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High-throughput estimation of phenotypic traits from UAV (unmanned aerial vehicle) images is helpful to improve the screening
efficiency of breeding maize. Accurately estimating phenotyping traits of breeding maize at plot scale helps to promote gene
mining for specific traits and provides a guarantee for accelerating the breeding of superior varieties. Constructing an efficient
and accurate estimation model is the key to the application of UAV-based multiple sensors data. This study aims to apply the
ensemble learning model to improve the feasibility and accuracy of estimating maize phenotypic traits using UAV-based red-
green-blue (RGB) and multispectral sensors. The UAV images of four growth stages were obtained, respectively. The
reflectance of visible light bands, canopy coverage, plant height (PH), and texture information were extracted from RGB
images, and the vegetation indices were calculated from multispectral images. We compared and analyzed the estimation
accuracy of single-type feature and multiple features for LAI (leaf area index), fresh weight (FW), and dry weight (DW) of
maize. The basic models included ridge regression (RR), support vector machine (SVM), random forest (RF), Gaussian process
(GP), and K-neighbor network (K-NN). The ensemble learning models included stacking and Bayesian model averaging
(BMA). The results showed that the ensemble learning model improved the accuracy and stability of maize phenotypic traits
estimation. Among the features extracted from UAV RGB images, the highest accuracy was obtained by the combination of
spectrum, structure, and texture features. The model had the best accuracy constructed using all features of two sensors. The
estimation accuracies of ensemble learning models, including stacking and BMA, were higher than those of the basic models.
The coefficient of determination (R?) of the optimal validation results were 0.852, 0.888, and 0.929 for LAI, FW, and DW,
respectively. Therefore, the combination of UAV-based multisource data and ensemble learning model could accurately
estimate phenotyping traits of breeding maize at plot scale.

1. Introduction

Leaf area index (LAI) is one of key traits of characterizing
crop growth, which is highly relevant to crop photosynthesis
and transpiration [1-3]. Aboveground biomass (AGB) is an
important basis for crop yield formation [4, 5]. Therefore,
accurate and rapid estimation of maize LAI and AGB is
helpful for high-throughput screening of breeding maize.
The manual measurement of crop phenotypic traits is
intensive in terms of both labor and time [6-8]. Moreover,
destructive sampling of a large area in the field will affect
crop growth. In recent years, unmanned aerial vehicle
(UAV) imaging technology provides an effective means to

obtain crop phenotypic traits at plot scale [9, 10]. UAV
imaging technology has been widely used to research of phe-
notypic trait estimation for crop breeding, including emer-
gence rate [11], LAT [12, 13], plant height [14], biomass
[15], and lodging [16].

Many research findings revealed that the spectrum,
structure, texture, temperature, and other information
extracted from UAV images can be used for estimating crop
phenotypic traits [17, 18]. Spectrum, structure and texture
information have been widely used in estimating crop LAI,
above ground biomass, yield, nitrogen content, and chloro-
phyll content [12, 13, 19, 20]. The fusion of multisource data
can complement each other to improve the accuracy of
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estimating crop phenotypic traits [21]. For example, the
combination of structure and spectrum can effectively solve
the problem of spectrum saturation at later crop growth
stage [22-24]. The potential of multisource data fusion in
estimating phenotypic traits of different breeding maize
materials need to be further explored.

Machine learning methods can estimate crop phenotypic
traits with high accuracy [25-27], which have strong ability
to solve nonlinear problems and flexibility of integrating
multisource data [28-30]. Commonly used machine learn-
ing algorithms include such as support vector machines
(SVM), random forests (RF), and artificial neural networks
(ANN). However, these methods are prone to overfitting in
the case of limited training samples [10]. Ensemble learning
is an extension of machine learning and can improve the
generalization ability by integrating the output results of
each base model through secondary learning methods [30,
31]. There are three common ensemble learning methods,
including bagging, boosting, and stacking [32, 33]. The
ensemble methods of bagging and boosting can perform sec-
ondary learning by assigning higher weights to the samples
with poor training effect, which improves the model predic-
tion accuracy and generalization ability [34, 35]. However,
these two methods can only integrate the same type of deci-
sion tree models, and have difficulty with integrating the
advantages of different types of models. Stacking is a hierar-
chical model integration framework. Firstly, different types
of basic models are used to train the dataset. Secondly, the
training results obtained by each basic model are formed
into a new training set as the input of the second learning
to make the final decision [36, 37]. Because outputs are
derived from multiple basic models, the stacking ensemble
learning can increase accuracy, robustness, and overall gen-
eralization of the estimation model [32, 33, 38]. At present,
there has been limited research on phenotypic traits for
breeding maize materials using UAV-based multisource data
and ensemble learning model. In the reported studies, vari-
ous machine learning including deep learning methods have
been proposed to fuse multisource image data for assessing
crop traits. These models have achieved good accuracy on
specific crops in specific areas, but it is difficult to prove
the universality of these models. Through two phases of
learning, ensemble models may have the potential to unify
the result from different models, which are more beneficial
than traditional machine learning methods.

Due to the uncertainty of model parameter and struc-
ture, Bayesian Model Averaging (BMA) takes the posterior
probability of each basic models as weights in the secondary
learning to obtain a more reliable probability distribution of
predictive variables [39, 40] BMA is considered the most
popular modeling method for avoiding the uncertainty in
the modeling process, which can produce more reliable
and accurate prediction results. At present, BMA has been
widely used in various fields [41-43].

The primary objective of this study was to use UAV-
based digital and multispectral data for estimating pheno-
typic traits of breeding maize materials across all growth
stages by ensemble learning method. Specific objectives were
as follows: (1) test the application potential of spectrum, tex-
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ture, and structure information and their combinations in
estimating maize phenotypic traits, such as LAI, FW, and
DW; (2) compare the performances of five basic models of
machine learning and two ensemble models; and (3) evalu-
ate if data fusion and ensemble learning can improve the
accuracy and stability of estimating phenotypic traits for
breeding maize materials.

2. Material and Methods

2.1. Study Area and Experimental Setup. The experimental
site lied in the Xinxiang County, Henan Province, China
(113°51" E, 35°18' N) (Figure 1).

Xinxiang County belongs to warm temperate continental
monsoon climate zone. The average annual temperature is
14°C in year 2020. The average precipitations are about
550 mm in year 2020 with the wettest months in July and
August. Due to the flat terrain and the fertile soil, the maize
yield in Xinxiang County is generally very high.

The sowed maize inbred line had extensive genetic diver-
sity, which included 483 varieties used in the experiment.
The sowing dates were June 23, 2020. Each genotypic mate-
rial was sowed on a plot. Zheng58 was used as reference
material and sowed every 50 plant lines. There were 492
plots in total. The width of each plot was 1.2m, while the
length was 2.5m. The row spacing of each plot was 0.6 m,
while the plant spacing was 0.25 m. The fertilization and irri-
gation modes in each plot were the same and consistent with
the local conventional modes.

2.2. Data Acquisition

2.2.1. Sample Data Collection. According to genetic diversity
estimation, we selected 55 plots as samples for measuring the
phenotypic traits, including dry weight (DW), plant height
(PH), LAI, and fresh weight (FW). The growth of maize
plants in the sampling plots was relatively uniform. In order
not to affect the grain yield measurement in the harvest
stage, one plant representing the average growth in each plot
was selected in each observation stage. The measuring dates
include July 20, July 30, August 18, and September 18, 2020,
corresponding to the day after sowing (DAS) = 27, DAS = 37
, DAS =56, and DAS =87, respectively. Detailed informa-
tion on PH measurement is found in the study of Shu
et al. [2]. We cut off the maize plant from the root. The
LAI was calculated by the maximum width and length of
each leaf according to the method of Montgomery [44].
The stem, leaves, and ears of the sampling plant were sepa-
rated and measured their FW, respectively. Then the organs
of the sample plant were put in envelopes, respectively, and
dried to constant weight. The total FW and DW (g/m?) of
the sampling plot was calculated by the planting density
and the FW and DW of sample plant. Due to the inconsis-
tency of seedling emergence rate in each observation stage,
the planting density was determined by number of actual
plants per plot.

2.2.2. UAV Imaging. The UAV-based RGB and multispectral
images were obtained on the same day of field observation.
Before imaging, we evenly arranged 11 ground control
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FIGURE 1: Location of the experimental site.

points (GCPs) (Figure 1), and fixed their position with the
RTK (CHCNAYV - T8, Shanghai, China).

The UAV-based RGB data were obtained using by D]I
Phantom 4 Pro v2.0 (DJI, Shenzhen, China) in this study.
The duration of UAV is around 30 minutes. The imaging
sensor is 20 megapixels with the RGB image resolution of
5472 * 3648. The altitude was set to 30 m. The overlap ratio
of images was 80%. The stitching of RGB images was carried
out in Agisoft PhotoScan Professional (Agisoft LLC, St.
Petersburg, Russia). During image splicing, 11 GCPs were
used for geometric correction. Finally, we acquired the digi-
tal surface model (DSM) and digital orthophoto model
(DOM) of the experimental site.

The multispectral images were acquired using by the
Parrot Sequoia imaging system (MicaSense Inc., Seattle,
USA). The Sequoia sensor can obtain four multispectral
bands, including near-infrared, red edge, and red and green
bands. Different bands have different bandwidths. Among
the four bands, the bandwidth of red-edge band is 10 nm,

and the other three are all 40 nm. The imaging system con-
tains the sunshine sensor. During the flight, the multispec-
tral images can be automatically calibrated by the sunshine
sensor with the change of light [45]. The flight height and
overlap rate of UAV-based multispectral images were the
same as the UAV-based RGB images. Radiometric calibra-
tion was performed using standard whiteboard images of
four bands which were acquired before the flight. The stitch-
ing of multispectral images was carried out in the Pix4D-
mapper (PIX4D, Lausanne, Switzerland). Similar to the
stitching process of RGB images, 11 GCPs were used for
geometric correction. Figure 2 shows the RGB (a) and mul-
tispectral (b) images of UAV acquired on July 30, 2020.

2.3. Feature Extraction. Compared with multispectral images,
the RGB images obtained at the same flight height have higher
spatial resolution and are more useful for texture information
extraction. In this study, RGB images were used to obtain can-
opy coverage, PH, and texture information of each plot. The



FIGURE 2: RGB (a) and multispectral (b) images of UAV acquired
on July 30, 2020. (b) The band combination is nir band, red
band, and green band.

DN value of RGB images is less sensitive to the changes of light
intensity. Studies showed that the spectral indices calculated
based on the DN value of RGB images could be used to esti-
mate crop phenotypic traits [12, 13]. Therefore, a series of
spectral vegetation indices were calculated using the DN value
of RGB images and the reflectance of multispectral images to
estimate LAI, FW, and DW of maize plants. The extraction
process of UAV-based feature variables is shown in Figure 3.

2.3.1. Canopy Coverage. Canopy coverage represents the
proportion of crop canopy vertical projection area to ground
area [7, 8, 46]. Canopy coverage can reflect the growth status
of crops [2, 7, 8]. As the spatial resolution of RGB image was
higher than that of the multispectral image, the canopy cov-
erage of each plot was extracted based on the RGB image. In
this study, we used the SVM classifier to extract maize pixels
for calculating the canopy coverage of each plot [47]. SVM
classifier was obtained by calling scikit-learn library based
on Python 3.6. The pixels of RGB image of each sample plot
at each growing stage was classified into maize, soil, shadow,
and others. The vector files obtained in ArcGIS 10.6 (ESRI,
Redlands, USA) and SVM classifier were used to segment
the images, extract maize plants, and calculate the canopy
coverage of each plot in Python 3.6. The RGB images con-
taining only maize plants were obtained through the mask.

2.3.2. Plant Height Estimation. PH is an important parame-
ter to describe the crop growth status, which is proportional
to dry weight of maize plant and is highly relevant to above-
ground biomass and grain yield [48, 49]. Therefore, PH was
used as an independent variable to participate in the model
construction of LAI, FW, and DW. The difference between
DSM and DEM can be used to estimate the crop PH [50].
The detailed process of plant height estimation was referred
to the study of Shu et al. [2].
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2.3.3. Texture Information. Texture information is a com-
mon visual phenomenon. The texture information can
quantify the attributes of surface structure and organization
arrangement. Gray-level cooccurrence matrix (GLCM) is a
widely used method to extract texture information [12, 13],
which reflects the information of direction, distance, and
gray changes of the image. The RGB image only including
maize plants was transformed into the gray image. Then
the texture information of each plot was extracted, and the
specific parameters included mean, variance, contrast,
energy, entropy, homogeneity, autocorrelation, dissimilarity,
and correlation. After many attempts, the size of the sliding
window was set as 7 x 7, and the sliding step was set as 2.

2.3.4. Vegetation Indices. The same as the RGB images pro-
cessing method, we obtained the multispectral images con-
taining only maize plants. The reflectance of each band of
maize canopy in each plot was extracted from RGB images
and multispectral images. In the research of crop growth, it
is a common method to estimate crop phenotypic traits
using vegetation indices constructed by specific bands as
independent variables. These vegetation indices with certain
physical significance not only enhance a certain signal of
vegetation, but also reduce the influence of solar irradiance,
canopy structure, soil background, and other factors [51].
According to the vegetation indices used in previous studies
on crop agronomic parameters, 15 commonly used vegeta-
tion indices were calculated from RGB images (Table 1),
and 18 vegetation indices were calculated from multispectral
images (Table 2).

2.4. Modeling Methods. A variety of feature variables
extracted from UAV-based images were used as input vari-
ables to construct the estimation models of LAI, FW, and
DW. Modeling methods included base machine learning
model and ensemble learning model. The former included
ridge regression (RR), SVM, random forest (RF), Gaussian
process (GP), and K-neighbor network (K-NN). The uncer-
tainty of the prediction results caused by the model structure
and parameters may lead to the fact that the results of a base
model may not well represent the relationship between the
variables [79]. Compared with the individual models, the
ensemble learning model can comprehensively consider the
performance of each model and obtain more reliable results
[80]. Therefore, two ensemble learning methods, stacked
generalization and BMA, were used to compare with the
basic models to improve the accuracy and reliability of
LAI FW, and DW estimation. The RR, SVR, RF, GPR, and
K-NN were used as the basic models for ensemble learning.

Stacked generalization was put forward by Breiman [36],
which is the generalization of multiple layers and models
into a new model. Simple stacking generally includes pri-
mary and secondary models. The primary model is trained
based on the original data, and then the output of the pri-
mary model is applied to the secondary model as a new
input. In order to avoid the data overfitting, the training
set is usually divided into k parts, and the cross-validation
is used to train each model [10, 32, 33]. In general, the stack-
ing model outperform than that of the basic model.
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TABLE 1: Vegetation index calculation formula of RGB images.

Vegetation indices Definition References
g nb The DN value of each band /
EXR ldxr—g [52]
EXG 2%g-r-b [53]
EXGR 3xg-—24xr—> [54]
MGRVI (g -r)(g+7°) (4]
NGRDI (g-r)(g+T) (55]
RGRI rlg [56]
CIVE 0.441 % r—0.881 * g+ 0.385 + b+ 18.78 [57]
VARI (g-1)/(g+r=-b) (58]
WI (9-b)/(r-9) (53]
GLA 2xg-r-bJ2*g+r+b) [59]
RGBVI (g -bxr)/(g>+bxr) [60]
VEG gl (r b *), k=0.667 (61]
COM 0.25 * EXG + 0.3 * EXGR + 0.33 «* CIVE + 0.12 « VEG [59]

Note: g: green; r: red; b: blue.

BMA is a special case of stacked generalization, which
uses the posterior weights instead of multiple linear regres-
sion (MLR) to combine predictions of basic learners. BMA
combines the Bayesian theory with model averaging, and
the final model is obtained by a posteriori probability

weighted averaging based on the model mathematical struc-
ture and all unknown parameters [81, 82]. BMA considers
the uncertainty caused by model selection, including param-
eter uncertainty and model uncertainty. BMA use Bayesian
theorem to obtain the model parameter and the posterior



TABLE 2: Vegetation index calculation formula for multispectral images.
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Vegetation indices Definition References
g» 1> e, nir The DN value of each band /
CI (nir/re) - 1 [62]
DVI nir - r [63]
GNDVI (nir-g)/(nir+g) [64]
GRVI (g-n/(g+r) [61]
MCARI ((re=r)—0.2 % (re—g)) * (re/r) [65]
MNVI (1.5 % (nir’ = r))/(nir* + r +0.5) [66]
MSR (nir/r-1)/(sqrt(nir/r)+1) [67]
MTCI (nir-re)/(re-r) [68]
NDRE (nir-re)/(nir+re) [69]
NDVI (nir-r)/(nir+r) [70]
NLI (nir*-r)/(nir*+r) [71]
OSAVI (1.16 * (nir — r)/(nir + r + 0.16)) [72]
RDVI (nir-r)/(sqrt(nir+r)) [73]
RVI1 nir/r [74]
RVI2 nir/g [75]
SAVI 1.5 * (nir — r)/(nir + r +0.5) [76]
TO 3% ((reg—r)—0.2 % (reg— g) * (reg/r))/OSAVI [77]
TVI 60 # (nir - g) — 100 * (r — g) [78]

Note: g: green; r: red; re: red-edge; nir: near-infrared.

distribution of the model itself, can not only solve the prob-
lem of singularity model, but also directly select the
model [83].

In this study, five machine learning methods superim-
posed on a two-layer model were used to estimate the LAI,
FW, and DW of breeding maize based on UAV-based fea-
tures. All the models were verified by 5-fold cross-validation.

The estimation models of RR, SVR, RF, GPR, and KNN
were first constructed, respectively, and then the prediction
results were used as input variables to train and verify in
the secondary layer using MLR and BMA. Finally, the esti-
mation results of LAI, FW, and DW were obtained. The flow
of ensemble learning is shown in Figure 4.

2.5. Model Performance Evaluation. A total of 220 samples
were obtained at the four growth stages. 75% of the samples
were used as the training set to construct the model, and the
remaining 25% were used as the testing set to evaluate the
model accuracy. In order to eliminate the random error,
the modeling process was repeated for 100 times. The aver-
age result of the 100 repetitions was taken as the final result.
The model evaluation indices include the determination
coefficient (R?) and root mean square error (RMSE).

3. Results

3.1. Statistical Description of Phenotypic Traits. The statisti-
cal results of the measured PH, LAI, FW, and DW are shown
in Table 3. There were five statistical indicators, including
mean, maximum (Max), minimum (Min), standard devia-
tion (SD), and coefficient of variation (CV). The dispersion

degree was large for each phenotypic trait, and the CV was
more than 50%, indicating that the plant line and growth
stage had a great influence on the canopy structure. The
large data span also provided the basis for the robustness
of the model.

3.2. Plant Height Estimation. For the sample data of four
growth stages, the R* and RMSE range of measured and esti-
mated PH was 0.509~0.694 and 0.109~0.250m (Figure 5).
At the first three stages, there was a slight PH underestima-
tion. At the latter stages, the measured and estimated PH
had good consistency. During the whole growth stages, the
R? and RMSE of measured and estimated PH was 0.932
and 0.191m, respectively, indicating that the maize PH
based on RGB images had high estimation accuracy and
could be used for the subsequent studies of LAI, FW, and
DW. Figure 6 is the heat map of estimated plant height.

3.3. Correlation between Feature Variables and Phenotypic
Traits. In order to explore the correlation between different
feature variables and LAIL, FW, and DW, Pearson correlation
analysis were conducted between UAV image features and
measured phenotypic traits (Figure 7). PH and canopy cover-
age were highly correlated with phenotypic traits (Figure 7(a)).
The correlation coefficients between PH and LAI, FW, and
DW were 0.845, 0.866, and 0.928, respectively, indicating that
structural parameters had great potential in estimating crop
phenotype. The texture information was also strongly corre-
lated with phenotypic traits (Figure 7(b)). The correlation
between RGB spectral vegetation indices and phenotypic traits
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TABLE 3: Statistics of the measured phenotypic traits.

Variables Mean Min Max SD CcvV

PH (m) 1.265 0.338 2.538 0.627 49.510%
LAI 3.068 0.382 9.636 1.876 61.159%
FwW (g/mz) 3710.752 160.448 12204 2919.349 108.182%
DwW (g/mz) 739.532 18.7 3699.765 802.259 78.673%

Note: CV: coefficient of variation; SD: standard deviation.

Estimated PH (m)

T T
1.5 2.0

T
0.0 0.5 2.5 3.0
Measured PH (m)
e DAS=27 e DAS=87
e DAS=37 —-—-1:1line
DAS =56

FIGURE 5: Scatter plot of the measured against estimated maize
plant height.

was the worst, especially LAI. Most RGB spectral vegetation
indices were weakly correlated with LAL

3.4. Validation of Phenotypic Traits. Tables 4-6 show the
mean values of R* and RMSE of LAI, FW, and DW models
using all modeling methods in this study. Single-type feature
variable combined with a base model could effectively esti-
mate LAI, FW, and DW. The estimation accuracy was rela-
tively close constructed with each base model. The model
performance was slightly different due to different kinds of
feature variables and phenotypic traits, among which RR
and RF performed relatively better than the other three.
Among the three kinds of features variables extracted from
RGB images, the order of estimation accuracy was structural
traits > texture > spectrum. In terms of five base models, the
mean values of R? of LAI, FW, and DW of the optimal esti-
mation models constructed by RGB structural parameters
were 0.819, 0.859, and 0.858, respectively, for the validation
dataset. The estimation with multispectral vegetation indices
was much higher than that with the vegetation indices from
visible light bands. For the validation dataset, R* of LAI, FW,
and DW estimation increased by 55.680%, 32.663%, and
27.209%, respectively.
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In order to compare the model performance before and
after feature fusion, we analyzed the estimation accuracy of
LAI, FW, and DW constructed by each basic modeling
method. After the fusion of different feature variables, the
estimation accuracy of various phenotypic traits was
improved on the whole. For the RGB data, the model con-

structed using all feature variables simultaneously had the
highest accuracy. As to the validation dataset, the mean
values of R? of LAL, FW, and DW model were 0.821, 0.871,
and 0.864, respectively. It showed that feature fusion for dif-
ferent variables could improve the model estimation accu-
racy. On the basis of using three kinds of feature variables
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TaBLE 4: Validation of different models for LAI estimation.
Sensor type Feature type Variables num Metrics RR SVM RF GPR KNN Stacking BMA
S 16 R? 0.537 0.521 0.522 0.536 0.521 0.567 0.567
e
P RMSE 1.303 1.330 1.309 1.285 1.316 1.244 1.244
s 5 R? 0.819 0.773 0.787 0.793 0.805 0.816 0.817
r
RMSE 0.808 0.911 0.875 0.868 0.836 0.815 0.810
T 9 R’ 0.770 0.718 0.718 0.727 0.719 0.775 0.775
ex
RMSE 0.912 1.022 1.007 1.000 1.008 0.902 0.900
R? 0.837 0.750 0.807 0.749 0.727 0.837 0.840
RGB Spe + Str 18
RMSE 0.765 0.955 0.832 0.956 0.994 0.762 0.756
R? 0.765 0.719 0.741 0.723 0.718 0.781 0.781
Spe + Tex 25
RMSE 0.924 1.019 0.964 1.006 1.009 0.886 0.888
R? 0.817 0.778 0.794 0.778 0.765 0.818 0.822
Str+ Tex 11
RMSE 0.815 0.902 0.860 0.905 0.919 0.812 0.801
R? 0.821 0.758 0.807 0.756 0.743 0.832 0.835
Spe + Str + Tex 27
RMSE 0.809 0.941 0.834 0.946 0.964 0.780 0.772
R? 0.836 0.787 0.824 0.785 0.791 0.841 0.842
MS Spe 22
RMSE 0.767 0.884 0.795 0.885 0.869 0.755 0.751
R? 0.817 0.763 0.836 0.760 0.756 0.852 0.852
RGB + MS Spe + Str + Tex 49
RMSE 0.824 0.931 0.768 0.933 0.939 0.730 0.730
Note: Spe: spectral features; Str: structure features; Tex: texture features.
TaBLE 5: Validation statistics of different models for fresh weight (g/mz) estimation.
Sensor Feature type Variables num  Metrics RR SVM RF GPR KNN Stacking BMA
S 16 R? 0.639 0.626 0.646 0.624 0.639 0.663 0.665
e
P RMSE 1782.5 1828.8 1754.4 1805.6 1772.2 1711.6 1704.8
St 5 R? 0.859 0.818 0.849 0.831 0.846 0.859 0.861
r
RMSE 1100.4 1266.0 1140.1 1232.4 1147.7 1103.1 1095.0
T 9 R? 0.787 0.761 0.764 0.759 0.775 0.803 0.803
ex
RMSE 1364.1 1467.8 1434.8 1461.4 1406.0 1311.7 1307.5
R? 0.866 0.784 0.851 0.786 0.799 0.87 0.873
RGB Spe + Str 18
RMSE 1077.0 1376.1 1133.6 1376.8 1323.9 1063.7 1046.7
R? 0.766 0.743 0.761 0.749 0.778 0.797 0.799
Spe + Tex 25
RMSE 14375  1513.6  1446.0  1491.1 13959 1332.1 1323.1
R? 0.866 0.805 0.846 0.805 0.804 0.865 0.868
Str+ Tex 11
RMSE 1079.9 1313.9 1151.0 1321.0 1304.7 1084.8 1065.9
R? 0.871 0.778 0.849 0.784 0.8 0.877 0.879
Spe + Str + Tex 27
RMSE 1058.5 1394.2 1140.0 1386.2 1320.9 1035.8 1022.4
R? 0.857 0.849 0.856 0.846 0.838 0.865 0.865
MS Spe 22
RMSE 1121.8 1176.0 1124.7 1173.4 1203.2 1088.7 1088.5
R? 0.858 0.793 0.876 0.799 0.823 0.888 0.887
RGB+MS  Spe+Str+Tex 49
RMSE 11186  1348.0 10359 13323 12422 988.9 987.3

Note: Spe: spectral features; Str: structure features; Tex: texture features.
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TABLE 6: Validation statistics of different models for dry weight (g/m?) estimation.
Sensor type Feature type Variables num Metrics RR SVM RF GPR KNN Stacking BMA
S 16 R? 0.713 0.669 0.71 0.676 0.693 0.723 0.727
e
P RMSE 4423 474.9 441.8 468.0 454.1 432.4 427.6
st ) R? 0.814 0.821 0.858 0.832 0.849 0.862 0.865
r
RMSE 352.3 348.6 304.7 346.4 316.6 302.7 299.6
T 9 R’ 0.766 0.768 0.768 0.761 0.777 0.798 0.802
ex
RMSE 396.8 401.8 396.9 405.8 388.8 369.3 365.3
R? 0.846 0.789 0.861 0.788 0.803 0.864 0.869
RGB Spe + Str 18
RMSE 321.1 377.9 304.6 382.8 363.3 301.7 296.1
R? 0.745 0.737 0.77 0.738 0.767 0.781 0.788
Spe + Tex 25
RMSE 418.4 424.0 394.6 423.0 396.7 384.5 377.8
R? 0.853 0.831 0.865 0.827 0.829 0.869 0.872
Str + Tex 11
RMSE 315.6 339.7 300.3 350.0 339.5 296.6 293.4
R? 0.853 0.789 0.864 0.786 0.798 0.875 0.879
Spe + Str + Tex 27
RMSE 314.5 377.0 302.0 385.4 368.7 289.7 284.8
R? 0.907 0.906 0.905 0.901 0.887 0.914 0913
MS Spe 22
RMSE 253.3 260.8 256.7 266.6 283.1 245.2 246.1
R? 0.898 0.851 0.919 0.849 0.881 0.929 0.929
RGB + MS Spe + Str + Tex 49
RMSE 264.4 318.7 236.3 324.7 286.2 221.6 221.2

Note: Spe: spectral features; Str: structure features; Tex: texture features.

derived from RGB images, we added the multispectral fea-
tures to construct estimation model of various phenotypic
traits. According to the optimal model, the estimation accu-
racy of FW and DW based on the two sensors was improved
to a certain extent compared with the RGB or multispectral
sensor. For the validation dataset of five basic models with
multisensor features, R*> of LAI, FW, and DW of the optimal
estimation models were 0.836, 0.876, and 0.919, respectively.
It indicated that multisensor data fusion could enhance the
estimation accuracy and universality of the model. The opti-
mal uncertainty estimates of three traits using GPR were
shown in Supplement table 1-table 3.

The stacking and BMA models were used to further esti-
mate the phenotypic traits by integrating the results of five
base models. Regardless of multifeature variables or multi-
sensor data fusion, the ensemble learning models performed
better than the five basic models. Based on the ranking cri-
teria of R?, the validation results of the optimal models for
LAIL FW, and DW were 0.852, 0.887, and 0.929, respectively.
The accuracy of ensemble learning model was slightly lower
than that of RR when only structural parameters were used
to estimate LAIL Although the ensemble learning model does
not always performed best, it can minimize the deviation
and randomness of the base model and make the model
more stable. Therefore, the ensemble learning model further
improved the generalization by combining the advantages of
each basic model. Figure 8 shows the scatter plot of the mea-
sured DW, LAI and FW against the estimated values with
BMA model using validation dataset. A good estimation
result was achieved for each phenotypic trait. However, there

were still slight underestimations of phenotypic traits at the
later growth stage of maize.

3.5. Mapping Maize Phenotypic Traits. The LAI, FW, and
DW of breeding maize at four growth stages were estimated
and mapped using BMA estimation model constructed
based on feature variables obtained from two kinds of
images. Figures 9-11 show the LAI, FW, and DW among
maize lines at each growth stage and their dynamic changes
of each plot. The range of the classes for each variable (LAI,
FW, and DW) was based on the quantile method in ArcGIS
software. The LAI showed similar spatial distribution at each
stage, indicating that different maize lines had consistent
growth rate. It may be closely related to the genetic charac-
teristics of the maize lines. In addition, the LAI distribution
was consistent with PH, FW, and DW. On the whole, the
plots with higher PH and LAI had higher FW and DW.
The FW and DW of maize lines in the single stage were dif-
ferent, which may be caused by the adaptability of different
maize lines to the local environment. For example, the life
cycle of tropical maize lines would lengthen in the warm
temperate continental monsoon climate.

4. Discussion

The maize PH was estimated using the UAV-based RGB
images and validated with the measured values in this study.
Good accuracy was achieved, and the R* was 0.9 between the
measured and estimated PH. Four kinds of feature variables
(spectrum, texture, structure, and vegetation indices) were
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FIGURE 9: Estimation map of LAI using BMA-based multisensor data fusion.

extracted from the digital images or multispectral images.
Five basic models and two ensemble learning models were
adopted in the modeling method. For LAI, FW, and DW,
the fusion of multiple features could improve the estimation
accuracy, and the ensemble learning models further
improved the accuracy. High accuracy was realized to esti-
mate the phenotypic traits of breeding maize by integrating
multisource data fusion and ensemble learning.

The spectrum, texture, and structure information of
UAV-based image have been widely used in crop phenotyp-
ing research [84-86]. The multispectral vegetation indices
showed strong correlation with phenotypic traits. This is
because multispectral images have richer spectral bands than
RGB images, especially in the near infrared band, which is
helpful to improve the correlation between maize pheno-
typic traits and vegetation indices. Similar to previous stud-
ies, spectrum data can well estimate LAI, FW, and DW here.
The structure parameters such as plant height and canopy
coverage also achieved high precision, indicating the great
potential in crop phenotypic extraction and application.

However, the single data source may have limitations, such
as the spectrum saturation in the later stage of crop growth
[12, 13, 87, 88]. To effectively solve the problem of spectrum
saturation in the middle and later stage of maize, we tried to
fuse different feature variables to improve the accuracy and
universality of the model [4, 48, 89, 90]. Spectral vegetation
indices were a kind of parameter commonly used in estima-
tion of aboveground biomass and LAI of crops [26, 27, 91].
In previous studies, spectrum was used to estimate crop phe-
notypic traits alone, and the model combined with plant
height, canopy coverage, and texture information achieved
more accurate estimation [18, 92-96]. Similar results were
also found in this study. Among the spectrum, structure,
and texture information, the structural parameters had the
best performance. The structural parameters + texture or
structural parameters + spectrum can improve the model
precision, among which the structural parameters + texture
+ spectrum performed the best. Similarly, multisensor data
fusion can help to improve the accuracy of estimating phe-
notypic traits [97-99]. For example, compared with using
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single-type data source, combination of spectrum and ther-
mal infrared data can increase the overall estimation preci-
sion of the model [100, 101]. Different from wheat
aboveground biomass estimation by using expensive UAV
hyperspectral data [18], good accuracy was also achieved,
and the cost of data acquisition were greatly saved for differ-
ent types of feature variables obtained from digital and mul-
tispectral images used in this study to estimate LAI, FW, and
DW of breeding maize.

Crop growth is influenced by variety, field management,
and environment. The phenotypic traits have complicated
relationships with spectrum, structural parameter, and tex-
ture information. The conventional linear regression model-
ing may be difficult to express their relationships. With the

rapid development of data mining, artificial intelligence,
and crop phenotyping, phenotypic research based on
machine learning has become a hot topic [102, 103]. Com-
pared with the traditional linear regression, machine learn-
ing can achieve classification or regression with high
precision through self-learning [104, 105]. The machine
learning methods commonly used in crop phenotypic study
include RF, SVM, and artificial neural network [92, 106]. RF
method generally performed better than other methods in
estimating phenotypic traits by statistical regression [25,
45, 107]. As to the five base models used in this study, satis-
factory results were obtained in estimating LAI, FW, and
DW of breeding maize, among which RF and RR had better
performance than the others. Improving the accuracy and
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reliability of phenotypic acquisition is a prerequisite for
selecting excellent genotypes. The model integration can
combine the advantages of multiple base models and has
higher estimation accuracy, robustness, and overall induc-
tion ability [108-111]. Feng et al. [32, 33] predicted alfalfa
yield using UAV-based hyperspectral data and found that
the accuracy of the integrated model was superior to all basic
models. Due to the practical limitations, we obtained the
phenotypic traits of 55 sample plots at each growth stage.
Compared with the large sample set, the output of various
model may have great differences. Ensemble learning can
provide a unified and consistent model through decision-
level fusion. Therefore, taken five machine learning methods
as basic models, the ensemble learning methods, included
stacking and BMA, were used to improve the accuracy and
reliability of maize phenotypic traits estimation. The results
showed that both stacking and BMA performed better than
the basic modeling methods in estimating the LAI, FW,
and DW of breeding maize.

Our results showed that the fusion of multisource data
combined with model ensemble learning method can esti-
mate the LAI, FW, and DW of breeding maize with high
accuracy. The study could provide significant guidance for
UAYV imaging technology to study crop phenotypes. In this
study, only three phenotypic parameters were studied. The
data fusion and model integration could be applied to more
breeding phenotypic traits in the future, such as crop bio-
chemical parameters, nitrogen content, chlorophyll content,
and protein content. In addition, thermal infrared imaging
can be used to obtain crop canopy temperature, which is
widely used to monitor water stress, freezing stress, and yield
estimation [94, 112, 113]. We will add thermal infrared data
to further explore its ability in the estimation of breeding
phenotypic traits in the follow-up study. Compared with
conventional machine learning methods, deep learning can
better mine the potential of data and greatly improve the
research accuracy in many aspects [114, 115]. In the follow-
ing studies, we will try to introduce the combination of deep
learning and ensemble learning to further explore the appli-
cation ability of UAV-based imaging technology in breeding
maize phenotypes.

5. Conclusion

This study evaluated the contribution of different feature
variables from RGB sensor, feature variable of same type
from different sensors, and fusion data to LAI, FW, and
DW of breeding maize. The integrated model framework
was built based on five machine learning methods, including
stacking and BMA, to estimate LAI, FW, and DW of maize.
The results showed that no matter which modeling methods,
the performance of multisource data fusion was better than
that of single kind of feature variables on estimating LAI,
FW, and DW. Among the five single machine learning
methods, RF and RR performed better than the other three.
Both stacking and BMA model improved the estimation
accuracy compared to each machine learning method. After
all data of the two sensors were fused, for the LAI, FW, and
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DW, the of the ensemble learning model increased by
1.088%-5.448%, 1.37%-11.854%, and 1.914%-12.698%,
respectively, compared with those of the basic models. The
data fusion of UAV digital and multispectral sensors
improved the estimation accuracy, while the ensemble learn-
ing model further improved the estimation accuracy of phe-
notypic traits. In this study, multisource data fusion and
ensemble learning model were combined to realize high-
accuracy estimation of LAL, FW, and DW of breeding maize,
which could provide support for high-throughput extraction
of phenotypic traits in crop breeding.
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