Skip to main content
. 2022 Aug 16;2022:9813841. doi: 10.34133/2022/9813841

Table 6.

The CNN architectures used in the experiment.

Layer CNN1 CNN2 CNN3 CNN4 Alexnet VGGNet-9
Input 1 × 2071 1 × 2071 1 × 2071 1 × 2071 1 × 2071 1 × 2071
Convolution 1 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 96 kernels in size 1 × 11 with max pooling 64 kernels in size 1 × 5
2 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 256 kernels in size 1 × 5 with max pooling 64 kernels in size 1 × 3 with max pooling
3 32 kernels in size 1 × 3 with max pooling 32 kernels in size 1 × 3 with max pooling 384 kernels in size 1 × 3 with max pooling 128 kernels in size 1× 3
4 32 kernels in size 1 × 3 with max pooling 384 kernels in size 1 × 3 128 kernels in size 1 × 3 with max pooling
5 256 kernels in size 1 × 3 256 kernels in size 1 × 3
6 256 kernels in size 1 × 3
7 256 kernels in size 1 × 3 with max pooling
Fully connected 1 512 nodes, ReLu 512 nodes, ReLu 512 nodes, ReLu 512 nodes, ReLu 4096 nodes, ReLu 4096 nodes, ReLu
2 32 nodes, ReLu 32 nodes, ReLu 32 nodes, ReLu 32 nodes, ReLu 4096 nodes, ReLu 4096 nodes, ReLu
Output 1 node 1 node 1 node 1 node 1 node 1 node