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Abstract

Post-translational modifications (PTMs) create vast structural and functional diversity of proteins, 

ultimately modulating protein function and degradation, influencing cellular signaling, and 

regulating transcription. The combinatorial patterns of PTMs increase the heterogeneity of 

proteins and further mediates their interactions. Advances in mass spectrometry-based proteomics 

have resulted in identification of thousands of proteins and allowed characterization of numerous 

types and sites of PTMs. Examination of intact proteins, termed the top-down approach, offers 

the potential to map protein sequences and localize multiple PTMs on each protein, providing the 

most comprehensive cataloging of proteoforms. This review describes some of the dividends of 

using mass spectrometry to analyze intact proteins and showcases innovative strategies that have 

enhanced the promise of top-down proteomics for exploring the impact of combinatorial PTMs in 

unsurpassed detail.
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Introduction

The construction of proteins by the ribosome results in thousands of protein sequences 

with unique function-dependent structures. Following translation, proteins are modulated 

by addition of post-translational modifications (PTMs) as well as further shaped by the 

key processes of folding and assembly into multimeric macromolecules to create functional 

structures. Many of the PTMs are reversible and dynamic, offering a means to regulate 

protein activity and subcellular localization while also contributing to dysfunction of pivotal 

biological processes in diseases [1–3]. The vast array of PTMs, each endowing proteins with 

different chemical properties, result in an immense diversity in the proteome with different 

modified proteins known as proteoforms [4–6]. Hundreds of types of PTMs are known, 

ranging from common ones such as phosphorylation, glycosylation and acetylation, to less 

common and even rare ones like sumoylation, cholesterolyation, and S-nitrosylation, among 
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others [3]. Identification and localization of PTMs is a challenging task, exacerbated by the 

broad dynamic range of proteins, both in terms of sizes and abundance, in addition to the 

variations in lability of the PTMs and other chemical properties that influence the ability to 

detect proteoforms [1,2].

Mass spectrometry has proven to be one of the most versatile and powerful methods 

for qualitative and quantitative identification of proteins and their interactions with other 

molecules [7–9]. Numerous advances in sample preparation, fractionation, enrichment, 

MS/MS methods, quantification strategies, and data acquisition and processing methods 

have contributed to the ability to profile thousands of proteins and decipher variations in 

PTMs in a high throughput manner [10–15]. There have also been monumental inroads 

in functional characterization of proteins based on mass spectrometry approaches [16]. 

Mapping PTMs is made even more challenging by the fact that individual proteins 

may harbor a combination of modifications that further regulate their functions and 

activities as well as interactions with other proteins [17–19]. The combinatorial pattern 

of modifications affords an extraordinary way to fine-tune protein function and govern 

downstream signals while at the same time introducing far more heterogeneity into the 

potential protein repertoire. Understanding the co-dependence of PTMs is an enormous 

unsolved problem that demands even more advanced analytical strategies for accurately 

deciphering combinatorial modifications and their functional outcomes and elucidating how 

PTMs influence structure. This perspective focuses on the newest mass spectrometry-based 

strategies to advance the characterization of PTMs, particularly emphasizing those methods 

that have the greatest potential for mapping combinatorial PTMs.

Overview of the proteomics workflow

The major workflows for protein identification by mass spectrometry are categorized 

as “bottom-up” and “top-down” (with the intermediate “middle-down” strategy often 

considered a sub-category of bottom-up method) (Figure 1). Conventional “bottom-up” 

proteomics involves enzymatic digestion of proteins into peptides prior to LC-MS/MS 

analysis. Bioinformatics software is utilized to stitch together the original proteins based on 

matching the identified peptides to a proteome-scale database.

Bottom-up proteomics, allowing analysis of thousands of peptides in a single run, 

has become a routine procedure owing to robust nanoscale separation methods, high 

performance MS/MS instrumentation, and development of sophisticated bioinformatics 

tools designed for analysis of LC-MS data [7–9]. Bottom-up proteomics have advanced 

tremendously owing to improvements in enrichment methods, the widespread availability of 

high resolution/high accuracy mass spectrometers, and innovative data acquisition methods 

that enable more peptide identifications. These bottom-up methods excel for quantitative 

applications as well as for achieving unprecedented levels of protein identifications. 

Localizing specific PTMs has also advanced considerably owing to development of 

innovative fractionation and enrichment methods. However, the ability to map multiple 

PTMs, mutations, truncations, and polymorphisms of individual proteins is impeded by 

the analysis of peptides which cover only short sequence sections, often leaving gaps and 

blurring the context of combinatorial modifications.
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The alternative workflow, top-down proteomics, offers several distinct advantages as well as 

notable challenges. The most compelling advantage is the potential to uniquely characterize 

each protein and its modifications (known as a proteoform) in its entirety [20–26]. A 

top-down approach uses the intact mass to identify differing proteoforms based on exact 

molecular compositions and then subsequent fragmentation (MS/MS) to confirm sequences 

and localize modifications. This method has resulted in identification of thousands of 

proteoforms from complex biological samples, such as the over 5000 proteoforms reported 

from human H1299 cells [27] and close to 2000 proteoforms from human fibroblasts with 

over 400 above 30 kDa [28]. This top down workflow has also been adapted for clinical-type 

human samples, such as human tissues and human peripheral blood mononuclear cells (from 

blood draws) to facilitate more translational applications [29–36]. Efforts to further expand 

the number of proteins and proteoforms identified range exploration of methods to improve 

solubility of certain classes of proteins [23]; development of more strategic enrichment, 

fractionation and separation methods to capture low abundance proteoforms and mitigate 

sample complexity [37–40]; and design of elevated informatics to provide more robust, 

user-friendly data processing tools [41,42]. Many of these challenges and concepts have 

been addressed in recent reviews or perspectives [20–26].

One impressive example illustrating the power of the top-down approach is illustrated in 

Figure 2 for a bis-phosphorylated, N-acetylated cardiac troponin proteoform, cTnI, which is 

one key protein in the cardiac troponin complex that regulates contraction and relaxation of 

cardiac muscle [36]. The phosphorylation patterns modulate cardiac contractility and thus 

are critical harbingers of heart disease. After enrichment and purification, cardiac troponin 

proteoforms from cardiac tissue were characterized by a combination of two MS/MS 

methods, electron capture dissociation (ECD) and collisionally activated dissociation 

(CAD), using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry to 

localize the PTMs based systematic analysis of the fragment ion assignments via high 

accuracy measurements and isotope patterns [36].

Owing to unsolved limitations in instrumentation necessary to routinely analyze larger 

proteins (typically ones greater than 30–40 kDa) or those with low abundances, top-down 

methods have yet to surpass bottom-up methods in terms of the breadth and throughput 

of proteome analysis. However, the top-down strategy allows multiple modifications 

to be pinpointed on individual proteins if the fragmentation patterns are sufficiently 

detailed, and this access to mapping combinatorial patterns of modifications is arguably 

the most powerful attribute that remains inaccessible by any bottom-up proteomics 

approach. Capitalizing on and magnifying this asset requires the ability to generate the 

richest fragmentation patterns of proteins and fully dissect those fragmentation patterns to 

maximize the information content. The following sections will consider the evolution of 

ion activation methods utilized for characterization of intact proteins as well as auxiliary 

methods to glean more information from the fragmentation patterns.

Ion activation and MS/MS for intact proteins

An essential keystone in characterizing proteins is the production of extensive series of 

fragment ions that allow confirmation of sequence and PTM information. The MS/MS 
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aspect arguably poses one of the most significant challenges for several reasons. A protein 

must be activated with sufficient energy to generate meaningful fragment ions that map the 

sequence and bracket modifications. Attaining this goal requires generation of hundreds of 

fragment ions, and confident assignment requires valid isotopic patterns and high mass 

accuracy. MS/MS spectra with insufficient assigned fragment ions may allow protein 

identification but not comprehensive characterization of sequence variations or site-specific 

localization of PTMs.

Collisional-based methods (collision-induced dissociation (CID) or collisionally activated 

dissociation (CAD)) remain the mostly popular activation methods in tandem mass 

spectrometry and mesh well with high throughput workflows [43,44]. CID has been used 

for analysis of intact proteins, allowing identification of proteins via database searches 

that match the fragment ions to in silico-generated collections of fragment ions for each 

protein. The relatively low energy deposition of collisional activation, a feature that is 

more pronounced for larger proteins, the dependence on mobile protons to facilitate the 

mechanisms of fragmentation, and the notable preferential backbone cleavages that occur 

adjacent to specific amino acids (such as Pro, Asp, Glu) often results in limited sequence 

coverage [45–47]. These factors have contributed to the development of other activation 

methods, ones that enable more extensive fragmentation of proteins.

Electron-based activation methods (electron capture dissociation (ECD) and electron transfer 

dissociation (ETD)) are currently the most widely used for top-down analysis [48–55]. In 

general, these methods have yielded higher levels of sequence coverage than collisional 

activation methods for intact proteins, with the significant benefit of preserving labile 

PTMs which facilitates site localization. The scope of ECD, originally restricted to FTICR 

systems, has been extended to other platforms owing to the development of a modular 

electromagnetostatic cell that enables ECD on both Orbitrap and TOF platforms [56–59].

Ultraviolet photodissociation (UVPD) has offered another alternative to collisional 

activation for analysis of intact proteins [60,61]. The peptide bond in proteins exhibits strong 

absorption around 190 nm, making it a chromophore well-suited for photoactivation using 

193 nm [62–66] or 213 nm [67–69] photons (two wavelengths that have been utilized for 

UVPD of proteins) and resulting in high energy deposition (6.3 eV or 5.9 eV per photon, 

respectively). Because UV photo-absorption results in excitation of electrons to excited 

electronic states, the fragmentation pathways observed for proteins are rather unique in that 

the most prominent fragment ions are typically a/x ions originating from cleavage of the C 

– Cα backbone bond, in contrast to the cleavage of C-N amide bonds that are dominant for 

collisional activation (b/y ions) or N – Cα bonds for electron activation (c/z ions). Proteins 

may dissociate directly from the excited states or after internal conversion to the ground 

electronic state along with intra-molecular vibrational energy re-distribution, leading to the 

diverse array of product ions that are the hallmark of UVPD [60]. An equally important facet 

of UVPD is the preservation of labile PTMs, facilitating their localization (akin to electron 

activation methods and in contrast to collisional activation).

The widespread availability of high performance mass spectrometers has allow successful 

adoption of the top-down approach for solving a wide range of biological problems. A few 
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specific representative (but by no means comprehensive) examples are briefly summarized 

here to illustrate the growing impact of proteoform analysis by top-down MS/MS methods 

[70–84]. CID and ETD were used to facilitate differentiation of hemoglobin variants in 

blood, pinpointing single amino acid differences and providing diagnostic markers for 

thalassemia screening [72]. ECD and CID were used to identify variations in profiles of 

sarcomeric proteins extracted from septal myectomy tissues from patients with hypertrophic 

cardiomyopathy, revealing alterations in splicing and phosphorylation patterns among FHL2, 

ALP-H, elfin, cypher-5, cypher-6, and calsarcin-1 [75]. Histone proteoforms (H2A, H2B, 

H3, H4) extracted from CD8 T cells obtained after in vivo influenza infection of mice were 

characterized in detail using ETD and CID, unveiling numerous increases in PTMs linked 

to transcriptional activation and correlating with the stage of T cell differentiation [76]. 

The heterogeneity of O-glycan proteoforms of the spike protein receptor-binding domain of 

severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) was determined using ECD 

and CID, identifying eight O-glycoforms as well as a new 2-fucosylated glycan [81]. A 

large scale top-down study reported 30,000 proteoforms expressed from 1690 human genes 

spanning 21 cell types from human blood and bone marrow, representing an impressive 

compilation of a blood proteoform atlas [83].

Although these examples have highlighted the exciting attributes of the top-down workflow 

for protein characterization, particularly in the context of elucidating proteoforms, the 

compelling fruits of top-down methods for complete characterization of combinatorial PTMs 

have not been fully harvested. As observed for all activation methods for characterization 

of intact proteins, performance (primarily in terms of sequence coverage) falters for the 

mid-section of proteins and tends to degrade with the size of the protein. A number of 

factors contribute to the deterioration in performance, but the root cause largely originates 

with the decreasing signal-to-noise as the precursor ion decomposes into a great array 

of fragment ions (sub-division of the finite ion current) and the inability to assign many 

fragment ions. The latter problem arises from congestion of the MS/MS spectra containing 

hundreds of fragment ions in multiple charge states, resulting in overlap in the isotope 

patterns that are essential for confirming fragment ion identities. In addition, assignment of 

fragment ions is typically achieved by matching accurate m/z values to in silico product 

ions referenced to the N-terminus or C-terminus of each protein of interest. Those fragment 

ions that don’t retain the N- or C-terminus, classified as “internal ions”, are generally 

discarded. Owing to these reasons, typical MS/MS spectra of proteins may reveal hundreds 

of assignable fragment ions, in addition to an even greater array of non-assigned ions. The 

loss of information content is particularly critical for advancing the ability to characterize 

combinatorial patterns of PTMs which rely on comprehensive fragmentation to localize 

sites. Four inroads are briefly described to underscore some of the ongoing efforts to expand 

the opportunities of top-down methods for solving the combinatorial PTM puzzle.

Hybrid MS/MS methods

Notable gains in performance are obtained by combining ion activation methods, either 

in tandem or by integrating different MS/MS strategies [85–91]. For example, electron, 

collisional, and photoactivation methods can be combined in several formats, performed 

simultaneously to create a broader range of fragment ions or in series to maximize 
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conversion of non-dissociated precursors into informative fragment ions. Combining 

different activation methods may also be used to decrease the density of fragment ions by 

dispersing them among a greater range of charge states (encompassing a broader m/z range). 

For example, ECD has been combined with UVPD (ECuvPD) or collisional activation 

(EChcD) in order to increase the sequence coverage of subunits of monoclonal antibodies 

(mAbs) as well as intact mAbs, including mapping the key complementarity determining 

regions [91]. 213 nm UVPD has been integrated with ETD and EThcD to expand the 

coverage of monoclonal IgG1, illustrating the reciprocity of orthogonal activation methods 

[88]. In another study, 266 nm UVPD was used to preferentially cleave disulfide bonds in 

combination with ECD for characterization of the resulting proteins [86]. These types of 

hybrid MS/MS methods are generally straight-forward to implement and have motivated 

other efforts to glean insight from top-down spectra.

Ion-Ion reactions

A hugely promising frontier for extending the performance of top-down methods entails 

the integration of ion-ion reactions into the top-down workflow [92]. Ion-ion reactions 

allow manipulation of charge states of ions based on fast and efficient charge reduction 

processes, primarily via gas-phase proton transfer charge reduction (PTCR) reactions as 

originally introduced ~25 years ago [93] and since expanded to other types of reactions 

[92]. For proteins dispersed among a broad range of charge states, PTCR may be used 

to consolidate them into single charge states and significantly increase the signal-to-noise 

ratios [93–95]. Alternatively, PTCR may be used to shift fragment ions to lower charge 

states, thereby decreasing spectral crowding in regions of the MS/MS spectra that are 

densely congested with ions of similar m/z values [97–101]. As illustrated in Figure 3, the 

fragmentation pattern generated by UVPD of carbonic anhydrase (25+ charge state) shown 

in the uppermost trace is dense and packed with fragment ions, many with overlapping 

isotope patterns that impede determination of molecular compositions and prevent ion 

assignment [98]. The ability to alleviate overlap in isotopic distributions of ions is critically 

important for effective MS/MS analysis and identification of proteoforms. By subjecting 

m/z-selected slices of the fragment ion population to reactions with a proton-scavenging 

reagent, fragment ions are shifted to higher m/z regions to alleviate congestion, as shown 

in the four lower traces in Figure 3. Significant improvements in proteoform analysis 

have been obtained by incorporating PTCR, either to fractionate very congested regions 

of MS1 spectra or to disperse fragments over a broader m/z landscape in MS/MS analysis 

in top-down workflows, on high performance Orbitrap or Fourier transform ion cyclotron 

resonance mass spectrometers [94–101]. The impressive performance gains by strategic 

manipulation and concentration of charge states in the gas phase offers one of the most 

compelling opportunities for advancing proteoform analysis.

Internal Ions

As underscored in the examples above, improvements in mass accuracy and resolution, 

ion activation methods, and search algorithms have elevated the characterization of intact 

proteins by top-down approaches. However, careful curation of MS/MS spectra reveal that 

numerous fragment ions are not assigned. Many of these unassigned ions correspond to 
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internal fragment ions, products that do not contain either the N- or C-termini of proteins 

[102–109]. Internal ions are often ignored owing to the substantial computational demands 

to search for them and the corresponding high rate of false positives related to the potential 

to match the mass of an internal ion to others with the same elemental composition that 

are not uniquely anchored to the N- or C-terminus of a protein. The recent introduction 

of the ClipsMS (Comprehensive Localization of Internal Protein Sequences) algorithm 

facilitates searches and assignment of internal fragments [107]. One graphical example of 

the striking array of internal fragment ions identified upon electron ionization dissociation 

of myoglobin (16+ charge state) is shown in Figure 4, indicating numerous fragment ions 

that span sections of the protein [105]. Since these internal ions are not anchored by the N- 

or C-terminus, these ions are typically not assigned in most database search methods. As 

reported in a series of recent studies [103–109], assignment of internal ions offers a means to 

increase the coverages and localization of PTMs, particularly in the mid-sections of proteins 

which are frequently less thoroughly mapped by top-down MS/MS strategies.

Dissecting protein complexes

Advances in top-down methods have inspired efforts to use mass spectrometry to 

characterize protein complexes. This growing field, “native mass spectrometry”, utilizes 

electrospray ionization to transfer intact protein assemblies into the gas phase in a manner 

that preserves quaternary structures [26,110–112]. High resolution mass spectra can reveal 

the stoichiometries of complexes, and subsequent activation can disassemble the complexes 

in a manner that reveals the arrangement of subunits (Figure 5) [113–118]. For example, 

the fast, high energy deposition of surface-induced dissociation (SID) causes disassembly 

of protein complexes without significant unfolding and in a manner that preferentially 

disrupts the weakest interfaces, thus providing direct insight about subunit connectivity 

[119,120]. The possibility of analyzing supramolecular complexes, disassembling them into 

their constituent proteins, and then characterizing each protein in a step-wise top-down 

scheme offers a compelling opportunity to directly explore the compositions of protein 

assemblies in a mode that harmonizes proteomics and structural biology. In this scenario, the 

ability to characterize PTMs of the individual proteins in the complexes has the potential to 

allow construction of structure/functional relationships at an unprecedented level of detail.

Conclusions

Numerous innovative advances in mass spectrometry technologies have accelerated the 

understanding of the interplay between protein structure and function. Integral to extending 

the depth of the structure/function synergy is the ability to exhaustively map combinatorial 

patterns of post-translational modifications. The development of new strategies aimed 

at extracting more information from fragmentation patterns of intact proteins have 

cemented the dividends of the top-down approach, now being applied to increasingly 

complex biological problems such as ribosomes, proteasomes and viruses [26]. Moreover, 

transformative breakthroughs in the development of multiplexed individual ion/charge 

detection mass spectrometry methods offer the potential for unsurpassed gains in sensitivity 

and harvesting information from complex samples [121–123]. The next step requires 

integrating the established methods and upcoming breakthroughs to enable high throughput 
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analysis of all proteins and assemblies in cells, further capitalizing on the emerging field of 

single-cell proteomics [124,125]. This will require inroads in separation methods compatible 

with native mass spectrometry and even more sophisticated data analysis for a systems 

biology approach to understanding structure, function, interactions, and assembly.
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CAD collisionally activated dissociation

ECD electron capture dissociation

ETD electron transfer dissociation

FT-ICR Fourier-transform ion cyclotron resonance

HCD higher energy collisional dissociation

PTM post-translational modification

UVPD ultraviolet photodissociation
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Figure 1. 
Schematic representation of bottom-up and top-down strategies. Bottom-up methods include 

a proteolytic digestion step undertaken on a mixture of proteins of interest, and the resulting 

mixture of peptides is separated and analyzed by LC-MS/MS in which MS1 and MS/MS 

spectra are acquired for the eluting peptides, then evaluated using database search methods 

to identify proteins. Top-down approaches examine intact proteins in which a mixture of 

proteins is separated and analyzed by LC-MS/MS in which MS1 and MS/MS spectra 

are acquired for the intact proteins as they elute, thus maintaining the entire context of 

modifications for each proteoform.
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Figure 2. 
Sequence map showing backbone cleavages caused by ECD (resulting in c/z fragment ions) 

and CAD (yielding b/y fragment ions) of bis-phosphorylated swine cTnI proteoform (with 

Met excision and N-terminal acetylation) and isotopic profiles of four c ions including c6 ion 

with acetylation, c21 with no phosphorylation, c22 with one phosphorylation, and c23 with 

two phosphorylations which localized phosphorylation sites at Ser22 and Ser 23. The red 

“p” represents phosphorylation; Ac, acetylation. Reproduced from [36].
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Figure 3. 
Proton transfer charge reduction (PTCR) reactions may be undertaken on fragment ions 

produced from top-down MS/MS characterization of proteins. A) UVPD of a protein 

generates many fragment ions (F) in a variety of charge states. PTCR using a suitable 

proton-scavenging reagent ion reduce the charge states of fragment ions (charge state z+), 

thus shifting them to lower m/z values (i.e., retaining the same mass m (aside from loss of a 

proton) and a lower charge state (z-1)+) and consequently dispersing the fragment ions over 

a broader m/z range. B) A protein, such as carbonic anhydrase (25+), creates many fragment 

ions upon UVPD. PTCR reactions undertaken on the groups of fragment ions outlined in the 

shaded boxes alleviates congestion in the MS/MS spectra and allows confident assignment 

of a much larger portion of the fragment ions. Adapted from [98].
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Figure 4. 
Electron ionization dissociation of myoglobin (16+ charge state) results in production of 

a large array of fragment ions originating from cleavages of the protein backbone The 

fragment location map indicates the region of the protein sequence covered by terminal 

and internal fragments. The solid gray contoured regions represent those fragment ions 

that include the N-terminus (lower gray contour) or C- terminus (upper gray contour) of 

the protein. The numerous horizontal bars in the middle region of the map represent the 

segments spanned by internal ions, indicating many different sizes of internal ions, none of 

which contain the N-terminal or C-terminal amino acid. Reproduced from [108].
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Figure 5. 
Intact protein complexes transferred to the gas phase are disassembled into protein subunits 

and characterized by MS/MS to allow identification of the proteins within the complexes.
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