphysema as well as other pulmonary diseases [82]. Consequently, MZ individuals may
be more vulnerable to lung damage during acute inflammatory states if they are not able to raise their
AAT sera levels high enough to cope with the surge of neutrophil elastase (figure 3). In asymptomatic
nonsmoker MZ individuals, sputum showed levels of neutrophils and interleukin-8 similar to patients with
COPD and higher than healthy controls [83]. THUN et al. [64] found that MZ individuals had more
COPD, defined as FEV1/FVC <0.7, than MM subjects with similar levels of C-reactive protein. AAT
levels are very variable in MZ individuals, so serial AAT testing is not clinically recommended, because
the impact of the acute phase response on AAT level is still an imprecise science. Hence, in this
population, assessment of COPD risk is a complex process influenced by interactions between different
factors (figure 4).

Risk of asthma in the MZ population
The risk of asthma in the MZ population has not been studied as extensively as the risk for COPD.
Neutrophil elastase plays an important role in the development of airway inflammation and
hyperresponsiveness, which are key factors in the pathophysiology of asthma [84]. Compared to healthy
controls, patients with bronchial asthma have a higher activity of neutrophil elastase [85, 86]. In
asthmatics, VIGNOLA et al. [87] showed that neutrophil elastase activity is negatively correlated with FEV1.
Therefore, clinical epidemiology is needed to support these biochemical observations.

In the National Heart, Lung and Blood Institute Registry of AAT Deficiency, a physician diagnosis of
asthma was reported in 35% of ZZ individuals. Wheezing without associated upper respiratory tract
infections was reported in 20% of ZZ individuals who had FEV1 ⩾80% and in 70% of those with FEV1
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FIGURE 3 Conceptual model of the balance between alpha-1 antitrypsin (AAT) and neutrophil elastase, by
genotype.
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<80% [88]. When compared to non-AAT-deficient COPD patients, ZZ individuals have more reversible
airway obstruction, wheezing and atopy [89].

Although the AAT/neutrophil elastase imbalance is less in MZ than in ZZ individuals, MZ individuals
have more asthma, nasal polyposis, family history of atopy, and peripheral eosinophilia than the general
population [90]. In another study, a physician diagnosis of asthma was reported in up to one-third of MZ
subjects [91]. By contrast, a study by WENCKER et al. [16] found only 2.9% MZ individuals among
asthmatics referred for treatment of respiratory diseases in seven physicians’ offices. In a subsequent study,
only one MZ individual was found in a cohort of 122 patients with severe asthma [92]. In our opinion,
although some evidence suggests an increased asthma risk, more studies are needed, particularly in
paediatric populations.

Should we ever, sometimes or never treat the MZ population?
Historically, AAT serum levels of 11 μM were considered protective against emphysema [4, 9]. This was
based on a variety of assumptions that included suggestions that MZ individuals are not at increased risk
of emphysema [4, 93]. Clinical data regarding whether an individual COPD patient has emphysema from
environmental factors such as cigarette smoking or from the low AAT level associated with the MZ carrier
state, or both, are impossible to assemble. Therefore, the majority of the pulmonary community has
awaited trials showing improved outcome with augmentation in an MZ study before prescribing this
expensive therapy. A minority opinion suggests that emphysema that is out of proportion to age and
smoking is sufficient reason to begin augmentation.

Some studies are in progress that may have an impact on these recommendations. So far, studies of AAT
augmentation therapy in ZZ individuals have used a weekly, intravenous (i.v.) 60 mg·kg−1 dose to
maintain serum levels above an 11 μM threshold [8, 94–97]. GADEK et al. [93] studied the bronchoalveolar
lavage (BAL) AAT levels in five ZZ individuals, which improved from 15% predicted pre-infusion to 60–
70% predicted as compared to BAL AAT levels in MM individuals after 2–4 weeks of infusion therapy.

Because epithelial lining fluid anti-elastase capacity is not returned to normal with this dose, ongoing
studies are evaluating the effect of 120 mg·kg−1 weekly doses to establish whether CT density decline over
3 years is less on the high dose compared to the usual dose (60 mg·kg−1) of AAT. The SPARTA (Study of
ProlAstin-c Randomized Therapy with Alpha-1) augmentation trial is currently comparing the
120 mg·kg−1 i.v. dose that produces a mean trough serum level of 27.7 μM to 60 mg·kg−1 i.v. doses weekly
that produce trough levels of 17.3 μM [98, 99]. Because the AAT level in serum and in BAL of MZ
individuals averages at 20 μM, a positive trial will prompt a re-evaluation of the evidence by which most
MZ subjects remain untreated. Designing such studies should take into consideration experience from the
last 40 years of augmentation studies in ZZ subjects, particularly regarding study power [100]. Although it
will be easier to recruit MZ individuals than ZZ participants because they are less rare, the rate of decline
in lung function or CT densitometry may be slower. Therefore, longer follow-up periods or larger
numbers of participants would be needed. Such studies should also be powered to detect differences in
exacerbation rate and measure other important clinical outcomes that target the patient experience.

Environmental

exposure risk

including smoking

COPD risk

AAT serum 

concentration 

and/or AAT 

genotype

Other genetic 

factors

FIGURE 4 Conceptual framework of the interaction between environmental exposure including smoking,
alpha-1 antitrypsin (AAT) level and/or AAT genotype, other genetic factors and chronic obstructive pulmonary
disease (COPD) risk. Note that there are no studies that show that genotype is more important than blood
concentration of AAT for COPD risk assessment.
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Conclusions
Data suggest that MZ subjects have an increased risk of emphysema that is clinically manifest most
commonly in those who have smoked cigarettes. Although the risk of emphysema is higher, there are no
data that support augmentation therapy in MZ individuals [101]. Much more research needs to be done to
better understand the pulmonary disease burden within the MZ community, a group of individuals that
make up 2–5% of world populations with significant European descent.
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