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1  |  INTRODUC TION

The blood–brain barrier (BBB) is a complex, highly regulated system 
with multiple cell types influencing its maintenance and formation. 
The BBB forms a privileged environment for the central nervous sys-
tem (CNS), restricting entry of a wide breadth of potential hazards, 
including pathogens, immune cells, antibodies, and pharmaceuticals. 
This tight regulation protects the brain from external insults, but si-
multaneously prevents access of many therapeutics meant to treat 
neuroinflammatory and neurodegenerative disorders. As a result, 
multiple clinical trials have failed despite promise in preclinical stud-
ies, underscoring the need for a more complete understanding of the 

BBB and its modulatory mechanisms. In this review, we discuss the 
composition of the neurovascular unit (NVU), known mechanisms of 
BBB modulation, and potential therapeutic targets for neuroinflam-
matory disorders.

The existence of a selectively permeable BBB was first postu-
lated at the turn of the 20th century when it was noted that water-
soluble dyes injected into the periphery did not permeate the 
CNS,1,2 and dyes injected into the CNS parenchyma did not exit to 
the periphery.2,3 Further complexity of the BBB was demonstrated 
by seminal evidence indicating immune privilege, wherein immune 
cells are excluded and unable to surveille the CNS, over 100 years 
ago by Shirai4 and later confirmed by Murphy and Sturm.5 However, 
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Summary
The blood–brain barrier (BBB) is a selectively permeable barrier separating the pe-
riphery from the central nervous system (CNS). The BBB restricts the flow of most 
material into and out of the CNS, including many drugs that could be used as potent 
therapies. BBB permeability is modulated by several cells that are collectively called 
the neurovascular unit (NVU). The NVU consists of specialized CNS endothelial cells 
(ECs), pericytes, astrocytes, microglia, and neurons. CNS ECs maintain a complex 
“seal” via tight junctions, forming the BBB; breakdown of these tight junctions leads to 
BBB disruption. Pericytes control the vascular flow within capillaries and help main-
tain the basal lamina. Astrocytes control much of the flow of material that has moved 
beyond the CNS EC layer and can form a secondary barrier under inflammatory condi-
tions. Microglia survey the border of the NVU for noxious material. Neuronal activity 
also plays a role in the maintenance of the BBB. Since astrocytes, pericytes, microglia, 
and neurons are all able to modulate the permeability of the BBB, understating the 
complex contributions of each member of the NVU will potentially uncover novel and 
effective methods for delivery of neurotherapies to the CNS.
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even now, the permeability, complexity, and dynamics of the BBB 
are incompletely understood.6,7

The BBB acts as a robust biological gateway, responsible for 
the flow of nearly all molecules and cells passing into and out of the 
CNS.6,8,9 This selective permeability is critical in sparing the CNS 
from many circulating toxins and pathogens and allowing for avail-
ability of necessary nutrients to the CNS.2,10,11 Instead of passing 
through fenestrations in endothelial cells (ECs) as it does in the pe-
ripheral vasculature, material is transported and scrutinized by one 
or more cells closely associated with the BBB.11,12 However, it is this 
very system, designed to protect the CNS, that also hinders thera-
peutic development to treat CNS disorders including multiple scle-
rosis (MS), Alzheimer's disease (AD), Parkinson's disease, traumatic 
brain injuries, and brain cancers.10,11,13 Several researchers have 
even employed artificial intelligence to determine the likelihood of 
small molecules to penetrate the BBB.13,14

This review will examine some of the NVU cell-specific effects 
on BBB permeability as well as the intercellular communication that 
is critical for proper function of the NVU. While other complex CNS 
barriers, including the blood-retinal barrier, the blood-cerebrospinal 
fluid barrier, and the arachnoid layer,15 are also important to con-
sider in therapeutic availability to the CNS, we will only focus on the 
BBB for the purposes of this review.

2  |  STRUC TURE AND ORGANIZ ATION OF 
THE NVU

The NVU is the fundamental multicellular unit supporting the BBB 
and consists of ECs, pericytes, astrocytes, microglia, and neurons 
(Figure 1).6,7 The capillary lumen is the primary area of contact be-
tween the NVU and the periphery, and interfacing factors vary from 
cytokines and hormones to immune cells that have the potential to 
extravasate.16,17 Forming the vessel lumen is specialized CNS ECs, 
which are semipermeable under homeostatic conditions due to the 
presence of tight junctions.6,16,18–20 Perivascular mural cells, or peri-
cytes, have recently been shown to be more complex and varied than 
initially assumed. Pericytes are functionally heterogeneous21,22 and 
further understanding of their diverse roles in the CNS is an active 
area of research. Pericytes were classically described to help govern 
vasoconstriction and dilation of capillaries,23,24 which is highly regu-
lated in the NVU, to limit BBB permeability. Recent studies are be-
ginning to uncover pericyte coordination with other members of the 
NVU, particularly ECs and astrocytes.21,24 Astrocytes are vital to the 
NVU and while the other members of the NVU have critical roles, it 
is largely the astrocytes that set the NVU apart from other capillary 
layers in the body.25,26 Understanding the specific mechanisms by 
which astrocytes regulate tight junctions in CNS ECs could prove in-
credibly beneficial to optimizing BBB permeability for drug delivery. 
Astrocytes are relatively large and abundant CNS trophic cells27 and 
their endfeet form an additional barrier around CNS capillaries.6,25 
The perivascular, or Virchow-Robin, space refers to the area be-
tween ECs and astrocytes and is a key checkpoint prior to entering 

the CNS parenchyma.6,28 Microglia are a recent addition to our un-
derstanding of the NVU. Although astrocytes cover the majority of 
the perivascular space, there are some gaps in coverage. Recently, 
Kisler et al. used two-photon in vivo imaging to observe microglial 
processes covering many of these gaps.29 How involved microglia 
are in the structure of the NVU is still being investigated. By area, 
neurons have a relatively minor role in the structure of the NVU but 
can modulate BBB permeability via neuronal activity.30,31 Due to the 
complex nature of the NVU, it has proven difficult to study. In vitro 
models have been useful; however, the heterogeneity between spe-
cies, individuals, and even CNS regions have added to this investiga-
tional barrier.32,33 Here, we will discuss the components of the NVU 
and how each cell type may impact BBB permeability.

3  |  ENDOTHELIAL CELL S

ECs are found throughout the body and make up the walls of arter-
ies, veins, and capillaries. They form a tube-like structure to allow 
passage of various blood cells and proteins.34 ECs secrete and main-
tain the basal lamina—the extracellular matrix on which they re-
side.35,36 The CNS ECs differ in several ways from peripheral ECs. 
Most notably, they lack the fenestrations found in peripheral vessels 
and instead create a continuous cellular barrier with significantly re-
duced permeability along the capillary lumen.37 Instead, CNS ECs 
form tight junctions which prevent hydrophobic molecules from 
penetrating the endothelial layer unless transported through the 
cell. These tight junctions are responsible for much of the imperme-
ability of the BBB. Tight junctions are composed primarily of claudin-
5, occludin, and other junctional adhesion molecules38 and bind to 
the actin cytoskeleton via ZO-1, ZO-2, or ZO-3.39 Tight junctions are 
highly complex and can vary depending on the proteins coupled.40,41 
Transport of nutrients, waste, and signaling molecules between the 
CNS and the periphery is necessary under physiological conditions 
and is typically achieved by a myriad of EC transporters.6,42 In fact, 
these transporters make up 10–15% of the total protein in CNS ECs 
and allow specific molecules, peptides, and even cells to cross into 
the perivascular space, bypassing tight junctions.33,43

3.1  |  ECs and immunity

Classically, it was thought that immune cells could not access the 
CNS parenchyma.18,44 While mostly impermeable during homeo-
static conditions, CD4+ and CD8+ T cells are allowed passage for 
immune surveillance of the CNS, facilitated by a highly regulated, 
multistep process through a tricellular junction.45 This process in-
volves endothelial ligands vascular cell adhesion molecule (VCAM)-1 
and intercellular adhesion molecule (ICAM)-1 which recognize 
lymphocyte function-associated antigen 1 (LFA-1) and very late 
antigen-4 (VLA-4) on T cells. These interactions arrest T cells on 
the endothelium and allow migration against the flow of blood to 
these tricellular junctions and ultimately extravasation.45,46 These 
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tricellular junctions contain the proteins tricellulin and angulin-1 
which direct and aid T-cell diapedesis.45 While CNS ECs express 
VCAM-1 and ICAM-1 under normal conditions, the expression is 
sparse, limiting the number of leukocytes that can traverse tricel-
lular junctions.45,47

In response to infection, autoimmunity, or injury, the permea-
bility of the BBB is significantly enhanced and can lead to severe 
inflammation.48 This is partially due to an increase in the expression 
of adhesion molecules on the EC surface, primarily ICAM-1 and 
VCAM-1, which can arrest a greater number of immune cells for 
extravasation.49 Inflammation can lead to break down of the tight 
junctions, allowing leukocytes to invade the perivascular space.48 
Many secreted inflammatory factors, cell damage signals, and patho-
gen components can alter tight junction integrity including CCL2 
and transforming growth factor (TGF)-β, which is known to alter 
expression of claudin-5, occludin, and ZO-1.39,50,51 Likewise, tumor 
necrosis factor (TNF)-α, lipopolysaccharide (LPS), and mitochondrial 
damage can induce BBB permeability via actin filament rearrange-
ment.52–55 Prolonged dysfunction of the BBB, as in chronic inflam-
matory CNS diseases such as MS or AD, can lead to permanent CNS 
tissue damage and neuroaxonal loss.56–58 However, although overt 
and/or chronic inflammation can lead to the loss of BBB integrity 

and extensive damage to the CNS, low-to-moderate amounts of 
inflammation can partially restore the BBB and limit peripheral im-
mune cell infiltration into the CNS parenchyma, mitigating injury, or 
infection.56,59–61 Taking advantage of this immunological state and 
exploiting molecular signals used in the formation of tricellular junc-
tions may be a novel avenue for therapeutic development.

3.2  |  Targeting ECs

It is possible to permeate the BBB to treat neurological disorders, 
but the potential bystander effects of leaky BBB during diseases 
such as glioblastoma, MS, AD, and others imposes significant risk. 
The BBB is disrupted in many neurodegenerative and psychological 
disorders. Additional access of immune cells, toxins, or other inflam-
matory mediators could enhance inflammation-mediated damage 
to the CNS. Additionally, BBB dysregulation disrupts homeostatic 
transport across the barrier, which provides trophic factors and con-
trols osmotic regulation during physiological conditions.62 Bypassing 
the ECs of the BBB is a difficult challenge; however, there are several 
other members of the NVU that introduce potentially novel avenues 
for drug targeting.

F I G U R E  1  Cellular components of the neurovascular unit. The NVU is composed of a complex network of cells that are functionally 
diverse. ECs form the walls of blood vessels and capillaries and contribute to the formation and maintenance of the basal lamina and 
extracellular matrix. In addition, tight junctions formed between ECs and expression of adhesion molecules regulate BBB permeability. 
Pericytes reside in the capillary bed and, with regard to BBB integrity, are primarily responsible for modulation of vascular flow as well 
as structural changes in tight junctions and the extracellular matrix. Astrocyte endfeet cover 90%–95% of the area surrounding the BBB 
and contribute to a variety of processes that include, but are not limited to, osmotic homeostasis, trophic factor concentration, molecular 
transport into and out of the perivascular space, and formation of gap junctions under neuroinflammatory conditions. Microglia have been 
found to cover the remaining space around BBB ECs, respond to injury and infection, and regulate tight junction formation between ECs. 
Neurons predominantly communicate with astrocyte endfeet and aid in regulation of tight junctions and molecular transport.
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4  |  PERICY TES

Proportionally, there is a higher density of pericytes in the CNS rela-
tive to peripheral organs,24 suggesting they have a critical role in the 
CNS. As vascular mural cells, pericytes play a large role in the dilation 
of capillaries in the NVU. Of note, pericytes are found in the capil-
lary bed and not surrounding arteries or veins, which house similar, 
but distinct, vascular mural cells, and vascular smooth muscle cells.63 
In addition to vasodilation and vasoconstriction, pericytes also help 
form and maintain the basal lamina.64,65 Control of vascular flow by 
pericytes can indirectly impact the BBB as changes in blood flow 
can allow for more or less cellular contact in the capillary lumen. 
Increases in cellular interaction can stretch and stress CNS ECs,66–68 
causing pericyte dysfunction, which is associated with aberrant im-
mune cell trafficking.69 Further, in mouse models deficient in func-
tional pericytes, there is a loss of vascular control, dysfunctional tight 
junction regulation, and aberrant angiogenic sprouting, highlighting 
the importance of pericytes in maintaining a healthy BBB.69–73

New roles for pericytes continue to be uncovered, including their 
ability to maintain and produce elements of the basal lamina74–77 and 
intricate regulation of tight junctions. Contrary to ECs, TGF-β and 
angiopoietin-1 (Ang-1) signaling in pericytes enhances the expres-
sion of occludin on CNS ECs, reducing the permeability of the BBB. 
TGF-β from pericytes also activates Smad4 signaling to upregulate 
bone morphogenic proteins (BMPs). BMPs can then ensure tight 

adherence of pericytes to ECs via N-cadherins, which is upregulated 
by vascular endothelial growth factor (VEGF), reinforcing the com-
munication and physical interaction between pericytes and CNS 
ECs.78–80 While basal levels of VEGF signaling can reduce BBB per-
meability, excessive VEGF signaling to pericytes can lead to down-
regulation of claudin-5 on ECs and dysregulate BBB tight junctions 
(Figure 2).81–84

4.1  |  Heterogeneity of pericytes

Similar to ECs, pericytes respond robustly to various signaling 
molecules. Inflammatory and non-inflammatory pericytes have 
been described and subdivided into Type-1 pericytes (PC1) and 
Type-2 pericytes (PC2). PC1s are non-inflammatory and tend to 
be the resting state of pericytes without injury or infection. PC2s 
tend to increase in frequency with and are highly responsive to 
inflammation.73,85 It is likely, as is the case with astrocytes and 
microglia that there is a spectrum of activation states, but as the 
study of pericytes is still in its infancy, this has not yet been fully 
elucidated. In young healthy patients, nearly all pericytes exhibit 
a non-inflammatory morphology.71,85,86 However, aging results in 
an increase in the population of inflammatory pericytes, which 
is consistent with enhanced inflammation and BBB permeability 
associated with age.85 Both pericyte subtypes contribute to the 

F I G U R E  2  NVU interaction network. Cells within the NVU interact through intricate signaling mechanisms that allow for proper 
functioning of the BBB. ECs receive a variety of protective signals from other NVU cells that upregulate tight junction formation thus 
enhancing BBB integrity. These factors include, but are not limited to, TGFβ, Ang-1, APOE, Shh, Wnts, glial-derived neurotrophic factor, 
insulin-like growth factor (IGF)-1, and retinoic acid. Contrastingly, ECs may also receive signals that downregulate tight junction proteins, 
particularly during inflammatory events, such as TNFα, NO, MMPs, endothelins, and glutamate that lead to increased BBB permeability. 
Importantly, ECs also maintain the ability to signal to pericytes through VEGF and N-cadherin, which are necessary for BBB maintenance. 
Immune checkpoint proteins, such as the PD-1/PD-L1 complex, regulate the cellular activity of microglia and neurons to modulate BBB 
integrity as well as dampen the inflammatory activity of infiltrating peripheral immune cells, which increases BBB permeability. Finally, 
neuronal activity is a critical modulator of cellular and molecular transport across the BBB.
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basal lamina, but PC2s tend to produce a more irregular basal 
lamina, impacting both ECs and astrocytes.21,85 Additionally, PC2s 
produce less laminin-111 and laminin-211, which leads to cell 
hypertrophy and BBB disruption.87,88 Exposing pericytes to in-
flammatory cytokines, LPS, or reactive oxygen species induces im-
munoreactivity in pericytes, altering their morphology, as well as 
inducing their separation from the basal lamina.87–89 The dynamic 
morphology of pericytes suggests they have a critical role in the 
integrity and function of the BBB, which is altered in pathological 
states and in aging.

4.2  |  Targeting pericytes

Examining the targetability of pericytes and its potential influence 
on the BBB is difficult but may prove promising. Affecting pericytes 
may be a subtler approach to drug penetrance rather than reducing 
the integrity of the EC layer itself. A deeper understanding of how 
pericytes communicate with CNS ECs and astrocytes could reveal 
potential nuanced approaches to bypass the BBB. While pericytes 
may be a promising target to leverage BBB permeability, much about 
pericyte mechanisms of BBB control remains unknown.

5  |  A STROCY TES

Astrocytes are large stellate cells with extensive processes that ex-
tend throughout the CNS.27,90 However, unlike CNS ECs and peri-
cytes, astrocytes are unique in that only the ends of their processes 
are considered part of the NVU (Figure  1). These endfeet cover 
roughly 90–95% of the area surrounding the BBB and have prop-
erties that are unique from the rest of the astrocyte.91–93 Endfeet 
contain aquaporin-4 and the potassium channel Kir4.1 to modulate 
water and ion balance and, lacking tight junctions, astrocytic endfeet 
permit immune cell extravasation.92,94,95 Although endfeet lack the 
barrier that tight junctions provide, ablation of astrocytes leads to 
rapid and extensive BBB deterioration.25,93 And interestingly, early 
studies transplanting astrocytes outside of the CNS demonstrated 
that transplanted astrocytes develop a BBB-like morphology sur-
rounding the peripheral vasculature.96,97 In addition to the physical 
barrier that astrocytes provide, during homeostasis, astrocytes are 
responsible for the transport of material from the perivascular space 
into the parenchyma.6,25 This function makes them excellent and 
critical supportive cells in the maintenance of the BBB.

Astrocytes form gap junctions between endfeet forming a much 
“looser” network of connections compared with that of CNS ECs.98 
Gap junctions are formed by a hexamer of proteins called connexins. 
The material that is transported by a given gap junction is largely 
dependent on the specific combination of connexins that make up 
the junction.99,100 Notable gap junctions in astrocytes are formed by 
connexin 30 and connexin 43, which help mediate glucose and lac-
tate transport to distal neurons.101 Astrocytes use these gap junc-
tions to communicate with other cells of the NVU including neurons, 

microglia, and other astrocytes using ion gradients, electrical signals, 
and signaling molecules.102

5.1  |  Tight junction modulation

Astrocytes release a variety of trophic factors that help maintain a 
functional NVU.103–105 Many of the factors released under physi-
ologic conditions increase the amount and order of tight junction 
proteins between BBB ECs.106,107 For instance, astrocytes secrete 
sonic hedgehog (Shh), which increases tight junctions in CNS ECs 
by inducing Patch1 signaling.107 Other astrocytic factors that can 
enhance tight junctions in ECs include Wnt signaling, TGFβ, and 
apolipoprotein E (ApoE).104,106,108–110 ApoE and TGFβ may work 
indirectly through pericytes to impact EC tight junctions.111,112 
Additionally, astrocytes produce Ang-1, which signals to EC Tie2 
to further upregulate tight junction proteins and reduce adhesion 
molecules, reducing the likelihood of leukocyte entry.113,114 Further, 
astrocytes are incredibly responsive to inflammatory stimuli,115,116 
and during inflammation, it has been shown that BBB ECs downreg-
ulate claudin-5, while astrocytes upregulate tight junction proteins 
claudin-1, claudin-4, and JAM-A.117,118 This suggests that astrocyte 
endfeet form a secondary barrier to prevent excessive immune cell 
entry past the perivascular space, regulating access to the CNS pa-
renchyma.117 This accumulation of peripheral immune cells in the 
perivascular space is often referred to as perivascular cuffing and is 
commonly seen in MS lesions.117,119

However, although astrocytes provide an impressive physical 
barrier, activated astrocytes can also secrete trophic factors, chemo-
kines, and cytokines that dysregulate EC tight junctions and recruit 
peripheral immune cells (Figure 2).25,39,119,120 These factors can in-
clude VEGF, nitric oxide, MMPs, endothelins, and glutamate; all of 
which can downregulate endothelial tight junction proteins.39,121,122 
Importantly, astrocytes also promote a return to homeostasis fol-
lowing an inflammatory event, secreting several beneficial trophic 
factors including Shh, astrocyte-derived Ang-1, glial-derived neu-
rotrophic factor (GDNF), insulin-like growth factor-1, ApoE, and 
retinoic acid. These factors not only prevent EC apoptosis, but also 
stimulate tight junction formation and a return to a homeostatic 
state.116,121 Taken together, astrocytes orchestrate a complex mod-
ulation of the BBB and may represent an amenable cell type for drug 
manipulation.

5.2  |  Astrocytes as an immunologic barrier

Since astrocytes are highly responsive to immune stimuli, they 
have the ability to upregulate a wide array of chemokines and ad-
hesion molecules that can serve as an immunologic barrier to pre-
vent excessive influx of inflammatory cells during a CNS insult 
(Figure  2).120,123 Interestingly, in the event immune cells breach 
the BBB, enter the perivascular space, and cross astrocyte endfeet 
into the parenchyma, astrocytes can express immune checkpoint 
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molecules, or inhibitory receptors, which can induce exhaustion and 
death of leukocytes,124,125 providing the CNS multiple layers of im-
munologic protection. As an example, astrocytes are known to up-
regulate the immune checkpoint protein programmed death ligand 
1 (PD-L1) in response to inflammatory cytokines, primarily interfer-
ons.126 PD-L1 typically signals to cells via programmed death 1 (PD-
1) to reduce activation and induce apoptosis.127,128 While many CNS 
cells, including microglia and even neurons, express PD-1, it is highly 
enriched on immune cells, making them particularly susceptible to 
exhaustion.126–129 In summary, astrocytes act not only as a physical 
barrier, but also a trophic and immunologic barrier to limit and con-
trol the activation state of immune cells that enter the CNS during 
neuroinflammation.

5.3  |  Targeting astrocytes

Astrocytes have great potential as a therapeutic target for BBB 
maintenance. Their ability to weaken EC tight junctions while main-
taining a barrier could prove beneficial in the development of drugs 
to bypass traditional CNS barriers. There are many examples of as-
trocytes guiding various cell types and molecules across the BBB. 
This principle—if better understood—could be leveraged to advance 
CNS drug permeability. Similar to pericytes, astrocytes have great 
influence on the maintenance of EC tight junctions. Elucidating the 
molecular control that astrocytes have over BBB permeability will 
inevitably lead to more avenues of drug delivery.

6  |  MICROGLIA

Microglia are the resident immune cells of the CNS. As such, their 
functions are multifaceted. While they share many similarities with 
peripheral macrophages, they have many distinct characteristics, 
including their origins. Macrophages are generated in the bone mar-
row and circulate in the blood, while microglia migrate from the em-
bryonic yolk sac.130 In general, microglia are responsible for initial 
responses to injury and infection, clearance of waste, synaptic prun-
ing and maintenance, as well as providing several trophic factors to 
other cells of the NVU.130 Although it has been long appreciated that 
microglia is vital to the health of the CNS, surveying along the BBB 
and responding quickly to breaches, they are a relatively recent addi-
tion to the NVU and provide coverage of BBB areas not wrapped by 
astrocytes.29,131 In addition, microglia are known to signal to other 
members of the NVU and communicate with peripheral immune 
cells,6 attracting and/or activating them within the CNS parenchyma 
during injury and infection as sentinels of the CNS.132–135 Activated 
microglia and peripheral immune cells can secrete a number of fac-
tors that modulate BBB integrity (Figure  2). This is discussed in a 
number of reviews, but as an example, TNF-α and TGF-β can be se-
creted from reactive microglia under certain conditions which can 
either increase or decrease BBB integrity, respectively.123,136,137 
While ablation or depletion of microglia did not result in overt BBB 

breakdown,138 recently, microglia was described to intricately asso-
ciate with CNS capillaries and contribute to blood flow regulation 
and vasodilation.139–141 Additionally, microglia are incredibly motile 
and migrate quickly in response to injury, BBB leakage, and/or in-
flammation.142 Finally, similar to astrocytes, microglia can upregulate 
PD-L1 in response to neuroinflammation,143,144 providing multiple 
mechanisms of potential control of the BBB by microglia, although 
there is still much to learn about the intricacies of microglia and their 
impact on BBB permeability.

Given their emerging role in the NVU, the mechanisms underly-
ing microglial regulation of the BBB remain incompletely described. 
Targeting microglia may modify CNS capillary permeability or other 
NVU cells to temporarily allow access to the CNS, but there is still 
much to learn about this exciting new potential target.

7  |  NEURONS

Neurons are the functional unit of the CNS and most other cells in 
the CNS support them, either directly or indirectly.27 Despite their 
indispensable role in the CNS, as a member of the NVU, they do 
not directly provide a physical barrier, but instead release a number 
of factors that modulate other NVU cells27,145 using primarily their 
axons and dendrites.6 Interestingly, like astrocytes, neurons can in-
duce a BBB-like barrier in neighboring ECs,96,97 suggesting neurons 
influence the formation and maintenance of the BBB in vivo.146,147 
Astrocytes and neurons are highly communicative,148,149 providing a 
potential route of BBB control. Additionally, neural activity can influ-
ence the integrity of the BBB,150–152 although it is unclear if neural 
activity directly impacts ECs or if neuronal signals are propagated 
through astrocytes.153

Neuroinflammation can alter the activity of neurons, which in 
turn can lead to alterations in the BBB.150,154 As mentioned above, 
neurons express PD-1, to which astrocytes and microglia can signal 
via PD-L1 expression.127–129 Neuronal PD-1 signaling does not in-
duce apoptosis, but instead hyperpolarizes the neuronal membrane 
to inhibit action potential frequency.129 This in turn could lead to 
a reduction in activity-dependent transport across the BBB.155 
Neurons also produce Wnt ligands which reduce BBB permeabil-
ity by increasing tight junction proteins in ECs.156 While neurons 
partially modulate the BBB via activity, they largely rely on commu-
nication with other NVU members (Figure 2). While more informa-
tion is necessary to determine how neurons might control the BBB, 
neurons represent an unlikely target for BBB permeability modu-
lation given their moderate impact on the BBB and other essential 
functions.

8  |  FUTURE DIREC TIONS

Each cellular component of the NVU has both unique and over-
lapping roles in maintaining BBB permeability. ECs are the 
initial barrier to the periphery, reinforced with tight junctions, 
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specialized to transport material between the periphery and the 
CNS. Pericytes, and to some extent, microglia, regulate vascular 
flow and, while they may also have a structural role, pericytes 
provide critical trophic support to ECs. Astrocytes, and poten-
tially neurons, are critical to the formation of the BBB, aiding in 
tight junction formation. Microglia and neurons also potentially 
modulate BBB permeability through complex signaling networks, 
although this is an emerging field. The intricate dynamics of BBB 
formation, function, and maintenance has created a literal and 
figurative barrier when it comes to therapy development for the 
treatment of chronic neurologic diseases such as glioblastoma, 
MS, and AD. While it is possible to increase the permeability of 
the BBB, this typically results in detrimental off target effects. 
The BBB is disrupted in many neurological diseases, thus addi-
tional interventional disruption would likely prove deleterious as 
unwanted CNS “intruders” including immune cells and large mol-
ecules are able to enter the CNS without proper scrutiny, leading 
to a cascade of osmotic, trophic, and inflammatory dysregulation. 
Thus, optimizing targeted and temporary entry of therapeutics 
into the CNS with minimal BBB dysregulation is the holy grail of 
next-generation neurotherapeutics. Promising modalities include 
encapsulating drugs of interest in a form that allows them to be 
transported through the BBB and astrocyte endfeet or creating a 
transient passage that is quickly repaired. Both of these methods 
are active areas of research using nanoparticles and ultrasonic 
disruption of the BBB, respectively.12,157,158 Ultimately, a deeper 
understanding of how each of the NVU components modulate 
CNS drug accessibility may shed new light on actionable thera-
peutic modalities.
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