Skip to main content
. 2022 Aug 16;2022:9813841. doi: 10.34133/2022/9813841

Table 5.

Regression results using fine-tuned CNN and conventional models.

Source/target domain Pretreatment Model Calibration seta Validation setb Prediction setc
R2 RMSE R2 RMSE R2 RMSE
LMY24/XLZ53 None PLS 0.719 4.792 0.663 5.596 0.696 5.235
SVR 0.733 4.297 0.629 5.113 0.667 4.834
Fine-tuned CNN 0.850 3.225 0.796 3.786 0.842 3.327
Fine-tuned CNN using a smaller set 0.885 2.901 0.802 3.730 0.811 3.643
FD + SNV PLS 0.821 3.600 0.754 4.359 0.777 4.098
SVR 0.761 4.065 0.662 4.877 0.761 4.090
Fine-tuned CNN 0.909 2.505 0.850 3.248 0.870 3.020
Fine-tuned CNN using a smaller set 0.914 2.451 0.815 3.613 0.853 3.207
XLZ53/LMY24 None PLS 0.538 5.749 0.586 5.423 0.559 5.810
SVR 0.537 5.537 0.561 5.429 0.506 5.759
Fine-tuned CNN 0.850 3.156 0.746 4.129 0.757 4.036
Fine-tuned CNN using a smaller set 0.734 4.235 0.672 4.691 0.689 4.568
FD + SNV PLS 0.637 5.140 0.630 5.086 0.636 5.300
SVR 0.654 4.909 0.664 4.928 0.578 5.445
Fine-tuned CNN 0.889 2.708 0.835 3.332 0.822 3.460
Fine-tuned CNN using a smaller set 0.892 2.697 0.822 3.458 0.796 3.703

aCalibration set means the calibration set of the target domain; bValidation set means the validation set of the target domain; cprediction set means the prediction set of the target domain; the numbers are bolded to highlight models with relatively good results.