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Introduction

Platinum-associated mutagenesis has been observed
in tumors directly treated with these agents and in
secondary hematologic malignancies.1-6 However,
data supporting a direct association of platinum ex-
posure with genetic oncogenic events promoting
secondary solid tumorigenesis are lacking. A 70-year-
old woman was diagnosed with ovarian endometrioid
adenocarcinoma, treated first with oophorectomy,
hysterectomy, and chemotherapy (intravenous car-
boplatin, taxol, and topotecan), then with intraperito-
neal and intravenous cisplatin and gemcitabine over
3 years, and finally with radiation therapy after re-
currence. Eight years later, she was diagnosed with
papillary thyroid carcinoma (PTC) and underwent total
thyroidectomy and lymph node dissection. Histopa-
thology revealed classic PTC with vascular invasion,
extrathyroidal extension, and three perithyroidal nodal
involvement. Despite high-dose radioactive iodine
ablation and long-term thyroid-stimulating hormone
suppression therapy, PTC recurred on the left lateral
neck 4 and 8 years later, treated surgically on both
occasions (Fig 1A). Tissue samples from ovarian tumor
(n = 1), primary PTC (n = 10), and two recurrent PTC
excisions (n = 1 each) were submitted for molecular
profiling (Methods). The locations of tissue samples
from primary PTC thyroidectomy, as documented in
pathology reports with approximate relative positions
and temporal annotations, are depicted in Figure 2A.

Methods

Written informed consent was obtained from the pa-
tient under Dana-Farber Cancer Institute’s Institutional
Review Board 09-472. Molecular analysis was per-
formed on formalin-fixed paraffin-embedded tumor
samples and germline DNA obtained from a peripheral
blood sample as previously described.8 Detailed
analysis methods presented in the Data Supplement.

Results

Molecular origins and evolution of primary ovarian and
secondary papillary thyroid cancers. Prior intratumoral
heterogeneity studies have revealed considerable var-
iations in genetic makeup in tumors across anatomic

locations and disease stages,9 which we hypothesized
may inform molecular origins and evolution of this
secondary PTC, given aggressive course and prior
clinical context. We evaluated multiregional and mul-
titemporal samples (12 thyroid and one ovarian) to
interrogate genetic makeup of ovarian, primary, and
recurrent PTC. Along with an ovarian cancer sample
collected in 1999, 10 samples were collected from
different locations in total thyroidectomy and two
samples from PTC locoregional recurrences (Fig 1A).
Germline analysis did not identify any known patho-
genic genetic alteration associated with ovarian or
thyroid cancer or cancer-related genetic syndrome.
Comparison of somatic genomic features, including
mutations and copy-number alterations of these sam-
ples, indicated that ovarian and thyroid tumor did not
share common genetic alterations and originated from
genetically distinct tumorigenic events (Fig 1B, Data
Supplement). The ovarian cancer harbored canonical
somatic mutations (eg, PTEN and SMARCA4 muta-
tions), whereas PTC harbored driver events including
RBPMS-NTRK3 fusion and a TERT promoter mutation,
both associated with aggressive PTC behavior (Fig 1B,
Data Supplement).10,11

To explore the evolutionary relationship between tumor
foci in these multiregional and multitemporal thyroid
samples, we clustered mutations to subclones and
built a phylogenetic tree representing subclone rela-
tionships (Figs 2A and 2B: Methods). All PTC sub-
clones shared a 1q amplification and canonical driver
events implicated in PTC oncogenesis (RBPMS-
NTRK3 fusion and TERT promoter mutation; Fig 2B,
Data Supplement). We observed four distinct phylo-
genetic groups across all PTC samples with varying
degrees of subclones. Eight samples fell into one of two
phylogenetic branches on the basis of their clonal
architecture: B1EJA, B1EJE, B1EJC, and B1EJ5 were
dominated by the most recent common ancestor of all
PTC subclones and a closely related descendant
(Figs 2A and 2B: blue branches); B1EJ4, B1EJ9,
B1EJB, and B1EJ6 samples were dominated by a
different descendant of the most recent common
ancestor (Figs 2A and 2B: purple branches). Ana-
tomically, these samples were spatially near each
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other within the same phylogenetically defined groups (Figs
2A and 2B: matching color in pie chart and tree). One site
(B1EJ7) had the most diverse subclones (Figs 2A and 2B:
green branches). The two samples corresponding to
locoregional recurrences (B1EJN and H4P3K) shared
similar dominant subclones with total thyroidectomy PTC
sample (B1EJ8). Sample B1EJ8 was from an area of tumor
present at thyroidectomy resection margin and in closest

spatial proximity to recurrences (Figs 2A and 2B: red
branches), supporting the relationship between pathologic
findings and molecular spatial patterns of recurrent thyroid
carcinoma.

Cisplatin mutational signature was present in primary and
recurrent PTC two decades after chemotherapy. To examine
sources of mutagenesis underlying mutation patterns ob-
served in this PTC, we performed mutational signature
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FIG 1. Genomic landscape of the patient’s ovarian and PTC. (A) Timeline of sample collection, the patient’s clinical course, and treatment history
identified in ovarian (1999-2002) and thyroid cancer (2010-2020). (B) The CoMut7 plot illustrates select single nucleotide and insertion/deletion
events, as well as CNA, RBPMS-NTRK3 RNA fusion, and TERT promoter status. The plot also includes the mutation burden, presence of the
platinum signature determined by deconstructSigs and SigProfiler, and tumor purity as determined by ABSOLUTE. Each row represents the
mutation or copy-number status for the indicated gene, and each column represents a unique tumor sample (ovarian or PTC samples). Two
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FIG 2. The spatial and temporal tumor heterogeneity in PTC. (A) A map of the PTC sample locations collected
during the initial 2010 thyroidectomy (three orange boxes with 10 samples) and subsequent surgeries for
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analysis on ovarian cancer and PTC samples (Methods).
Both ovarian and PTC tumors harbored the ubiquitous
clock-like (SBS1 and SBS5) mutational signatures (Data
Supplement). Only PTC samples, obtained 11-19 years
after exposure to platinum chemotherapy, had evidence of
platinum mutational signatures (SBS31 and SBS35; Data
Supplement).

We then calculated the likelihood of observing amutation in
the specific trinucleotide context induced by a specific
signature (Methods and Fig 3, Data Supplement). An ex-
ample of a missense mutation mostly attributed to the
clock-like (SBS1 and SBS5) signatures was an A[C.T]G
alteration in NOTCH1 (Figs 3A and 3B). Additional mu-
tations related to the platinum chemotherapy signatures
across PTC samples were identified in genes such as
EPHA3, SMAD4, and GATA3 (Figs 1B, 3A and 3B). The
clonal c.-124C.T TERT promoter mutation is an estab-
lished driver of aggressive PTC (along with the c.-146C.T
mutation)11-15 and was found in a mutational context, C
[C.T]T, characteristic of the platinum chemotherapy
signature (Methods and Figs 3A and 3B, Data Supple-
ment). This mutation was present in all PTC tumor samples
(Figs 1B and Data Supplement) and thus links an event
driving thyroid cancer pathogenesis to treatment exposure
occurring decades previously.1,2

Discussion

Recent studies discussed the chemotherapy mutational
signatures that have been detected in metastatic tumors or
in secondary hematologic malignancies.1-6 However, mo-
lecular origins and evolution of secondary solid tumors in
patients previously exposed to platinum-based chemo-
therapy remain to be elucidated, although there are par-
adigms of chemotherapy-induced mutagenesis leading to
drug-resistant clones and affecting clinical outcomes.1,2

Here, PTC molecular profiling at different time points
and locations revealed significant intratumoral heteroge-
neity and genetic alterations distinct from an ovarian cancer
observed in the same patient (Fig 1 and Data Supplement).
Thyroid cancer is typically considered largely homoge-
neous at the molecular level, with the The Cancer Genome
Atlas study proposing two major classifications: BRAF-like
and RAS-like.16 Literature supports the presence of con-
comitant mutations, heterogeneous presence of driver
mutations (such as BRAFV600E), and discordant profile of
primary and metastatic PTC.17-20 By exploring evolutionary
relationships across multiregional and multitemporal
samples from the same patient, we illustrated the rela-
tionships between different subclones, and branches of
samples with distinct subclones associated with the ana-
tomical locations of collected samples (Fig 2 and Data
Supplement). As the pathology report noted positive
margins on excision of the patient’s tumor during total
thyroidectomy, it is possible that locoregional recurrences
arose from remnant cancer cells escaping radioactive

iodine ablation. No BRAF or RASmutation was identified in
primary and recurrent PTC samples. Instead, all PTC
samples harbored RBPMS-NTRK3 fusion, TERT promoter
c.-124C.Tmutation, and 1q amplification, suggesting that
these genetic alterations are closely linked with this PTC’s
pathogenesis and aggressive features (Figs 1 and 2).
NTRK-altered PTC is rare, comprising under 2% of cases,
and is characterized by multinodular growth, prominent
fibrosis, extensive lymphovascular spread, and high risk of
recurrence and metastatic disease,10 consistent with this
patient’s tumor pathology and behavior. Similarly, TERT
promoter mutation, enriched in poorly differentiated and
anaplastic thyroid carcinomas,11-15 and 1q amplification
are associated with higher disease stage.16

Platinum chemotherapy mutational signatures were ob-
served in all PTC samples, a footprint present 19 years after
chemotherapy exposure (Data Supplement). Tumor loca-
tion and primary versus recurrent site did not affect the
degree of platinum mutational signatures observed; how-
ever, we demonstrated that c.-124C.T TERT promoter
single base substitution in C[C.T]T context was mostly
attributed to a platinum-associated mutational signature
(Fig 3 and Data Supplement). Although ionizing radiation is
a well-established risk factor for PTC, and gene fusions (in
particular RET-PTC rearrangements) and copy-number
alterations are enriched in radiation-induced PTC,21,22 no
such link has been recognized for chemotherapy. Yet, in a
study of 12,547 childhood cancer survivors, treatment with
alkylating agents was associated with increased PTC risk,
beyond the relative risk attributable to prior ionizing radi-
ation therapy.23 This PTC case harbored uncommon ge-
netic patterns with NTRK fusion and 1q amplification.
Taken together with prior knowledge of how chemotherapy
may induce DNA damage and breakpoints,24,25 these
findings provide amechanistic hypothesis for how platinum
mutagenesis might have induced a TERT promoter mu-
tation and contributed to the aggressive course of this
patient’s PTC.

This study may offer a mechanistic explanation for elevated
thyroid cancer risk in patients after platinum chemotherapy
exposure,2,23 who may benefit from increased awareness
and lower threshold to screen for secondary PTC. For those
exposed to platinum chemotherapy who later develop
thyroid cancers, assessing for rare but prognostically sig-
nificant driver events may be informative. The American
Thyroid Association guidelines26 do not specifically address
thyroid cancer screening in chemotherapy-treated patients,
and there are limited data on the impact of chemotherapy
on thyroid tumorigenesis. Future studies of a larger cohort
of thyroid cancer patients with exposure to chemotherapy
for a previous cancer will be necessary to determine
whether there is a larger pattern of platinum chemotherapy-
induced driver mutations explaining increased incidence of
thyroid cancer seen in this population.
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