Skip to main content
. 2022 Aug 16;2022:9813841. doi: 10.34133/2022/9813841

Table 7.

Results of fine-tuned models using different CNN architectures.

Source/target domain Model Calibration seta Validation setb Prediction setc
R2 RMSE R2 RMSE R2 RMSE
LMY24/XLZ53 CNN1 0.921 2.336 0.853 3.217 0.880 2.903
CNN2 0.909 2.505 0.850 3.248 0.870 3.020
CNN3 0.910 2.501 0.821 3.550 0.855 3.184
CNN4 0.892 2.739 0.840 3.356 0.855 3.186
AlexNet 0.877 2.923 0.848 3.269 0.852 3.222
VGGNet-9 0.897 2.672 0.819 3.570 0.840 3.348
XLZ53/LMY24 CNN1 0.891 2.691 0.828 3.399 0.820 3.476
CNN2 0.907 2.454 0.828 3.397 0.818 3.494
CNN3 0.910 2.444 0.836 3.319 0.818 3.497
CNN4 0.898 2.599 0.826 3.414 0.817 3.508
AlexNet 0.864 3.003 0.813 3.549 0.819 3.489
VGGNet-9 0.891 2.693 0.813 3.550 0.816 3.509

aCalibration set means the calibration set of the target domain; bvalidtion set means the validation set of the target domain; cprediction set means the prediction set of the target domain.