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Rapid determination of chlorophyll content is significant for evaluating cotton’s nutritional and physiological status.
Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection.
However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as
samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility
of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral
preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build
models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate
transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on
spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine
regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better
than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning
could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility
for evaluating the nutritional status of cotton in the field.

1. Introduction

Cotton is one of the most important economic crops due to
its excellent natural properties. The growth and
development of cotton are inseparable from photosynthesis.
Chlorophyll (Chl) is the most important organic molecule in
the photosynthesis of green plants and a vital component of
leaf chloroplasts [1]. Chl content can be used to assess the
process of photosynthesis and the potential maximum CO,
assimilation rate [2], and determining Chl content is an
important part of the evaluation of cotton’s physiological
status. The changes in Chl content reflect the plant’s
photosynthetic capacity and indirectly reveal their nutri-

tional status, senescence, and disease stress [3]. Hence, fast
and accurate detection of Chl content is essential. The
conventional methods for Chl content detection mainly
include ultraviolet-visible spectrophotometry [4] and high-
performance liquid chromatography [5]. Although these
methods are feasible to measure Chl content with good
reproducibility and high accuracy, defects such as laborious,
poor timeliness, and irreversible sample damage limited
their application. In recent years, nondestructive methods
have been developed to detect internal components of
plants. Hyperspectral technology has been widely studied
and has proven effective in determining Chl content in
various plants [4, 6-8].
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There are two main approaches for the research on the
detection of leaf Chl based on hyperspectral technology:
building models based on direct spectral data or vegetation
index. For the former, the model is established based on the
full spectra or a few bands with characteristic spectral
responses [7, 9-11]. For the latter, the model is constructed
based on multispectral vegetation indices established
according to the characteristic bands [12, 13]. No matter
which method is used, establishing a multivariate model is a
commonly used approach for Chl content detection based
on hyperspectral technology. However, hyperspectral
technology coupled with multivariate analysis has some prob-
lems in practical applications. The acquired spectra are
affected by wvarious factors, such as the noise in the
measurement environment, the difference in chemical and
physical properties of the samples, and even the different
instruments [14]. Variations in feature spaces and data distri-
butions may make the model built based on the previous batch
of samples hard to be used for the next. It is also difficult to
apply the model established by the same plant species between
different varieties or measurement conditions [15]. A typical
way to solve this problem is to develop a new model when
the samples or measurement conditions are changed. How-
ever, this approach is not a priority since it requires collecting
many new samples and is costly and time-consuming. Making
corrections in which the variations are fully considered can
help the model be reused in the new dataset and reduce the
cost of constructing new models. Some calibration transfer
methods have been proposed to solve the problem that the
model based on the data obtained from a specific instrument
fails to be reused for another, such as segmented direct stan-
dardization (PDS) [16], direct standardization (DS) [17], and
some other methods [18]. Then, calibration transfer is

developed to evolve model adaptation across different data-
sets [19]. There are two approaches to achieve calibration
transfer. The first one is to reduce the differences between data
in different domains, such as spectral preprocessing. And
make the model learn general representations that cover the
main data features. Spectral preprocessing is a commonly used
calibration transfer method as the first step of spectral process-
ing analysis [20]. Spectral preprocessing can reduce and elim-
inate the influence of various nontarget factors, enhance
spectra commonality, and simplify subsequent analysis and
modeling calculation processes to improve models’ predictive
ability and robustness. The performance of the models based
on spectra preprocessed by different pretreatment varies. In
general, optimal spectral pretreatment selection is empirical
and tentative. Each pretreatment is suitable for certain situa-
tions, and detailed information can be found in the literature
[20]. Another one is to use additional algorithms to calibrate
data between different domains. However, this type of calibra-
tion transfer algorithm requires standard samples. Generally,
more standard samples can achieve better performance.
However, it is often hard to collect spectra of standard samples
under varied conditions. Besides, in regression tasks, the data
distributions of standard samples are also of great influence
in performing a good calibration transfer. It is also a big chal-
lenge to select the standard sample with appropriate distribu-
tion of statistical values. Therefore, realizing simple and
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effective calibration transfer between different datasets
remains an urgent problem to be overcome.

Transfer learning has been recently used to transfer
knowledge between different domains. At present, transfer
learning has been successfully applied in recognition tasks in
computer vision [21, 22] and the classification of hyperspectral
images [23, 24]. As for the application of transfer learning in
spectra analysis, Feng et al. [15] used transfer learning
methods to achieve disease classification for different rice
varieties. The fine-tuning method yielded the highest accuracy
in the majority of transfer tasks. Liu et al. [25] employed a pre-
trained CNN based on spectra measured in laboratory
conditions and explored the potential of using transfer learn-
ing to make the model adaptable to airborne spectra. Puneet
et al. [26] developed a pretrained CNN and transferred the
model between different measurement instruments using the
fine-tuning method. Recently, Zhang et al. [27] applied
fined-tune transfer learning and amplitude- and shape-
enhanced 2D correlation spectrum and achieved the knowl-
edge transfer between simulated dataset and field observation,
improving the inversion accuracy of winter wheat Chl content
under different field scenarios. These studies show the great
potential of deep transfer learning in calibration transfer.

Although great progress has been made in detecting chlo-
rophyll content in plant leaves, there is still a lack of research
on the adaptability of models under different conditions.
Therefore, the main purpose of this research is to investigate
the feasibility of spectral preprocessing combinations and deep
transfer learning for the calibration transfer of Chl content
prediction models in cotton leaves. The specific objectives
include the following: (1) compare the leave spectral charac-
teristics of the whole growth cycle of two cotton cultivars; (2)
explore the optimal spectral preprocessing method for model
calibration transfer between cultivars; (3) establish a CNN
model for Chl content prediction based on the optimal pre-
processed spectra and apply the CNN model trained on a spe-
cific variety of cotton to another with fine-tuning; and (4) use
the saliency map to visualize the key wavelengths captured by
the fine-tuned CNN.

2. Materials and Methods

2.1. Sample Preparation. An experiment was carried out
from April to October in 2021 at the Hangzhou Raw Seed
Growing Farm (30°22'58.85" N, 119°56'7.80" E), Hangzhou,
Zhejiang province, China. Six nitrogen rates (0, 120, 240,
360, 480, and 278kg/hm?®) were set in this experiment.
Two cotton cultivars were tested: Lumianyan 24 (LMY24)
and Xinluzao 53 (XLZ53). Cotton seeds were provided by
Shihezi University, Shihezi, the Xinjiang Uygur autonomous
region, China. All the treatments were arranged in the ran-
domized complete block design with 3 replicates. A total of
36 plots were sown, and individual plots were sized 4 x 2
m. Three cotton rows consisted of a spacing distance of
0.6m. The width of the irrigation ditch between the two
adjacent plots is 1 m. In addition to nitrogen, the dosage of
phosphate fertilizer (P,0;) and potassium fertilizer (K,0)
was 150 kg/hm’.
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2.2. Spectra Acquisition. The experiment was conducted at
five growth stages: bud stage (stage 1), flowering stage (stage
2), boll-forming stage (stage 3), peak boll-forming stage
(stage 4), and initial flocculating stage (stage 5). Three plants
in each plot were randomly selected. The leaves at the differ-
ent leaf positions were sampled. Leaf spectra were acquired in
reflectance mode with a spectroradiometer (Fieldspec4, Ana-
lytical Spectral Devices (ASD), Boulder, CO USA). The spec-
tral resolution was 3nm for the visible and near-infrared
region (350~1000nm) and 8 nm for the shortwave-infrared
region (1000~2500 nm). Measurement was carried out using
a leaf clip, which provides a calibrated light source. Before leaf
spectra collection, reflectance calibration was performed with
standard white reference. Leaf midrib and edges were avoided
when measuring. Each measurement consisted of 5 scans, and
the average value was recorded as the measurement value. The
spectra of three different regions of each leaf were recorded,
and their mean was taken as the leaf spectrum. Removing
the head of spectra with high noise levels, the spectra within
the range of 430-2500 nm were kept and used for subsequent
analysis. It is worth mentioning that spectra acquired at the
bud stage, flowering stage, and boll-forming stage were cap-
tured in the field. The spectra acquired at the peak boll-
forming stage, and initial flocculating stage were captured in
the laboratory environment.

2.3. Measurements of Chl Content. After spectra acquisition,
each leaf was placed in a labeled and sealed bag stored in an
icebox with a temperature of about 2°C temporarily. The
leaves were quickly transported to the laboratory (Zhejiang
University, Zhejiang Province, China) and were tested for
Chl content. Leaf discs were collected with a hole punch with
a diameter of 0.86 cm. Three leaf discs of each leaf were col-
lected and immersed in 4 mL 95% ethanol. The leaf discs tubes
were placed in a dark environment for about 48h until the
leaves turned white and the Chl was completely leached. A
spectrophotometer (Epoch, BioTek Instruments, Winooski,
United States) was used to measure the absorbance of the
extracted solution at the wavelengths of 470, 649, and
665 nm, which could be utilized to calculate the Chl content
according to the formula in the literature [28]. The cotton
leaves with different Chl content were shown in Figure 1.

2.4. Data Analysis Methods

2.4.1. Outliers Detection. In the whole experiment, the
number of leaves with valid Chl content values for the variety
LMY 24 and XLZ53 were 789 and 795, respectively. To con-
duct better modeling analysis, the method of combining prin-
cipal component analysis and Hotelling T> mentioned in
literature [29] and BoxPlot were used to remove outliers
before data processing. As a result, twenty outliers were
removed for LMY24 and 26 for XLZ53. Therefore, the
number of samples for LMY24 and XLZ53 used for further
analysis were both 769.

2.4.2. Spectral Preprocessing. Some common spectral
preprocessing methods and their combinations have been
used to reduce and eliminate unwanted variation and
improve the predictive ability and robustness of the model.

The methods applied in this study include standard normal
variate transformation (SNV), detrending, multiplicative
scatter correction (MSC), and first-derivative (FD). SNV is
used to eliminate the effect of particle size, surface scattering,
and optical path changes on the spectra [30]. Detrending is
used in conjunction with SNV to correct the baseline drift
of diffuse reflectance spectrum. MSC has been proved line-
arly related to SNV [31], and its role is similar to that of
SNV [30]. In addition, the derivation is commonly used to
improve spectral resolution by calculating the adjacent slope
wavelengths. In general, smoothing is usually used before
derivation to reduce its influence on the signal-to-noise
ratio. In this paper, Savitzky-Golay smoothing was used
before FD preprocess. More detailed information on SNV,
detrending, MSC, and derivation can be found in [31, 32].
In addition to using some preprocessing algorithms
individually, some combinations in which the subsequent
transformation supplemented the previous method were
also considered.

2.4.3. Convolutional Neural Network and Transfer Learning
Method. As one of the representative deep learning
algorithms, convolutional neural network (CNN) achieves
feature and representation learning through convolution
operation. It shows excellent performance in various spectral
classification and regression tasks [15, 33-35]. In this study,
a one-dimensional CNN architecture was constructed for
the regression task, and its structure is shown in Figure 2.
Firstly, a batch normalization layer was added as a standard-
ization process for forcing the distribution of input values of
the convolution layer back to the standard normal
distribution with a mean of 0 and variance of 1. Then, two
convolution blocks were included, in which a convolution
layer and max-pooling layer were set, followed by the batch
normalization layers. Convolutional kernels of different sizes
help extract deep spectral features, and stacked convolu-
tional layers enhance the ability to extract features at
abstraction levels [36]. The number of filters, kernel size,
and strides of the two convolution layers were set as 32, 3,
and 1, respectively. The rectified linear unit (ReLU) served
as the activation for calculating the outputs of the convolu-
tional layers. By utilizing the max-pooling layers, downsam-
pling and dimension reduction were performed to form the
features for the next layers. Then, two fully connected layers
were applied. Each of them was composed of 512 and 32
neurons, respectively. At the end of the network, another
fully connected layer was used for output.

The L2 loss function and an adaptive moment estima-
tion (Adam) optimizer were employed to train the CNN
regression model. A scheduled learning rate was used in
the training phase. In the beginning, the learning rate was
set as 0.005. The learning rate was reduced ten times after
every 200 epochs. According to this rule, the training process
was terminated once the loss stabilized. The batch size was
set to 64.

In transfer learning, a source domain 9, a target
domain 9y, and a task 7 ={y,f(.)} were defined. The
source domain P and the target domain 9 are pairs of {
x; p;}» where x; is the feature space and p; is the probability
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FiGure 1: Cotton leaves with different Chl content.
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FIGURE 2: The architectures of the CNN model and the flowchart of fine-tuning transfer.

distribution corresponding to x;. Generally, the feature space
or the probability distribution of the source domain &g and
the target domain & varies. The y of task I indicates a
label space, and the f(.) implies a predictive function. When
I was conducted, f(.) constructed a model using {x;, p;} in
the domain. The goal of transfer learning is to improve the
performance of the predictive function in the target
domain &, with using the knowledge learned from the
source domain Py [37]. Fine-tuning is a common method
in deep transfer learning. In this study, fine-tuning method
was used to build a model for the Chl content detection of
cotton leaves that could be transferred between different cul-
tivars. The fine-tuning method takes the target dataset as the

new input of the pretrained model and fine-tunes the weight
of original networks. As shown in Figure 2, the spectra of the
source domain were used to train a CNN model, and the
parameters of the layers in the dotted box were kept frozen.
Then, the spectra of the target domain were used to fine-
tune the pretrained model.

2.4.4. Conventional Regression Models. Partial least squares
(PLS) and squares-support vector machine regression
(SVR) models were built using the average spectra of each
leaf and its corresponding Chl content. PLS is widely used
in regression modeling for high-dimensional datasets. PLS
can fit the linear regression relationship between spectral
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variables and Chl content values. Unlike normal multiple
linear regression, PLS takes advantage of the useful informa-
tion in each band and avoids severe collinearity between var-
iables [33]. SVR is a popular machine learning algorithm with
a good generalization ability and helps to solve the high
dimensionality problem. SVR maps variables and target values
to a high-dimensional space through nonlinear transforma-
tion and constructs a linear decision function to achieve linear
regression [38]. The kernel function is especially essential for
model construction. Radial basis function (RBF) shows
powerful processing capabilities for nonlinear problems [39].
RBF kernel was used in this study, and the combination of
the regularization parameter ¢, and the kernel function

parameter g was optimized by grid search. The searching
range of ¢ and g were assigned from 107~10" and 10°~10',
respectively. In this study, five-fold cross-validation was
adopted for PLS and SVR models.

2.4.5. Visualization. Visualization transforms data into
images for the intuitive presentation that contributes to a
clearer understanding. The saliency map is a popular
technique for model visualization, and it can reflect the contri-
bution of each variable to model performance. It is widely used
in two-dimensional image classification due to its advantages
of intuitively showing the importance of each pixel in images.
Recently, it has been extended to analyzing multidimensional
data [15, 40]. In this study, we made a simple modification
based on the method proposed in Feng’s study [15] and made
it suitable for regression problems. Firstly, we trained the CNN
model and obtained the predicted value of Chl. Then, we

calculated the error rate of prediction corresponding to the
following equation:

the predicted value — the measured value
* 100%.

(1)

the error rate =

the measured value

The samples with an error rate within 5% were taken as
“correctly predicted samples.” The saliency map was
computed based on the “correctly predicted samples.” The
computed gradient reflects the influence of each band on the
correct classification. The higher the gradient value, the more
influence it has on the correct prediction. Next, the wave-
lengths for each “correctly predicted sample” were sorted in
descending order of the absolute value of the corresponding
gradient. The first 100 critical wavelengths of each “correctly
predicted sample” were selected, and the frequency of each
wavelength was counted. Finally, the saliency map was plotted
based on the frequency of the important bands.

2.4.6. Software and Model Evaluation. Outlier detection was
conducted in MATLAB R2015b (The MathWorks, Natick,
MA, USA). SNV, MSC, and detrending were performed in
the Unscrambler X 10.1 (Camo AS, Oslo, Norway). FD was
undertaken in MATLAB R2015b (The MathWorks, Natick,
MA, USA). For the model establishment, the construction of
the PLS model was performed in the Unscrambler X 10.1
(Camo AS, Oslo, Norway). SVR was carried out in the scikit-
learn 0.23.1 (Anaconda, Austin, TX, USA) using python 3.1.

The CNN model and fine-tuning were conducted in
MXNetl.4.0 (MXNetAmazon, Seattle, WA, USA).

The coefficients of determination (R?) and root mean
square error (RMSE) of calibration, validation and prediction
set were calculated to evaluate model performance. The R of a
robust model should approach 1, while the RMSE is close to 0.

3. Results

3.1. Spectra Profiles. The average spectra with standard devi-
ation of leaves of two cotton cultivars (LMY 24 and XLZ53)
captured at five growing stages are presented in Figure 3. It
can be observed that the change tendencies of the cotton
leaves of both cultivars were the same. Four peaks (550,
1650, 1820, and 2225nm) and three valleys (670, 1432, and
1950 nm) were observed in spectral curves. The reflectance
peak at 550 nm and the valley around 670 nm were caused
by the Chl absorption [41]. The peak near 1650 nm was des-
ignated as the first overtone of the C-H stretch, and the peak
around 1820nm was assigned to the combination of O-H
and 2 C-O stretches [42]. The bands near 1432 nm had been
attributed to the second overtone of the N-H stretch [42].
Moreover, the wavelengths around 1950nm and 2225nm
were assigned to the second overtone of the C-O stretch
[42] and the combination of the asymmetrical N-H stretch
and NH, rocking [43], respectively. In addition, some
distinct differences between samples from different stages
were shown in the range of 520~580, 750~1350,
1500~1850, and 2200~2400 nm. Such localized differences
can arise from a range of factors such as differences in
intrinsic components, measurement environment, and
operators. The main point is that compositional differences
unrelated to interference are the basis for establishing the
detection model of Chl content.

3.2. Regression Models for All Cotton Leaves. PLS and SVR
models were established based on all leaves. The samples
of LMY24 and XLZ53 were pooled and then sorted
according to the ascending order of the Chl content. The
first and third samples of every three were selected into the
calibration set, and the remaining ones were divided into
the prediction set. The detailed information on the calibra-
tion set and the prediction set are shown in Table 1. The
regression results based on all the leaves are shown in
Table 2. It can be seen that PLS and SVR models gained
an R%, over 0.76. The SVR model outperformed the PLS
model, with the R?, and RMSEP of 0.822 and 3.472. These
results indicated that it is feasible to establish a model for
Chl content prediction of cotton leaves based on visible
and near-infrared spectra. The nonlinear model performed
better, which may attribute to more nonlinear patterns in
the correspondence between the spectrum and chlorophyll
content. In the above analysis, both varieties of cotton leaves
were involved in the modeling, and the samples used for
prediction were also from these two varieties. However, it
is always necessary to transfer the established model to
new cultivars in practice. Therefore, the adaptability and
transfer performance of the model should be fully discussed.
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FIGURE 3: The average spectra with standard deviation (SD) of leaves of two cotton varieties (a) LMY 24 and (b) XLZ 53 captured at five

growing stages.

TaBLE 1: Statistical information of cotton leaves in the calibration
and prediction sets.

Sample set Number Range Mean Standard deviation
Cal 1026 9.690-56.069 32.893 8.300
Pre 512 10.750-54.962 32.848 8.244

TABLE 2: Prediction results for both varieties of cotton.

Model Ry RMSECV R, RMSEP
PLS 0.806 3.651 0.768 3.996
SVR 0.879 2.88 0.822 3.472

3.3. Effects of Different Pretreatments on Model Transfer. The
transfer performance of the models among different culti-
vars and the influence of spectral preprocessing were
explored. The samples of one cotton cultivar were as calibra-
tion set, and the samples of the other were as prediction set.
PLS and SVR models based on one cotton cultivar were used
to predict another. The results are shown in Tables 3 and 4.

It can be seen that when none preprocessing method was
applied, compared with R?., and RMSECV, the R%*, and
RMSEP of all PLS and SVR models decreased and increased
with inconsistent magnitude, respectively. Specifically, tak-
ing the SVR model as an example, when LMY24 was the
source domain, the R’ and RMSECV of LMY24 were
0.867 and 2.981, respectively, while the R*, and RMSEP of
XLZ53 were 0.700 and 4.572. When XLZ53 was transferred
to LMY24, the R?.,, and RMSECV of XLZ53 were 0.896
and 2.687, respectively, while the R*, and RMSEP of
XLZ53 were 0.618 and 5.047. This phenomenon indicated
that when the model built based on LMY24 was transferred
to XLZ53, the prediction performance was better than that

established on XLZ53 aiming to predict LMY24. It indicates
that the containment relationship of spectral signals varies
from different varieties of cotton leaves. It can be inferred
that the spectral characteristics of LMY24 have a higher
containment degree than those of XLZ53. Therefore, explor-
ing suitable methods to make the model based on a single
cultivar applicable to other cultivars is necessary.

Table 3 shows the prediction results of PLS and SVR
models built with spectra of LMY24 for XLZ53 prediction.
The performance of the models established by different
preprocessed spectra varies. In all PLS models for Chl con-
tent prediction of XLZ53, the model based on transformed
spectra by FD + SNV outperformed other models, with R?,
increasing by 14.2% and RMSEP declining by 26.2% based
on the raw spectra modeling. Regarding SVR models, the
results based on FD + MSC preprocessing were slightly bet-
ter than those based on FD + SNV pretreated spectra. The
prediction results of PLS and SVR models built with spectra
of XLZ53 for Chl content prediction of LMY24 are
presented in Table 4. The PLS and SVR models based on
the spectra pretreated by FD + SNV yielded the best results.
Compared with the model built on raw spectra, the R?; of
the PLS model and SVR model based on FD+SNV

pretreated spectra increased by 17.8% and 4.7% and
RMSEP decreased by 14.8% and 3.8%, respectively. Based
on the above analysis, FD + SNV demonstrated great gener-
alization ability and was selected as the optimal
preprocessing method.

3.4. Regression Models Using Spectral Preprocessing and
Transfer Learning. In order to establish a pretraining CNN
model based on the spectra of a single cultivar, the leaves
of each cotton cultivar were redivided into the calibration
set, validation set, and prediction set in a ratio of 3:1:1.
Firstly, a pretrained CNN model based on one cotton culti-
var was established, and then the pretrained CNN was
fine-tuned using the calibration set of another cultivar.
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TaBLE 3: Results of models built on different preprocessed spectra
when LMY 24 was the source domain.

Model  Pretreatment LMY 24 XLZ53
R’.,, RMSECV R?’, RMSEP
None 0.801 3.646 0.734 4.459
MSC 0.789 3.759 0.726 4.593
SNV 0.793 3.713 0.681 5.428
FD 0.824 3.424 0.671 5.091
PLS MSC+ FD 0.810 3.561 0.772 4.021
SNV+ FD 0.789 3.752 0.773 4.140
FD + MSC 0.797 3.680 0.794 3.839
FD + SNV 0.827 3.399 0.838 3.289
None 0.867 2.981 0.700 4.572
MSC 0.878 2.849 0.602 5.260
SNV 0.864 3.008 0.626 5.104
SVR FD 0.874 2.897 0.681 4.713
MSC+ FD 0.872 2915 0.511 5.836
SNV+ FD 0.882 2.808 0.705 4.530
FD + MSC 0.871 2.935 0.732 4.317
FD + SNV 0.874 2.902 0.724 4.384

The numbers are bolded to highlight models with relatively good results.

TaBLE 4: Results of models built on different preprocessed spectra
when XLZ53 was the source domain.

Model  Pretreatment X253 LMY 24
R?’.; RMSECV  R?,  RMSEP
None 0.834 3.408 0.578 5.552
MSC 0.809 3.656 0.577 5.562
SNV 0.793 3.799 0.548 5.846
PLS FD 0.829 3.455 0.573 5.659
MSC+ FD 0.837 3.372 0.651 5.725
SNV+ FD 0.835 3.392 0.639 5.135
FD + MSC 0.837 3.376 0.637 5.209
FD + SNV 0.844 3.308 0.681 4.731
None 0.896 2.687 0.618 5.047
MSC 0.902 2.611 0.635 4.934
SNV 0.893 2.725 0.597 5.182
FD 0.898 2.667 0.639 4.907
SVR MSC+ FD 0.896 2.686 0.638 4913
SNV+ FD 0.904 2.589 0.567 5.375
FD + MSC 0.897 2.679 0.636 4.928
FD + SNV 0.889 2.777 0.647 4.853

The numbers are bolded to highlight models with relatively good results.

Before modeling, FD + SNV pretreatment was applied for
the spectra of both cultivars. The results are shown in
Table 5. All the models built with preprocessed spectra were
superior to the corresponding models established with the
spectra without pretreatment. In addition, the performance
of the fine-tuned CNN was better than that of PLS and
SVR models regardless of preprocessing. The phenomenon

is consistent with the above results in 3.3, indicating the
effectiveness of pretreatment, as well as the effectiveness of
fine-tuning.

When LMY24 was the source domain, the fine-tuned
CNN established by preprocessed spectra outperformed the
PLS and SVR model. Its R? were 0.909, 0.850, 0.870, and
RMSE were only 2.505, 3.248, and 3.020 for calibration set,
validation set, and prediction set of the target dataset. Com-
pared with the PLS model, the RMSE was reduced by
30.42%, 25.49%, and 26.31%. A similar large drop was also
observed in comparison with the SVR model. When
XLZ53 was the source domain, the performance of the
fine-tuned CNN based on FD+SNV pretreatment per-
formed best. The R? were up to 0.889, 0.835, and 0.822,
and the RMSE were 2.708, 3.332, and 3.460 for calibration
set, validation set, and prediction set of the target domain,
respectively. Whether the source domain was LMY24 or
XLZ53, the fine-tuned CNN combined with FD + SNV pre-
treatment yielded the best results. It demonstrated the supe-
rior performance of combining transfer learning and
spectral signal preprocessing for Chl content prediction.
Besides, to further explore the effectiveness of fine-tuning,
CNN models were also fine-tuned with a smaller dataset of
the target domain. The smaller datasets only contain half
of the samples in the original calibration set, and the valida-
tion set, and prediction set remain unchanged. As shown in
Table 5, the result of the fine-tuned CNN using a smaller set
was similar to or slightly lower than that using a full calibra-
tion set, regardless of the preprocessing. Fine-tuned CNN
with a small dataset was still superior to PLS and SVR
models in both transfer tasks. The results show that fine-
tuning is conducive to the knowledge transfer of different
datasets. Satisfactory results can be obtained even if the data-
set of the target domain used for training is relatively small.

3.5. Saliency Map. The saliency map was used for visualizing
the frequency of the critical wavelengths for the Chl content
determination by fined-tuned CNN using different proc-
essed spectra. As shown in Figures 4(a) and 4(c), the critical
bands identified by the fine-tuned CNN using raw spectra
are almost located in the same range. When LMY24 was
the source domain, and XLZ53 was the target domain, the
important wavelengths captured by the fine-tuned CNN
using raw spectra were mainly concentrated in the range of
432~463 nm, 532~571 nm, 607~674nm,702~731 nm,
1374~1411nm, 1859~1879nm, 2198~2251nm, and
2287~2319nm. These spectral ranges greatly overlapped
the located range by the fined-tuned CNN using raw spectra
in the transfer task from XLZ53 to LMY24. These ranges
include bands that have been identified to be closely related
to Chl, such as the bands in the red edge (700~750 nm), red
(630~690nm), and green band (500~580nm) regions [44,
45]. Some of the identified key wavelengths of Chl by fine-
tuned CNN (550nm and 717 nm) were also found to be
associated with Chl detection by other studies [46] [47].
Moreover, the important wavelengths located in the near-
infrared range (1380 nm [48], 2225 nm [43], 1325~1575 nm
and 2125~2275nm [49]) were considered to be sensitive to
nitrogen. In addition, the frequency of the wavelengths
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TABLE 5: Regression results using fine-tuned CNN and conventional models.

S Jtarget domai Pretreatment Model Calibration set”  Validation set” Prediction set”
ource/target domain retreatmen ode R2 RMSE R2 RMSE R? RMSE
PLS 0.719 4.792 0.663 5.596 0.696 5.235
N SVR 0.733 4.297 0.629 5.113 0.667 4.834
one

Fine-tuned CNN 0.850 3.225 0.796 3.786 0.842 3.327
Fine-tuned CNN using a smaller set ~ 0.885 2901  0.802  3.730  0.811 3.643

LMY24/XLZ53
PLS 0.821 3.600 0.754 4.359 0.777 4.098
SVR 0.761 4.065 0.662 4.877 0.761 4.090

FD + SNV ,
Fine-tuned CNN 0.909 2505 0850 3.248 0.870  3.020
Fine-tuned CNN using a smaller set  0.914  2.451  0.815 3.613 0.853  3.207
PLS 0.538 5.749 0.586 5423 0.559 5.810
N SVR 0.537 5.537 0.561 5.429 0.506 5.759
one

Fine-tuned CNN 0.850 3.156 0.746 4.129 0.757 4.036
Fine-tuned CNN using a smaller set ~ 0.734 4235  0.672  4.691  0.689  4.568

XLZ53/LMY24
PLS 0.637 5.140 0.630 5.086 0.636 5.300
SVR 0.654 4.909 0.664 4.928 0.578 5.445

FD + SNV .

Fine-tuned CNN 0.889 2.708 0.835 3.332 0.822  3.460

Fine-tuned CNN using a smaller set  0.892  2.697 0.822 3.458 0.796 3.703

“Calibration set means the calibration set of the target domain; bValidation set means the validation set of the target domain; “prediction set means the
prediction set of the target domain; the numbers are bolded to highlight models with relatively good results.
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FIGURE 4: Saliency map after transfer learning regarding two cotton varieties. (a)-(d) Key wavelengths of for the Chl content determination
by different CNN: (a) the fine-tuned CNN using raw spectra (LMY24—XLZ53); (b) the fine-tuned CNN using FD + SNV preprocessed
spectra (LMY24—XLZ53); (c) the fine-tuned CNN using raw spectra (XLZ53—LMY24); and (d) the fine-tuned CNN using FD + SNV
preprocessed spectra (XLZ53—LMY24).
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TaBLE 6: The CNN architectures used in the experiment.

Layer

CNN1

CNN2

CNN3

CNN4

Alexnet

VGGNet-9

Input

Convolution 1

Fully
connected

Output

1x2071

32 kernels in size
1 x 3 with max
pooling

512 nodes, ReLu

32 nodes, ReLu
1 node

1x2071

32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling

512 nodes, ReLu

32 nodes, ReLu
1 node

1x2071

32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling

512 nodes, ReLu

32 nodes, ReLu
1 node

1x2071

32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling
32 kernels in size
1 x 3 with max
pooling

512 nodes, ReLu

32 nodes, ReLu
1 node

1x2071

96 kernels in size
1 x 11 with max
pooling
256 kernels in size
1 x 5 with max
pooling
384 kernels in size
1 x 3 with max
pooling

384 kernels in size
1x3

256 kernels in size
1x3

4096 nodes, ReLu

4096 nodes, ReLu
1 node

1x2071

64 kernels in size 1
X5

64 kernels in size 1
X 3 with max
pooling

128 kernels in size
1x3

128 kernels in size
1 x 3 with max
pooling
256 kernels in size
1x3
256 kernels in size
1x3

256 kernels in size
1 x 3 with max
pooling

4096 nodes, ReLu

4096 nodes, ReLu
1 node

TABLE 7: Results of fine-tuned models using different CNN architectures.

Calibration set®

Source/target domain Model

Validation set”

Prediction set®

R? RMSE R? RMSE R? RMSE
CNN1 0.921 2.336 0.853 3.217 0.880 2.903
CNN2 0.909 2.505 0.850 3.248 0.870 3.020
CNN3 0.910 2.501 0.821 3.550 0.855 3.184
LMY24/XLZ53
CNN4 0.892 2.739 0.840 3.356 0.855 3.186
AlexNet 0.877 2.923 0.848 3.269 0.852 3.222
VGGNet-9 0.897 2.672 0.819 3.570 0.840 3.348
CNN1 0.891 2.691 0.828 3.399 0.820 3.476
CNN2 0.907 2.454 0.828 3.397 0.818 3.494
CNN3 0.910 2.444 0.836 3.319 0.818 3.497
XLZ53/LMY24
CNN4 0.898 2.599 0.826 3.414 0.817 3.508
AlexNet 0.864 3.003 0.813 3.549 0.819 3.489
VGGNet-9 0.891 2.693 0.813 3.550 0.816 3.509

*Calibration set means the calibration set of the target domain; Pvalidtion set means the validation set of the target domain; “prediction set means the

prediction set of the target domain.

identified by fine-tuned CNN using FD +SNV processed
spectra are shown in Figure 4 (b) and (d). A similar intersec-
tion of the effective wavelengths was observed in the transfer
tasks between two varieties. Different from the bands located
by the fine-tuned CNN based on raw spectra, quite a lot of
essential wavelengths found by the fine-tuned CNN based
on preprocessed spectra were in the near-infrared region
between 2264 and 2479nm, where various nitrogen-

containing bonds were likely to be responsible for the spec-
tra variation [43]. This phenomenon presented in this study
is consistent with the results described by Yoder [50]. Com-
pared with raw spectra, higher correlations between wave-
lengths in the near-infrared region and Chl were observed
with the first-difference transformation (approximating first
derivatives) [50]. Overall, the similarity of high-frequency
wavelengths located by fine-tuned CNN between two
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TaBLE 8: Results of fine-tuned CNN1 models using a dataset with different size.

Calibration set®

Source/target domain Dataset size®

Validation set® Prediction set®

R? RMSE R? RMSE R? RMSE
10% 0.829 3.718 0.706 4.550 0.656 4.807
20% 0.868 3.012 0.789 3.851 0.810 3.651
30% 0.873 2.804 0.802 3.729 0.832 3.433
40% 0.859 3.028 0.817 3.586 0.838 3.372
LMY 24/X1753 50% 0.852 3.237 0.832 3.441 0.842 3.330
60% 0.866 3.058 0.831 3.454 0.841 3.333
70% 0.871 2.961 0.838 3.380 0.844 3.305
80% 0.856 3.153 0.837 3.383 0.846 3.286
90% 0.865 3.086 0.851 3.244 0.852 3.224
100% 0.879 2.895 0.841 3.346 0.864 3.083
10% 0.864 3.484 0.712 4.397 0.701 4.481
20% 0.872 3.238 0.753 4.076 0.729 4.263
30% 0.830 3.579 0.773 3.901 0.753 4.073
40% 0.832 3.405 0.817 3.505 0.792 3.737
50% 0.837 3.387 0.817 3.507 0.801 3.652
XLZ53/LMY24
60% 0.868 3.004 0.795 3.707 0.805 3.621
70% 0.870 3.023 0.821 3.466 0.804 3.626
80% 0.836 3.335 0.821 3.471 0.814 3.533
90% 0.840 3.283 0.813 3.546 0.815 3.528
100% 0.852 3.131 0.822 3.459 0.817 3.507

*Dataset size means the percentage of small dataset size participating in fine-tuning to the dataset size of the original calibration set. *Calibration set means the
calibration set of the target domain; "validation set means the validation set of the target domain; “prediction set means the prediction set of the target domain.

varieties indicated that fine-tuning could realize the transfer
learning of main features between data in similar domains.

3.6. Comparison between the Effect of Different CNN
Architectures  on  Fine-Tuning. The above results
demonstrated that spectral preprocessing combined with deep
transfer learning could achieve effective model transfer
between different domains. However, the impact of different
CNN architectures on the performance of fine-tuned models
deserves further exploration. We evaluated six different CNN
architectures: four self-developed CNNs, modified AlexNet,
and VGGNet. The convolutional layers of AlexNet and
VGGNet were modified to be suitable for one-dimensional
input, and the number of hidden layers of VGGNet was
decreased from 16 to 9. The different CNN architectures are
shown in Table 6. CNN1 is the model with the simplest
structure. The model complexity gradually increases from
CNN1 to VGGNet-9, and VGGNet-9 is the model with the
most complex architecture. In the transfer learning process,
all layers of the pretrained CNN are frozen, except for the last
two fully connected layers. The whole training process of the
model remains the same as the method introduced in Section
24.3. Ten training processes were conducted for each
architecture. The results of the three smallest RMSE values
of the prediction set of the target domain were averaged as
the indicator.
Table 7 shows the results of fine-tuned models using dif-
ferent CNN architectures. It can be observed that the CNN1
architecture performed significantly well, while the

VGGNet-9 architecture had a less satisfactory performance.
When the source domain was XLZ53, the RMSE of the pre-
diction set tended to increase with the increased complexity
level of CNN architecture. When the source domain was
LMY24, the fine-tuned CNNI1 yielded the best results than
other CNN architectures with more complex levels. This
phenomenon exhibited that complex CNN architectures
are unsuitable for the Chl detection model transfer tasks of
cotton leaves between different cultivars. A similar
phenomenon that which highly complex architectures had
poor performance in regression tasks also occurred in the
previous study [51].

3.7. Comparison between the Effect of Different Dataset Size
on Fine-Tuning. The CNN1 with one convolution layer
was chosen as the optimal architecture, and the effect of
small dataset size on the performance of fine-tuned CNN1
models was compared. The model training process remained
consistent with Section 2.4.3 except for the batch size
change. Considering that when the small dataset size was
just ten percent of the original calibration set, the number
of samples was too small, which tends to cause over-fitting
issues, so the batch size in the training process was adjusted
to 32. The fine-tuned CNN1 models using dataset with dif-
ferent dataset sizes are shown in Table 8. No matter for the
transfer task from LMY24 to XLZ53 or from XLZ53 to
LMY24, with the dataset size used for fine-tuning increased,
the performance of the fine-tuned model was gradually opti-
mized, and the RMSE of the prediction set decreased. When
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(b) MSC; (c) SNV; (d) FD; (e) MSC+ FD; (f) SNV + FD; (g) FD + MSC; (h) FD + SNV.

LMY24 was the source domain, and the dataset size used in
fine-tuning reached 50% of the original calibration set, the
RMSE of the prediction set was just 8.1% higher than that
based on the whole calibration set, achieving a satisfactory

result. A similar phenomenon was observed in the transfer
task from XLZ53 to LMY24. When half the samples in the
calibration set were used in fine-tuning, the RMSE of the
prediction set was only 4.1% higher than that using the
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TaBLE 9: The prediction results of PLS models using DS and TCA transformation.
. Calibration set® Validation set” Prediction set®
Source/target domain Method R? RMSE R? RMSE R? RMSE
DS1 0.598 5.485 0.651 5.263 0.583 5.589
DS2 0.546 5.902 0.507 6.198 0.565 5.812
LMY24/XLZ53
DS 3 0.623 5.789 0.687 5.271 0.623 5.935
TCA 0.811 3.652 0.741 4.427 0.788 3.936
DS1 0.466 6.821 0.462 6.950 0.499 6.648
DS2 0.449 6.948 0.461 6.887 0.425 6.989
XLZ53/LMY24
DS 3 0.388 7.456 0.289 8.169 0.452 6.885
TCA 0.600 5.446 0.591 5.406 0.600 5.654

*Calibration set means the calibration set of the target domain; “validation set means the validation set of the target domain; “prediction set means the

prediction set of the target domain.

whole samples in the calibration set, which suggested that
fine-tuning with a relatively small dataset was capable of per-
forming a satisfactory transfer.

4. Discussion

Preprocessing can remove the background information and
noises and keep useful sample-related information as far as
possible, which is essential for establishing reliable and stable
models. As shown in Figure 5, the average spectra without
any preprocessing had a large deviation in reflectance, and
a gap existed between the curves of LMY24 and XLZ53.
The standard deviation of the transformed spectra was
reduced after MSC pretreatment. SNV pretreatment also
resulted in a similar reduction in standard deviation, and
the gaps in spectra curves of the two cultivars narrowed.
Besides, in the curves with FD preprocessing, the average
curves and standard deviation of LMY24 and XLZ53 culti-
vars mostly overlapped. This phenomenon was also
observed in other transformed spectra ever processed by
FD. The spectral differences between varieties caused by
non-cultivars-related factors were minimized to a maximum
extent, indicating that FD pretreatment method has a strong
ability to remove noise and retain information related to
components in the cotton leaves of different varieties.
However, it cannot be easy to intuitively and quantitatively
analyze which combination was better just from the images
of transformed spectra files. Therefore, we compared their
influence on the model through modeling. As shown in
Tables 3 and 4, FD + SNV was superior to others. Some stud-
ies discussed the advantages of spectral preprocessing
methods for improving generalization ability [14, 52]. SNV
showed excellent performance in cross-domain prediction
and narrowed the gap between the spectral curves [14].
FD + SNV was shown effective in calibration transfer across
different datasets [52]. The above results are consistent with
the relatively better modeling results based on FD +SNV
preprocessed spectra in this research.

Transfer learning can solve the problem that a model
built on one dataset cannot be effectively applied to another
dataset. Fine-tuning is one of the effective deep transfer
learning methods. In this study, the optimal preprocessing
was combined with transfer learning to detect the Chl

content of leaves of two different cotton varieties. Results
show that fine-tuning based on a simple neural network
can effectively achieve a well-performed prediction across
domains of various samples. In the study of [26], deep
transfer learning was used for the calibration transfer of
models between different instruments. Fine-tuned CNN
based on a small dataset could achieve a satisfactory predic-
tion for the slave instrument. Moreover, the studies investi-
gated by Wu et al. [15] and Zhang et al. [53] both
demonstrated the great capability of fine-tuned CNN to
make the spectra knowledge of source domain transferrable
to the target domain.

To further verify the proposed method’s superiority, the
presented approach’s performance with conventional cali-
bration and transfer methods was compared. The results of
PLS models based on spectra that have been transformed
by DS [20] and transfer component analysis (TCA) [54]
were provided. The spectra have been preprocessed by FD
+ SNV, and the dataset division and PLS modeling were kept
the same as those in Section 3.4. It is worth noting that in the
process of DS, standard samples were randomly selected for
three times (named DS1, DS2, and DS3) to investigate the
influence of standard sample selection on the model. At each
time, one hundred samples were selected from the source
and target domain and were used for transformation matrix
calculation. Then, all the spectra of the target domain were
transformed based on the transformation matrix. After
completing the corresponding spectra transformation, PLS
models based on the spectra of the source domain were built
and then used for target domain prediction. The results are
shown in Table 9. It can be found that the prediction
performance of the DS model varied when standard samples
were selected differently. Moreover, the prediction perfor-
mance for the three datasets of the target domain after
TCA conversion was better than that after DS
transformation. However, the results of these two methods
are not as good as those based on the method combining
preprocessing and fine-tuning.

Spectral preprocessing contributes to diminishing the
difference in spectra, and deep transfer learning improves
the ability to learn spectral features. The combination of
these two approaches realizes effective calibration transfer
between different domains. This study discussed the
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feasibility of the proposed method based on multiple batches
of two varieties of cotton leaves. However, considering the
high cost of acquiring the labeled data, research on improv-
ing the generalization performance of the model based on
small datasets needs to be strengthened. Besides, the data
distribution between the source and target domains needs
to be considered. That means that how to choose samples
with a reasonable data distribution for fine-tuning is the
most time-saving and labor-saving still need to be further
explored.

5. Conclusion

The development of spectral signal preprocessing equipped
with deep transfer learning presents a new approach for
model transfer between different domains. In this study,
we investigated the potential of using spectral preprocessing
and a pretrained CNN model to determine Chl content in
cotton leaves. The success of the combination of FD and
SNV in improving the transferable performance of PLS
and SVR models between two cotton varieties provides an
effective and standard-free approach for calibration transfer.
The CNN was designed based on preprocessed spectra and
further fine-tuned using spectra of another cotton cultivar.
In the transfer task from the cultivar LMY24 to XLZ53, the
transferred model obtained the RMSE of 2.505, 3.248, and
3.020 for the calibration, validation, and prediction set of
the target domain. Similarly, in the transfer task from the
cultivar XLZ53 to LM Y24, the model achieved a good result,
with the RMSE of 2.708, 3.332, and 3.460 for the three data-
sets of the target domain. The model combining spectral
preprocessing and deep transfer learning obtained a good
result, demonstrating the effectiveness of the proposed
approach. In future studies, more cotton cultivars and more
variations in spectra will be considered to improve the
robustness of the models further.
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