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In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) cat-
alyses the initial two critical reactions in the lysine degradation pathway. This
enzyme evolved to be a bifunctional enzyme with both lysine-2-oxoglutarate
reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover,
AASS is a unique drug target for inborn errors of metabolism such as glutaric
aciduria type 1 that arise from deficiencies downstream in the lysine degra-
dation pathway. While work has been done to elucidate the SDH domain
structurally and to develop inhibitors, neither has been done for the LOR
domain. Here, we purify and characterize LOR and show that it is activated
by alkylation of cysteine 414 by N-ethylmaleimide. We also provide evidence
that AASS is rate-limiting upon high lysine exposure of mice. Finally, we pre-
sent the crystal structure of the human LOR domain. Our combined work
should enable future efforts to identify inhibitors of this novel drug target.
1. Introduction
The first step in lysine degradation via ε-deamination, also known as the sacchar-
opine pathway, is catalysed by 2-aminoadipic acid semialdehyde synthase
(AASS). AASS is a bifunctional enzymewith an N-terminal lysine-2-oxoglutarate
reductase (LOR) domain and a C-terminal saccharopine dehydrogenase (SDH)
domain (figure 1a), which are homologous to Saccharomyces cerevisiae LYS1 and
LYS9, respectively [1]. The LOR domain catalyses the reductive deamination of
L-lysine and 2-oxoglutarate into saccharopine (EC 1.5.1.8), which constitutes
the first committed, and possibly rate-limiting, step in lysine degradation. SDH
then oxidizes saccharopine into 2-aminoapidic semialdehyde and glutamate
(EC 1.5.1.9). The bifunctional domain structure is conserved in all animals, but
also Dictyostelium discoideum and plants, and seems to be associated with a func-
tion in lysine catabolism [2]. Fungi such as S. cerevisiae use the saccharopine
pathway for lysine biosynthesis.

Several inborn errors of metabolism occur in the lysine degradation pathway.
Hyperlysinemia caused byAASS deficiency due tomutations inAASS (MIM 238
700), is currently regarded as a biochemical phenotype of questionable clinical
significance [3]. This means that hyperlysinemia can be diagnosed through
biochemical and genetic methods but is considered not harmful to the affected
individual [4–7]. By contrast, two other inborn errors of lysine degradation,
glutaric aciduria type 1 (GA1) caused by mutations in GCDH (MIM 231 670)
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Figure 1. Characterization of AASS and the isolated LOR domain. (a) AASS reaction schema with the LOR and SDH activities. (b) Stable AASS expression in HEK-293
Flp-In cells and its inhibition by saccharopine. 10 mM 2-oxoglutarate (OG) was used as substrate. ***, p < 0.001; ****, p < 0.0001. Error bars indicate s.d. (c)
Progress curves showing catalytic activity of a short (amino acids 21–451) and long LOR construct (amino acids 21–470), with 1 mM OG, measured in triplicate.
Only the average absorption at 340 nm is displayed.
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and pyridoxine-dependent epilepsy caused by mutations in
ALDH7A1 (PDE-ALDH7A1;MIM266 100), are serious diseases.
These diseases are caused by toxicity of the accumulating sub-
strates of the defective glutaryl-CoA dehydrogenase (GCDH)
and antiquitin, respectively. Dietary intervention to decrease
lysine intake is one part of the treatment for both disorders,
which reduces lysine degradation pathway flux. Given that cur-
rent treatment for these diseases is not optimal and that there is
also an endogenous (non-dietary) source of lysine (i.e. through
protein degradation), we and others have hypothesized that
GA1 and PDE-ALDH7A1 can be treated by pharmacological
substrate reduction therapy, through inhibition of AASS [8–10].

There is some debate on the contribution of AASS to the
production of GCDH substrates in the brain [9–14]. However,
recent studies including our own indicate that AASS is well
expressed in human and mouse brain [9–12]. Importantly,
we have shown that genetic inhibition of AASS was highly
effective in limiting the accumulation of GCDH substrates
in cell line and animal disease models of GA1 [10]. Although
brain glutarate remained higher than in WT mice, the level in
Gcdh/Aass double KO mice was 4-fold lower when compared
to Gcdh single KO mice [10]. Since this therapeutic effect is
comparable to the current treatment options, we believe
AASS inhibition is a viable treatment strategy. Inhibition of
the LOR domain is preferred given that it does not lead to
accumulation of potentially toxic saccharopine [15–17].

Given the interest in AASS as a new therapeutic target for
lysine metabolic disorders such as GA1, there is great need
for small molecule inhibitors that provide pharmacological
proof-of-concept for efficacy of this approach. However, two
major bottlenecks to drug discovery for this project remained,
which are lack of a recombinant purification system and a
high-resolution crystal structure of the enzyme. Resolving
these would enable high throughput and virtual screening,
respectively. Structures have been reported for the isolated
human SDH domain (e.g. PDB code 5O1O) and for the
S. cerevisiae LYS1, which has approximately 22% identity
with the human LOR domain [18–20]. However, the low
sequence identity of LYS1 diminishes its usefulness for
drug discovery. Here, we describe enzyme and crystallo-
graphic studies including the first structure of the human
LOR domain. We expect that these results will enable the
future development of a high-affinity LOR inhibitor.
2. Results
2.1. Characterization of AASS-Myc-DDK and

recombinant LOR enzymes
Pilot experiments aimed to overexpress AASS or its individual
LOR and SDH domains in Escherichia coli indicated challenges
in obtaining appreciable amounts of soluble protein. In
order to characterize the protein, we initially transiently trans-
fected HEK-293 cells with a plasmid encoding AASS with a
C-terminal Myc-DDK tag (AASS-Myc-DDK) and used cell
lysates as an enzyme source. Later, we generated and used
Flp-In-293 cells stably overexpressing AASS-Myc-DDK. In
both overexpression methods, LOR activity increased approxi-
mately 30-fold when compared to control lysates and was
reliably determined using a spectrophotometric enzyme
assay (figure 1b). LOR activity measured in the forward



Table 1. Steady-state kinetic properties of AASS-Myc-DDK and the LOR domain in forward and reverse reaction direction. The Km, app of partially purified AASS
from human liver has been reported [21,22]. The pH optima in these studies were 7.8 for LOR forward and between pH 8.8 and 9.5 for LOR reverse. n is the
Hill coefficient. aSubstrate inhibition. Values represent mean ± s.d.

purified
human liver

AASS-Myc-DDK isolated LOR

Km, app (mM)
Vmax, app (nmol
min−1 mg−1)

Km, app
(mM) n

Vmax (µmol
min−1 mg−1) Km (mM) n

forward direction

L-lysine 1.5 65 ± 2 11 ± 1 1.5 ± 0.1 28.8 ± 1.0 24 ± 2 —

NADPH 1 273 ± 99 0.42 ± 0.02 1.8 ± 0.1 65.4 ± 2.7 0.39 ± 0.02 2.1 ± 0.2

2-oxoglutarate 0.08 106 ± 5a 1.2 ± 0.1 1.5 ± 0.1 57.2 ± 1.0 1.4 ± 0.1 —

reverse direction

saccharopine 1.5 7.7 ± 0.1 1.0 ± 0.1 1.9 ± 0.1 443 ± 6 1.7 ± 0.1 2.2 ± 0.1

NADP+ NR 7.4 ± 0.4 1.0 ± 0.1 - 525 ± 5 0.42 ± 0.01 1.6 ± 0.1
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direction was inhibited by saccharopine consistent with its
ability to compete with lysine and 2-oxoglutarate [21].

The apparent steady-state kinetic properties of LOR in
the full-length AASS-Myc-DDKwere compared in the forward
and reverse directions (table 1; electronic supplementary
material, figure S1). The rate of the reverse reaction was con-
siderably slower than that of the forward reaction, which is
consistent with previous reports [23]. Positive cooperativity
for several substrates is consistent with the reported tetrameric
composition [23–25].

In order to optimize production of recombinant isolated
LOR protein in E. coli, we evaluated several versions of
His-tagged proteins for solubility and activity. We screened
different length constructs in order to determine the appropri-
ate domain boundaries. We were able to obtain large amounts
of active soluble protein using an N-terminal His-sumo-tag
construct with the mitochondrial transit peptide membrane
segment removed (amino acids 21–470; figure 1c). This
recombinant LOR was subsequently used to determine the
steady-state kinetic properties. Overall, the kinetic constants
resembled those of full-length AASS-Myc-DDK with the for-
ward reaction velocity being considerably higher than the
reverse (electronic supplementary material, figure S1; table 1).
2.2. AASS is activated by alkylation with N-
ethylmaleimide

To explore if oxidation or reduction of cysteines could affect
LOR activity, we evaluated tris(3-hydroxypropyl)phosphine
(THP) anddithiothreitol (DTT) as reducing agents, andN-ethyl-
maleimide (NEM) as a sulfhydryl alkylating agent. Whereas
DTT had no effect on LOR activity over a wide range of con-
centrations, THP inactivated the enzyme, but only at relatively
high concentrations (greater than 250 µM). Remarkably, NEM
potently activated LOR activity (figure 2a). The activation was
not only concentration-dependent but also time-dependent,
consistent with a covalent modification (figure 2b). At higher
concentrations, the activating effect of NEM disappeared,
but LOR activity stabilized at approximately 70% rather than
showing complete inactivation. To demonstrate that the acti-
vation by NEM is also observed in full-length AASS, we
tested NEM on LOR activity in lysates of Flp-In-293 cells
stably overexpressing AASS-Myc-DDK. In these cell lysates,
LOR activity was also strongly activated by NEM in a concen-
tration- and time-dependent manner comparable to the effects
observed with isolated LOR (figure 2c).

To further establish that NEM activates LOR through
alkylation, we first used OX-133, a monoclonal antibody
recognizing NEM-modified cysteine residues in a sequence-
independent manner [26]. Alkylation of LOR by NEM
paralleled the activationpattern (figure 2d). UsingX-ray crystal-
lography (see below), we identified Cys 414 as alkylated by
NEM. In order to establish if alkylation of Cys 414 is necessary
for activation byNEM,we substituted this residue for alanine or
glutamine. Both p.C414S and p.C414Q variants expressed and
purified well. Both variants were not activated by NEM in con-
trast to theWTLOR (figure 2e). Specific activity of both variants
was higher when compared to WT LOR. Further immunoblot-
ting using the Cys 414 variants showed reduced, but not
absent alkylation suggesting that at higher concentration of
NEM other cysteines may also be modified, but are not
needed for LOR activation (figure 2f ).
2.3. AASS is rate-limiting in vivo upon high lysine
exposure

If an enzyme is truly rate-limiting in a pathway, the concen-
tration of the enzyme (i.e. expression level) determines flux.
This can be evaluated by titrating the activity of an enzyme
with a specific, irreversible inhibitor [27]. Such an inhibitor is
currently not available for AASS. In order to start addressing
the question whether AASS is rate-limiting in vivo, we used
the Aass KO mouse model [10]. If AASS is a rate-limiting
enzyme in vivo, Aass+/− mice, which have a 50% reduction in
AASS expression, should have decreased lysine degradation
flux. We have previously measured key metabolites in a
cohort of animals carrying Gcdh and Aass KO alleles on a
chow diet [10]. We now grouped all mice according to their
Aass genotype. As expected, Aass KO mice had elevated
plasma lysine concentrations (figure 3). Plasma lysine in
Aass+/− mice was comparable to plasma lysine in Aass+/+

mice. This result argues against AASS catalysing the rate-limit-
ing step in lysine catabolism under standard chow-fed
conditions. We then exposed these mouse models to high
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lysine throughdiet and drinkingwater. Under these conditions,
the number of Aass KO alleles explains a significant percentage
(50%) of the variation in plasma lysine concentrations with
Aass+/− animals clearly higher than those of Aass+/+ animals.
Combined, these data suggest that AASS can be rate-limiting
under conditions of high lysine load.

2.4. The crystal structure of the human LOR domain
No human structures have been reported for AASS/LOR,
and the sequence identity with S. cerevisiae LYS1 is relatively
low making structural prediction for the human enzyme chal-
lenging. We initially purified a short construct (amino acids
21–451) that expressed well in E. coli with high purity and a
monodisperse peak on gel filtration. We screened conditions
and obtained crystals that after optimization diffracted to
2.2 Å and solved the structure (PDB 8E8T) by molecular
replacement using the yeast LYS1 structure as a search
model (electronic supplementary material, table S1). The
overall structure of the human protein is quite similar to
yeast LYS1 despite the low sequence identity, indicating
strong conservation of function despite the evolved differ-
ences such as adopting bifunctional enzyme architecture
and switching from NAD+ to NADP+. As seen in figure 4a,
the LOR domain itself consists of two lobes, both Rossman
folds with a central beta-sheet with alpha helices on the out-
side. The lobes are connected twice with the C-terminus
ending up in the N-terminal lobe. Some of the extended
loops and predicted catalytic residues were not visible in
this structure. Moreover, when we tested this short construct
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Figure 4. Overall structure of two LOR constructs. (a) Asymmetric unit of the
short inactive construct shows a dimer of the LOR domain of AASS. The sym-
metry mate dimerization interface (electronic supplementary material, figure
S3) is likely to be physiological. (b) Tetrameric structure of the long LOR con-
structs shown the four monomers assembling into a compact sphere. A
surface is shown for one of the monomers to highlight the packing.
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for activity, we discovered that, despite the fact that it was
well folded and aligned nicely with the yeast structure, it
had no activity in our in vitro assay (figure 1c).

Therefore, to obtain an LOR structure of a protein thatmain-
tained catalytic activity, we focused on the longer construct
(amino acids 21–470). This initial construct crystallized readily
but did not diffract well; therefore, we introduced five surface
mutations to induce better packing. We were then able to
obtain a crystal structure of the longer active construct, solving
the structure (PDB 8E8U) by molecular replacement with the
short construct. The longer construct crystallized in a new
space group as a tetramer (figure 4b). Each monomer is very
similar to the short constructwith a root-mean-square deviation
(RMSD) of 0.5691 Å2 between the most similar chains.

Several lines of evidence support an oligomeric state for
AASS. Both constructs were eluted on gel filtration on a
Superdex200 Increase column at around 12.5 mls, which
equates to an approximate molecular weight between 150
and 200 kDa (electronic supplementary material, figure S2).
This would suggest either a trimer or tetramer. Secondly,
the dimeric interface is quite large. According to the PISA
server, the average dimer interface of the longer construct is
1810 Å2 with a predicted ΔG of −6 kcal mol−1. We reanalysed
the structure of the short construct and noticed that although
the interface in the asymmetric unit is likely non-physiologic,
the interface of a monomer with its crystallographic sym-
metry-mate is identical to the long interface in the tetramer
(electronic supplementary material, figure S3), further sup-
porting the validity of this interface. Next, the kinetic
analysis of the recombinant LOR enzyme is also consistent
with a multimer, given the cooperativity observed for
NADP+ (electronic supplementary material, figure S1).

At a structural level, the C-terminus of the longer con-
struct forms an alpha helix that penetrates into the active
site of the adjacent monomer. One paradox to resolve was
why the C-terminus is so critical for activity, despite the
fact that it is distant from the active site and the shorter con-
struct is well folded. One hypothesis is that the C-terminus
interacts with the catalytic residues of an adjacent monomer
with the enzyme active only in an oligomeric state. Early
on, it was reported in the literature that full-length human
AASS exists as a tetramer when isolated from liver [24], con-
sistent with our observations. Now, we have structural
information on the tetrameric interface.

Compared to the yeast structure, the human one has two
large insertions, both in the C-terminal lobe. First, there is a
37-amino acid insertion after residue 262. We see good density
for this insertion, which forms two additional short alpha
helices that extend away from the tetramer. The second is an
insertion after residue 375, which forms a beta-sheet extension
in the C-terminal lobe. In the structure of the long construct,
we see electron density at the interface of these loops from
two different monomers that sit between Asp 388 sidechains
from each monomer and Glu 373 carbonyl backbones from
each monomer (electronic supplementary material, figure S4).
We have assigned this density to a magnesium ion which
could help neutralize the negative charge from the aspartates.
It is most likely to be hydrated given the distance between the
aspartates, but we cannot see enough density for the water
shell at the resolution of this structure.

Another important difference between LYS1 and LOR is
that the human protein evolved to use NADPH while yeast
uses NADH. This allows the LOR to drive the reaction
toward production of saccharopine due to the much higher
(essentially fully reduced) ratio of NADPH/NADP+ compared
to NADH/NAD+. Therefore, we would expect changes in the
binding pocket to accommodate the phosphate group on
NADP+. Wewere unable to obtain a crystal structure with sub-
strates bound, presumable due to the low affinity to AASS for
all of its substrates. However, the structure overlays favourably
with the yeast structure bound to NAD+ and therefore we can
predict the key interactions. Initial alignments [19] predicted
the human protein has glutamate where the yeast binds the
ribose of NADH. However, in the structure we can see that
the Ser 266 and Arg 267 sidechains match up to where the
aspartate resides in the yeast structure (electronic supple-
mentary material, figure S4). This explains why the human
protein can bind the NADPH, replacing the negative charge
of the yeast loop with a hydroxyl group (of Ser 266) and a
positively charged Arg 267 to interact with the additional
phosphate of NADPH.

We were also able to obtain a crystal structure of NEM-
alkylated LOR short construct (PDB 8E8V). In the structure,
there was unambiguous electron density for alkylation at only
one position, Cys 414. We were able to model the NEM,
which becomes N-ethylsuccinimide upon reaction with the
cysteine, in the density and refine it with restraints for the
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sulfur-carbon bond. Subsequently, we were able to identify
biochemically that Cys 414 is a key residue in the activation of
LOR (figure 2e). Interestingly, there are no obvious other differ-
ences between the apo and NEM structures. However, Cys 414
sits at the interface of the two lobes of the LOR, suggesting
it is an important location for regulating activity (electronic
supplementary material, figure S5).
2.5. Amino acid substitutions causing AASS deficiency
and hyperlysinemia

Hyperlysinemia in humans has been associated with the
p.R65Q, p.A154T and p.L419R variants in the LOR domain
of AASS [4]. Our earlier work showed that many of these
mutations lead to loss of protein expression [4] and with
our structure, we can better understand the consequences
of these amino acid substitutions on the LOR structure. Arg
65 makes several important contacts including a salt bridge
to Asp 69 and a hydrogen bonding interaction with the
carbonyl backbone of Gln 60, helping to stabilize several por-
tions of the N-lobe. Ala 154 is located exactly where the
nicotinamide moiety of NAD+ binds in the yeast structure,
so the threonine would likely preclude its binding. The
Alanine-Glycine motif from 154–155 is conserved from the
yeast protein to the human one, likely because any larger
sidechains would obstruct nicotinamide binding. Lastly,
Leu 419 is buried in a hydrophobic pocket in the N-lobe, so
an arginine sidechain would probably destabilize the pocket.
2.6. Development and validation of a LOR assay
suitable for high throughput screening

Since AASS is a viable therapeutic target for GA1, our next
objective was to further develop and validate an assay amen-
able to high throughput screening for identifying inhibitors
of the LOR domain. We used the absorption at 340 nm to
monitor NADPH consumption in a 96-well plate format.
In order to identify compounds to help validate the assay,
we performed a virtual screen to identify potential active
site inhibitors to assess viability of the assay. We purchased
126 commercially available potential hit compounds ident-
ified by virtual screen (electronic supplementary material,
table S2A), then tested them in the LOR enzyme assay. As
seen in figure 5a, almost all compounds had minimal effect
on activity. However, we identified one compound, 105,
that showed inhibition several standard deviations away
from the average. We then re-synthesized racemic compound
105, which contains one chiral center (figure 5b) to confirm
its activity. We also prepared both 105 enantiomers found
that only the S-105 enantiomer was active against both
the recombinant LOR protein and the full-length AASS con-
struct (figure 5c). Additional purchased and synthesized
compounds did not show improved potency (electronic
supplementary material, table S2B,C and figures S6–S8).
However, while the potency of this compound was modest,
it demonstrated that the assay was robust, dose responsive
and useful to identify inhibitors. There is also the possibility
to further miniaturize to a 384-well plate format with incu-
bation at room temperature for high-throughput screens.
We expect these results to enable discovery of more potent
inhibitors of LOR using an unbiased large library screen for
identification of both active or allosteric site inhibitors.
3. Discussion
AASS is an important enzyme in lysine degradation and a
potentially attractive pharmacological target for the treatment
of two inborn errors of metabolism, GA1 and PDE-
ALDH7A1. Herein, we developed chemical and biological
tools that can be useful for the future development of a
high affinity inhibitor of the LOR domain of AASS. We over-
expressed AASS-Myc-DDK, purified a recombinant isolated
LOR domain, and determined the kinetic constants of these
enzymes. We used this knowledge to develop an LOR
enzyme assay amenable to high throughput screening for
inhibitors. The LOR assay was validated in a virtual screen
that identified one compound with modest inhibition activity
(IC50 142 µM). Importantly, we solved the first crystal
structure of the human LOR domain at 2.2 Å resolution.

AASS catalyses the first committed, and possibly rate-
limiting, step in lysine degradation. Although the LOR
reaction is reversible in vitro, in vivo it is likely driven toward
the production of saccharopine by the nearly fully reduced
NADPH/NADP+ ratio in mitochondria. A defect in the mito-
chondrial biosynthesis of NADP+ leads to hyperlysinemia
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demonstrating that in man and mouse NADPH cannot be
replaced by NADH [28–31]. There is evidence that limited 2-
oxoglutarate availability in some inborn errors of metabolism,
such as urea cycle defects, limits lysine degradation [32], but
it is unknown if 2-oxoglutarate is limiting under non-pathologi-
cal conditions. The affinity of AASS for lysine is relatively low.
The previously reported Km of partially purified AASS/LOR
from human liver was 1.5 mM [21] (table 1). We calculated a
Km of 11 mM for AASS-Myc-DDK and 24 mM for isolated
LOR. Plasma concentrations of lysine are usually lower than
300 µmol l−1 [4,10]. Estimated tissue concentrations for lysine
are very similar (336 µmol l−1 for liver and 142 µmol l−1 for
heart based on reference [33]). The low affinity of AASS/LOR
for lysine in combination with the estimated tissue lysine
concentration suggests that the velocity of lysine degradation
will show a linear relationship to the mitochondrial lysine con-
centration. However, a gene-dose effect on plasma lysine
concentration in mice carrying one Aass null allele was only
observed upon high lysine exposure. No such effect was evi-
dent in mice on chow diet, which likely supplies lysine in
quantities close to the actual nutritional requirement. Therefore,
we speculate that with a relatively low, but adequate lysine
supply, the rate of its degradation is determined by cellular
lysine uptake and subsequent protein synthesis and not by
AASS activity. Although there is little available information
on lysine transport across the plasma and mitochondrial mem-
brane, it is likely driven by lysine concentration in a saturable
process [34,35]. By contrast, under conditions with a larger
supply of lysine, for example, during catabolism or postpran-
dial, AASS/LOR catalyses the rate-limiting step in lysine
degradation and thus reinforces the notion that inhibiting of
LOR is a suitable strategy in the treatment of GA1.

It has been reported that during acute illness the urinary
excretion of glutaric and 3-hydroxyglutaric acid can rise
dramatically with values 4-fold higher than observed as com-
pared to baseline illness [36]. Such changes in lysine
degradation flux suggest the potential of allosteric activation
of AASS. We provide evidence that AASS can be activated in
vitro by alkylation of Cys 414 using NEM. This modification
suggests a novel site of allosteric activation of the enzyme,
although the mechanism is still unknown. Allosteric activation
is a common feature inmanymetabolic pathways. For example,
the human glycolysis enzyme pyruvate kinase M2 (PKM2) is
activated by fructose 1,6-bisphosphate and certain amino
acids, which promotes tetramerization of the enzyme [37].
Another example is glutamate dehydrogenase (GDH), which
is activated by ADP and leucine and inhibited by GTP, palmi-
toyl-CoA and ATP [38]. In addition, GDH is inhibited by
binding to short-chain 3-hydroxyacyl-CoA dehydrogenase
[39]. Thus, there are diverse and complex mechanisms of allo-
steric regulation for many metabolic enzymes. Future work
identifying the mechanism of activation will help shed light
on lysine metabolism regulation and may provide additional
insights onto substrate reduction strategies for GA1.
To conclude, we have characterized and purified the LOR
domain of the important metabolic enzyme AASS. We show
that AASS can be rate-limiting in the pathway and present the
first crystal structure of the humanLORdomain.We established
an assay to measure inhibition of AASS in high throughput
and identified a weak inhibitor by virtual screen that helped
validate our assay. The development of a recombinant purifi-
cation system and a high-resolution crystal structure and will
enable future efforts to further validate this enzyme as a poten-
tial therapeutic target for the treatment of GA1 and will enable
improved inhibitor discovery to provide pharmacological proof
of concept for efficacy in cells and in vivo.
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