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Identifying the mechanisms behind the b-cell adaptation
to failure is important to develop strategies to manage
type 2 diabetes (T2D). Using db/dbmice at early stages of
the disease process, we took advantage of unbiased RNA
sequencing to identify genes/pathways regulated by insu-
lin resistance in b-cells. We demonstrate herein that islets
from 4-week-old nonobese and nondiabetic leptin receptor–
deficient db/db mice exhibited downregulation of several
genes involved in cell cycle regulation and DNA repair.
We identified the transcription factor Yin Yang 1 (YY1) as a
common gene between both pathways. The expression of
YY1 and its targeted genes was decreased in the db/db
islets. We confirmed the reduction in YY1 expression in
b-cells from diabetic db/db mice, mice fed a high-fat diet
(HFD), and individuals with T2D. Chromatin immunoprecipi-
tation sequencing profiling in EndoC-bH1 cells, a human
pancreatic b-cell line, indicated that YY1 binding regions
regulate cell cycle control andDNAdamage recognition and
repair. We then generated mouse models with constitutive
and inducible YY1 deficiency in b-cells. YY1-deficient mice
developed diabetes early in life due to b-cell loss. b-Cells
from these mice exhibited higher DNA damage, cell cycle
arrest, and cell death as well as decreased maturation
markers. Tamoxifen-induced YY1 deficiency in mature
b-cells impaired b-cell function and induced DNA damage.
In summary, we identified YY1 as a critical factor for b-cell
DNA repair and cell cycle progression.

Pancreatic b-cells are responsible for maintaining glucose
homeostasis by secreting insulin. b-Cells adapt to insulin
resistance (IR) by increasing their number and hormone

secretion function. When b-cells fail to adapt to IR, type
2 diabetes (T2D) occurs. Several distinct yet disconnected
pathways lie at the heart of b-cell failure during the dis-
ease development; however, the specific cues and factors
mediating this process remain poorly understood. For in-
stance, the overwhelming increase in insulin secretion de-
mand enhanced by IR affects the unfolding capacities of
the endoplasmic reticulum (ER) (1). Several studies have
suggested that the cellular response of pancreatic b-cells
to ER stress through the activation of the unfolded pro-
tein response impairs glucose-stimulated insulin secretion
(2,3). Moreover, fuel load surfeit compromises the mito-
chondrial oxidative phosphorylation capacity, disturbing
ATP production and glucose oxidation (4) and leading to
impaired insulin secretion, oxidative stress (5), and DNA
damage (6).

A growing body of data supports a new model of b-cell
dysfunction where DNA damage response triggers b-cell
dedifferentiation and death (7–11). Patients treated with
whole-body or abdominal radiation have an increased inci-
dence of diabetes, potentially due to radiation-induced DNA
damage in islets (7). Human and mouse b-cells from sub-
jects with T2D have DNA breaks and oxidized DNA (8–10),
indicating defects in DNA repair mechanisms or chronic
DNA damage accumulation. Mice deficient in nonhomolo-
gous end-joining DNA repair mechanisms exhibit b-cell dys-
function, including senescence like-phenotype and T2D (11).

The zinc-finger transcription factor Yin Yang 1 (YY1) is
important in many biological processes, such as develop-
ment, apoptosis, metabolism, and growth (12). YY1 acts
as repressor when associated with the polycomb repressor
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complex (13) or as activator when associated with the
INO80 complex (14). YY1 has also been implicated in the
regulation of cell cycle, DNA damage response, and DNA
repair (15–18). YY1 plays a role in several tissues, but its
role in pancreatic b-cell function is not completely known
(19–22). In b-cells, YY1 mutation was found to be preva-
lent in insulinomas (23,24), being responsible for the en-
hanced insulin secretion by the tumor (25). Mice with
YY1 deletion in b-cells were recently described to have al-
tered mitochondrial structure and function, impairing
b-cell survival and insulin secretion (26).

We identified YY1 as a critical factor for b-cell DNA re-
pair and cell cycle. RNA sequencing (RNA-seq) of islets
from 4-week-old db/db mice shows a remarkable downregu-
lation of DNA repair and cell cycle regulation gene path-
ways. Mechanistically, YY1 and its targeted genes are the
key genes suppressed in these two pathways. In addition,
YY1 is also reduced in diabetic human and mouse b-cells.
Chromatin immunoprecipitation (ChIP) sequencing (ChIP-
seq) profiling in EndoC-bH1 cells, a human pancreatic
b-cell line, indicated that YY1 binding regions regulate cell
cycle control and DNA damage recognition and repair. Con-
ditional genetic mouse models of YY1 deficiency in b-cells
confirmed that YY1 is central to b-cell mass maintenance
and function.

RESEARCH DESIGN AND METHODS

Animals and Cell Line
Procedures were approved by University of Miami Institu-
tional Animal Care and Use Committee (protocol no. 18-
168-LF). Ripb-YY1KO and Ins1b-YY1KO mice were gener-
ated by crossing the floxed-yy1 mouse with the rat insulin
promoter (RIP)-cre mouse (B6.Cg-Tg(Ins2-cre)25Mgn/J;
JAX stock no. 003573) and Insulin 1 (Ins1)-cre mouse
(B6(Cg)-Ins1tm1.1(cre)Thor/J; JAX stock no. 026801), re-
spectively. Males and females were used in experiments
using Ripb-YY1KO and Ins1b-YY1KO mice. Male ib-
YY1KO mice (8 weeks old) were generated by crossing the
yy1f/f mice with animals expressing the inducible MIP1-
CreER driver (B6.Cg-Tg(Ins1-Cre/ERT)1Lphi/J; JAX stock
no. 024709), followed by three subcutaneous injections of
tamoxifen (5 mg per animal) or corn oil (control) every
other day. Male db/db mice (BKS.Cg-Dock7m1/1 Leprdb/J;
JAX stock no. 000642) were sacrificed at 4 weeks and 3
months. Dock7m 1/Dock7m 1 mice from the same colony
were used as the control. At this age, db/db mice exhibit el-
evated plasma insulin, and some animals already exhibit el-
evated blood glucose (between 4 and 8 weeks). Two-
month-old male C57Bl/6 mice (C57BL/6J; JAX stock no.
000664) were fed a chow diet (control) or a high-fat diet
(HFD) for 12 weeks. The controls for Ripb-YY1KO, Ins1b-
YY1KO, and ib-YY1KO mice were, respectively, Ins-cre, Rip-
cre yy1f/1 and Mip-cre 1 tamoxifen and Mip-cre YY1f/f 1
vehicle. The EndoC-bH1 human b-cell line was cultured in
RPMI 1640 culture medium with 2 mmol/L L-glutamine

supplemented with 10% FBS (v/v) and 100 units/mL peni-
cillin and 0.1 g/L streptomycin antibiotics.

ChIP and Library Preparation
EndoC-bH1 cells were treated with 1% paraformaldehyde
at room temperature for 10 min for chromatin cross-link-
ing. Then, 0.125 mol/L glycine was added to quench the
cross-linking reaction. Cells were then sonicated in SDS ly-
sis buffer with protease inhibitors to shear the chromatin.
Chromatin was precleared and incubated with 5 mg of
anti-YY1 overnight at 4�C with rotation. After immunopre-
cipitation, the chromatin was harvested and the cross-links
were reversed. Samples were treated with 0.2 mg/mL
RNAse A, and the DNA was purified and precipitated. The
resulting DNA was quantified and served as a template for
library construction. Sequencing libraries were prepared
from 8 ng total DNA using Accel-NGS 2S Plus DNA Library
Kits according to the manufacturer’s protocol. Briefly, after
dephosphorylation and end repair, samples were then ligat-
ed to unique adapters and PCR amplified. Libraries were
then validated using the 2100 BioAnalyzer (Agilent), nor-
malized, and pooled for sequencing at the University of
California, San Francisco Institute for Human Genetics
core service.

RNA-Seq Library Preparation
The db/db RNA-seq library was prepared as described pre-
viously (27). Total RNA was isolated using Direct-zol RNA
Microprep Plus. Sequencing libraries were prepared from
10 to 25 ng of total RNA using the SMARTer Stranded
RNA-Seq Kit. Subsequently to rRNA depletion, the re-
maining RNA was used for cDNA synthesis and purifica-
tion. Samples were then conjugated to unique adapters and
amplified by PCR. Libraries were validated using a 2100 Bio-
Analyzer, normalized, and pooled for sequencing at the Uni-
versity of California, San Francisco Institute for Human
Genetics core service. Gene Expression Omnibus accession
number: GSE132261.

Metabolic Studies
Glycemia and insulinemia were determined from blood
obtained from the tail vein using the ACCU-CHEK II gluc-
ometer (Roche) and mouse ultrasensitive ELISA (Alpco).
Oral and intraperitoneal glucose tolerance tests (2 g/kg)
were performed in animals fasted 5–6 h.

Pancreas Morphology
After euthanasia, pancreas was carefully removed, weighed,
and fixed overnight in 4% formaldehyde solution for the
experiments using the Ins-cre and Mip-cre mice, and pan-
creas from Rip-cre mice were fixed overnight in 10% aque-
ous-buffered zinc formalin solution. For b-cell mass
quantification, four nonoverlapping slides separated by 200
mm per animal were used. b-Cells were stained with guinea
pig anti-insulin. Fluorescent images were acquired using a
microscope (Leica DM5500B) with a motorized stage using
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a camera (Leica Microsystems, DFC360FX), interfaced with
the OASIS-blue PCI controller, and controlled by the Sur-
veyor software. YY1 deletion/distribution in b-cells was de-
tected by staining pancreas slices with anti-insulin and
anti-YY1 antibody. b-Cell proliferation, DNA damage, and
apoptosis were determined by anti-Ki67, anti-phosphohi-
stone H2AX (phospho-H2AX) staining, and ApopTag Red
in Situ Apoptosis Detection Kit staining, respectively.
b-Cell markers were detected by staining pancreas slices
with anti-Glut2 and anti-Nkx6.1.

Islet Isolation and Western Blotting
Islets were isolated by the collagenase digestion method
carefully described previously (28). Islets were used for ex-
periments after overnight in RPMI 1640 supplemented
with 10% FBS, 1% penicillin and streptomycin, and 5.5
mmol/L glucose. For immunoblot, 100 islets were homog-
enized in lysis buffer (125 mmol/L Tris [pH 6.8], 2% SDS,
1 mmol/L dithiothreitol, and phenylmethylsulfonyl fluo-
ride) supplemented with cOmplete, Mini, EDTA-free Pro-
tease Inhibitor, and PhosSTOP. Proteins (30 mg) were
separated in 10% polyacrylamide gels and transferred to
polyvinylidene fluoride membranes. Membranes were
blocked with Intercept Blocking Buffer for 1 h and were
probed overnight with anti-YY1 and anti-tubulin anti-
body. LI-COR’s specific second antibodies rabbit IRDye
680RD and anti-mouse IRDye 800CW (1:10,000) were in-
cubated for 1 h at room temperature. Images were ob-
tained using the Odyssey XF Imaging System (LI-COR)
and quantified using National Institutes of Health ImageJ
software (29).

RNA Isolation, RT-PCR, and Real-Time PCR
Total RNA was isolated from 80 to 100 islets using the
RNeasy Plus Kit according to the manufacturer’s instruc-
tions. cDNA was synthesized using the High-Capacity
cDNA Reverse Transcription Kit. The cDNA product was
used in the quantitative RT-PCR reaction with power SYBR
green master mix. The real-time PCR primers sequences
used are listed in Supplementary Tables 1 and 2. Real-time
PCR was performed on an ABI 7000 sequence detection
system.

Statistics
All data were analyzed using GraphPad Prism software
and are expressed as mean ± SEM. The Student t test was
used to compare two groups. Two-way ANOVA, followed
by the Tukey post hoc test, was used to identify differ-
ences between the control and YY1-knockout groups over
time. Values of P < 0.05 were considered statistically
significant.

Data and Resource Availability
All data supporting the results are in the body of the
article.

RESULTS

Islets From Insulin-Resistant db/db Mice Exhibit
Decreased Expression of Cell Cycle and DNA Repair
Genes
To identify critical factors involved in increasing the sus-
ceptibility of pancreatic b-cells to dysfunction and failure,
we performed RNA-seq of islets from 4-week-old leptin
receptor–deficient db/db mice, a model of b-cell stress
(Fig. 1A) (30). Unbiased gene set enrichment analysis in-
dicated that the Hallmark G2M checkpoint and Hallmark
E2F targets are the two top gene pathways differentially
expressed (P < 0.001) in db/db islets. Both pathways are
important for cell cycle progression. While E2F transcrip-
tion factors regulate the expression of genes involved in
progression from the G1 phase into the S-phase, G2M
checkpoint genes are involved in progression through the
cell division cycle (G2 into M phase) (31). Several genes
of these two pathways are remarkably downregulated in
db/db islets, suggesting cell cycle arrest and impaired pro-
liferation (Supplementary Fig. 1A and B). Interestingly,
these two pathways are functionally associated with the
Hallmark DNA repair pathway, according to the Pathway
CoeXpression Network (PCxN). Indeed, genes important
for DNA repair were downregulated in db/db islets com-
pared with controls (Fig. 1B).

YY1 As a Common Factor in the Control of b-Cell
Proliferation and DNA Repair: Implication in Diabetes
in Humans and Mice
We used Gene Reference Into Function (GeneRIF) Biologi-
cal Term Annotations to identify common genes in the
G2M checkpoint and E2F target pathway in db/db mice.
We recognized two lists of genes that are functionally re-
lated to each pathway (Supplementary Fig. 1). Among the
17 identified common genes, only two were differentially
expressed in db/db compared with control islets in the
RNA-seq analysis (P < 0.001): Yy1 and its target Ccna2
(Fig. 1C). Both genes were downregulated in db/db islets
at 4 weeks of age (Fig. 1D). Remarkably, several YY1-sen-
sitive genes implicated in the regulation of the G2M
checkpoint, DNA repair, or E2F pathways were also less
expressed in db/db islets (Fig. 1D and Supplementary Fig.
1A and B), suggesting that during the development of dia-
betes, the decrease in YY1 expression impairs b-cell adap-
tation and leads to diabetes. Therefore, we decided to
analyze YY1 expression in mice fed an HFD, a mouse
model of diet-induced IR. There was an �50% reduction
in nuclei YY11 b-cells in mice fed an HFD compared with
controls (Fig. 1E, F, and H). In diabetic db/db mice (12
weeks of age), the percentage of b-cells with nuclear YY1
staining was �70% decreased (Fig. 1E, G, and H), while
no difference was observed in nondiabetic mice at 4
weeks (data not shown). Importantly, we observed a 40%
reduction in nuclei YY11 b-cells in human subjects with
T2D (Fig. 1I–K). The reduced nuclear YY1 staining is spe-
cific to b-cells, as nuclear YY1 staining in the surrounding
acinar tissue was comparable (Fig. 1H and I).
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Figure 1—YY1 is a common factor in the control of b-cell cycle and DNA repair and is implicated in diabetes in humans and mice. A: Diagram
of the experimental profile used for RNA-seq studies performed in 4-week-old mice. DB, diabetic. B: RNA-seq heat map showing gene expres-
sion of DNA repair genes. C: Venn diagram summarizing the overlap between differentially expressed genes from RNA-seq. This shows that
Yy1 and Ccna2 genes as the only two common genes (db/db RNA-seq, EF2 Network and G2M Network) that were differentially expressed in
db/db islets compared with control. D: Heat map analysis of RNA-seq gene expression of YY1 target genes. Representative images of YY1
staining in control mice fed the chow diet (C57BL/6J) (E), HFD (12 weeks on HFD) (F), and 3-month-old db/db (G) mice and in nondiabetic (ND)
(n = 3) (I) and in T2D human donors (n = 3) (J). Percentage of YY1 staining in the nucleus of b-cells in mice (H) and human (K) pancreata. **P <
0.01 and ***P< 0.001 compared with control assessed by one-way ANOVA, followed by the Tukey post hoc test (H) or t test (K).
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YY1 Binds to Genes of the DNA Repair Pathway and
Cell Cycle Checkpoints in Human b-Cells
To reveal the pathways controlled by YY1 in human b-cells,
we performed ChIP-seq profiling in EndoC-bH1 cells, a hu-
man pancreatic b-cell line (33,34). EndoC-bH1 cells highly
express YY1 in the nuclei (Fig. 2A). Using an anti-YY1 anti-
body, we conducted ChIP on EndoC-bH1 cells. De novo
prediction of highly enriched DNA sequences revealed the
YY1 motif AAnATGGC as a top motif, with 80% of binding
regions containing this specific motif (Fig. 2B). Pathway en-
richment analysis for YY1 binding regions indicates that
the top pathways (five- to sixfold enriched) are involved in
the establishment of sister chromatid cohesion, cohesion
loading onto chromatin, mitochondria translation (initia-
tion, elongation, and termination), mRNA processing, and
mitotic telophase/cytokinesis (Fig. 2C). Interestingly, the
cohesin complex is essential to allow DNA repair by homol-
ogous recombination during the cell cycle (35). It is also re-
quired for the DNA damage-induced G2M checkpoint (36).
Outside the regulation of cell cycle controls and check-
points, the cohesin complex is important to maintain the
integrity and structure of DNA in postmitotic cells (35).
The cohesin complex is required for the recruitment of the
DNA repair machinery, and the loss of the cohesin complex
leads to the accumulation of DNA damage (35). Additional
pathways (two- to threefold enriched) have been identified
as a direct target of YY1, including DNA damage recogni-
tion in global genome nucleotide excision repair, ATM-me-
diated double-stranded breaks repair, and the G1/S DNA
damage checkpoint (Fig. 2D). To further increase the

significance of our findings, we assessed expression for a
few of the YY1 target genes identified in the EndoC-bH1
ChIP-seq studies. We observed that genes from both the
G2M checkpoint and the E2F pathways from the ChIP-seq
data were differentially regulated in the RNA-seq from db/
db islets (Supplementary Fig. 1C).

Mice With Targeted YY1 Disruption in b-Cells Develop
Diabetes Early in Life due to Severe b-Cell Loss
To study the role of YY1 in b-cells, we crossed the floxed-
yy1 mouse with the RIP-cre mouse. As expected, Ripb-
YY1KO islets exhibit 80% reduction in b-cells with nucle-
ar YY1 (Fig. 3A–C). At 3 weeks of age, Ripb-YY1KO mice
had similar weight but were severely hyperglycemic (Fig.
3D and E). In addition, 6 h fasting insulin levels were low-
er, and they fail to secrete insulin in response to glucose
(Fig. 3F). This is explained by a 50% reduction in b-cell
mass at 3 weeks of age (Fig. 3G–J). Remarkably, b-cells
are almost gone in 3-month-old mice (Fig. 3I). We did not
observe differences in b-cell mass of newborn mice, sug-
gesting that YY1 deletion did not impair b-cell embryonic
development (Fig. 3G and J). Owing to ectopic cre-recombi-
nase expression outside the pancreas in the RIP-cre mice
(37), we decided to confirm the phenotype using the Ins1-
Cre mouse (38) (Ins1b-YY1KO mice). The Ins1b-YY1KO
mice have few nuclei YY11 b-cells, and isolated islets ex-
press 50% less YY1 at 2 weeks of age (Fig. 4A–C). The YY1
target cyclin A2 was also reduced, suggesting that some
DNA damage associated candidates identified in the db/db
RNA-seq were also decreased in Ins1b-YY1KO mice

Figure 2—YY1 binds to genes of the DNA repair pathway and cell cycle checkpoints in human b-cells. A: Representative images of immu-
nostaining for YY1 and insulin in EndoC-bH1 cells. B: Diagram showing a putative YY1 binding motif. C and D: Pathway enrichment analy-
sis for YY1 binding regions.
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(Fig. 4D and E). Ins1b-YY1KO mice exhibit hyperglycemia
at 2 weeks of age that progresses to diabetes by 3 weeks
(Fig. 4F), with no difference in body weight (Fig. 4G). Non-
fasting plasma insulin levels are reduced at 2 and 3 weeks
of age (Fig. 4H). b-Cell area was reduced in Ins1b-YY1KO
by 50% at 2 weeks of age and further decreased by 75% at
3 weeks of age (Fig. 4I and J). Similar to the Ripb-YY1KO
mice, newborn Ins1b-YY1KO mice exhibit normal glucose,
insulin levels, b-cell area (Fig. 4F, H and I), and cell death
assessed by TUNEL staining (data not shown).

Impaired b-Cell Differentiation and Increased Cell
Death Explain the b-Cell Loss in the Mice Lacking YY1
To understand the mechanism behind b-cell loss in
mouse models of b-cell YY1 deficiency, we assessed b-cell
differentiation, proliferation, and death (Fig. 5). The
mRNA expression of canonical pancreatic b-cell markers,
such as Glut2, Nkx6.1, Ins1, Ins2, and Mafa, was reduced
in islets from 3-week-old Ripb-YY1KO mice (Fig. 5A). In
contrast, a-cell markers Gcg and Arx expression was not
different (Fig. 5A). The number of positive b-cells for
GLUT2 and NKX6.1 was similar in newborn mice

(postnatal day 1) but 45% and 70% reduced in the Ripb-
YY1KO mice, respectively (Fig. 5B–E). The number of ap-
optotic b-cells assessed by TUNEL was higher in 3-
week-old Ripb-YY1KO islets compared with littermate
controls (Fig. 5F and G). b-Cell proliferation was similar
in newborn and 3-week-old Ripb-YY1KO islets (Fig.
5H). Similar to Ripb-YY1KO, Ins1b-YY1KO mice also ex-
hibit low levels of Glut2, Ins2, and Pdx1 mRNA expres-
sion (Fig. 5I). b-Cell proliferation was comparable,
while b-cell death was increased in Ins1b-YY1KO, con-
sistent with the findings from Ripb-YY1KO (Fig. 5J and
K). Additionally, we observed a decrease in phosphohi-
stone H3, a marker of mitosis, in Ins1b-YY1KO, sug-
gesting cell cycle arrest (Fig. 5L).

Disruption of YY1 in Adult Mature b-Cells Impairs
Glucose Metabolism
We crossed the yy1f/f mice with animals expressing the in-
ducible MIP1-CreER driver in order to understand the role
of YY1 in mature b-cells (ib-YY1KO mice). ib-YY1KO mice
developed mild hyperglycemia (�150 mg/dL) 2 weeks af-
ter tamoxifen injection, and blood glucose levels remained

Figure 3—Ripb-YY1KOmice with targeted YY1 disruption in b-cells develop diabetes early in life due to severe b-cell loss. Representative im-
ages of YY1 and insulin staining in control (A) and Ripb-YY1KO pancreata (B). Quantification of positive YY1 nuclei in b-cells by immunostaining
(C), body weight (D), fasting blood glucose (E), and glucose-induced insulin secretion (F) in 3-week-old mice. Representative b-cell staining (in-
sulin) at postnatal day 1 (P1) (G), 3 weeks (H), and 3 months (I). J: b-Cell mass quantification in 3-week-old mice. *P< 0.05, **P< 0.01, ***P<
0.001, ****P < 0.0001 compared with control assessed by t test. Comparisons in panel F were made using two-way ANOVA, followed by the
�Sid�ak posttest.
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elevated up to 14 weeks (Fig. 6A and B). Insulinemia was
normal in ib-YY1KO (Fig. 6C), but these mice were glu-
cose intolerant at 8 and 14 weeks after tamoxifen (Fig.
6D and E). Remarkably, glucose-stimulated insulin secre-
tion was blunted in ib-YY1KO mice (Fig. 6F), and there
was a tendency to increase in b-cell death (Fig. 6G); how-
ever, b-cell mass was preserved (Fig. 6H).

DNA Damage Is Increased in YY1-Deficient b-Cells
We next tested whether the lack of YY1 induces DNA dam-
age. We assessed the accumulation of DNA damage by
phospho-H2AX staining. The number of phospho-H2AX/
insulin double-positive cells is significantly increased in
Ripb-YY1KO islets compared with littermate controls (Fig.
7A and B). Phospho-H2AX staining is also increased in
Ins1b-YY1KO (Fig. 7C and D) and in ib-YY1KO b-cells com-
pared with controls (Fig. 7E and F).

DISCUSSION

Our current studies place the YY1 transcription factor as
a key player in the diabetes progression. Unbiased tran-
scriptome assessment revealed that downregulation of
Yy1 and its target Ccna2 are the common genes explaining
the suppression of DNA repair and cell cycle pathways in

islets from IR db/db mice before they develop severe hy-
perglycemia. Remarkably, YY1 protein expression is sup-
pressed in b-cells of diabetic db/db mice, mice fed an HFD,
and human donors with T2D. We validated these findings
in vivo by genetic disruption of Yy1 specifically in b-cells.
The lack of YY1 since embryonic stages led to diabetes very
early in life (�2–3 weeks of postnatal life) due to a severe
b-cell loss, impaired b-cell differentiation, and increased
cell death and DNA damage. Yy1 deletion in adult mature
b-cells impaired glucose metabolism and also induced DNA
damage. Taken together, these studies show that YY1 is an
important regulator of b-cell maintenance and function.

The RNA-seq results in db/db mice islets showing de-
creased expression of DNA repair genes are in line with
previous work showing accumulation of DNA damage and
double-stranded breaks in islets from db/db mice and hu-
man T2D samples (8–10). RNA-seq and gene set enrich-
ment analysis also detected a downregulation of cell cycle
progression pathways, including GM2 checkpoint and E2F
targets (Fig. 1B–D). The decrease in G1/S and G2/M in 4-
week-old db/db mice is not sufficient to alter cell cycle
progression and b-cell expansion at this stage, but a more
sustained and prolonged DNA damage accumulates with
age, and DNA repair defects can cause cell cycle arrest se-
nescence and apoptosis at later stages (39). The E2F

Figure 4—YY1 deletion in Ins1b-YY1KO mice also induces diabetes early in life due to severe b-cell loss. A: Representative images of
YY1 and insulin staining in control and Ins1b-YY1KO in 2-week-old mice. Representative image (B) and quantification (C) of Western blot-
ting for YY1 in isolated islets from Ins1b-YY1KO and controls. Representative images (D) and quantification (E) of cyclin A2 and insulin
staining in control and Ins1b-YY1KO in 3-week-old mice. Blood glucose levels from birth to 2-months old (F), body weight (G), random in-
sulin level (H), b-cell–to–pancreas area ratio (I) and b-cell mass (J) in Ins1b-YY1KO and control mice at the indicated times. *P < 0.05,
***P< 0.001 compared with control assessed by t test.
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family regulates cell cycle progression in b-cells (40), and
global E2F1-knockout mice have impaired pancreas
growth, b-cell mass, and b-cell proliferation and function
(41). In addition, b-cell–specific E2F1 deletion specifically
in mouse b-cells resulted in impaired glucose tolerance,
defective insulin secretion, and loss of b-cell identity com-
pared with controls (42). Therefore, DNA integrity and
cell cycle progression are compromised in db/db islets,
suggesting that b-cell failure occurs when pancreatic
b-cells lose the ability to activate the machineries of DNA
damage and checkpoint response. We then identified Yy1
and its target Ccna2 as common genes to both pathways
(Fig. 1C). Importantly, the regulation of the specificity and
function of E2F by interacting with YY1 (43) and the peak

of YY1 activity during G2M transition suggesting a crucial
role of this transcription factor in regulating G2M transi-
tion (16). Moreover, YY1 also controls cell proliferation in-
directly by inactivating the negative regulator of E2F1 (44).
Taken together, these studies support a model in which
suppression of YY1 expression in b-cells during the pro-
gression of the diabetes leads to impaired DNA repair ca-
pacity, ultimately resulting in DNA damage, cell death, and
b-cell loss.

The results in db/db mice prompted us to generate
mouse models with inactivation of YY1 in b-cells. YY1
disruption resulted in diabetes early in life due to b-cell
loss. During the course of our study, Song et al. (26) also
generated a bYY1KO mice. The aim was to extend their

Figure 5—Impaired b-cell differentiation and increased cell death explain the b-cell loss in the mice lacking YY1. A: mRNA expression of
key b-cell genes in isolated islets from control and Ripb-YY1KO. B: Representative images of GLUT2 staining (B) and quantification of
GLUT2-positive b-cells (C). P1, postnatal day 1. Representative images of Nkx6.1 staining (D) and quantification in neonates and 3-week-
old mice (E). Representative images of pancreas TUNEL staining (F) and quantification in b-cells from control and Ripb-YY1KO at the indi-
cated ages (G). H: b-Cell proliferation in Ripb-YY1KO and controls determined by Ki67 immunostaining. I: mRNA expression for Insulin2,
Glut2, and Pdx1 in isolated cells islets from control and Insb-YY1KO. J: b-Cell proliferation. K: Cleaved caspase 3 quantification in
Ins1b-YY1KO mice. L: Phosphohistone H3 (pHH3) quantification in b-cells from control and Insb-YY1KO. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001 compared with control assessed by t test.
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own previous studies, where gain-of-function mutations
determined tumor growth and function (23). They re-
ported similar reduction in b-cell mass, and this was ac-
companied by diabetes (26). Impaired proliferation,
reduced activity of mitochondrial oxidative phosphoryla-
tion, and mitochondrial dysfunction were implicated as
mechanisms for b-cell loss in bYY1KO mice. In contrast,
we failed to show differences in b-cell proliferation. This
is likely explained by the age of the animals used for anal-
ysis of b-cell proliferation (6 weeks old vs. 2 weeks old in
our studies). Our data validate the phenotype and the is-
let morphologic changes but extend our current knowl-
edge from this previous publication by: 1) Reduction in
b-cell YY1 expression in genetic models of IR and HFD.
2) Reduction of YY1 expression in islets from human
donors with T2D and identification of YY1 targets using
ChIP-seq in human b-cell lines. Candidate YY1 target
genes from both the G2M checkpoint and the E2F path-
ways identified by ChIP-seq in data were differentially ex-
pressed in the RNA-seq from db/db islets, suggesting that
these putative target genes were regulated in a model of
T2D. 3) Identifying the role of YY1 in regulation of b-cell
cycle progression and a previously unknown role of this
transcription factor in DNA damage in b-cells. 4) The
higher DNA damage with similar b-cell survival in the ib-
YY1KO mice implies that adult/mature b-cells are less vul-
nerable to the YY1 loss and DNA damage/repair. 5) The
increase vulnerability and b-cells loss early in bYY1KO
mice suggest that YY1 plays a key role during the

maturation of b-cells. Interestingly, Song et al. (26) docu-
mented greater reactive oxygen species production, sup-
porting the fact that DNA damage is increased in all of
our in vivo knock-out mouse models. Therefore, the two
studies are complementary regarding the mechanisms to
explain the b-cell loss and dysfunction. In addition, we
show that lack of YY1 decreased the expression of impor-
tant b-cell identity markers such as Ins1, Glut2, Nkx6.1,
and PDX1.

All mouse models of YY1 deficiency used in our studies
exhibited higher levels of DNA damage (Fig. 7). Cell cycle
analysis showing comparable levels of Ki67 (marker for all
cell cycle phases) and lower phosphohistone H3 (G2M) sug-
gest that b-cells deficient in YY1 enter cell cycle normally
but fail to progress beyond the G2M phase by defects in
DNA damage and repair and that these abnormalities ulti-
mately result in cell death. These findings are also consis-
tent with the peak of YY1 activity during the G2M
transition suggesting a crucial role of this transcription fac-
tor in regulating G2M transition (16). This is consistent
with the data obtained in db/db mice and human donors
with T2D who also exhibit markers of DNA damage and
p53 activity (45). Hyperglycemia triggers DNA damage by
inhibiting the nucleotide excision repair pathway and
changing the levels of DNA repair genes and proteins (46).
Mice deficient in DNA repair display reduced b-cell area,
increased apoptosis, and impaired insulin secretion (6).
These published data, together with our results, suggest
that DNA damage can be a critical factor in regulating

Figure 6—Disruption of YY1 in adult mature b-cells impairs glucose metabolism. Fed blood glucose (A), fasting blood glucose (B), and
nonfasting plasma insulin (C) in mice with inducible deletion of YY1 in b-cells (ib-YY1KO) and controls. Glucose tolerance test at 8 weeks
(D) and 14 weeks (E) after tamoxifen treatment. F: Glucose-stimulated insulin secretion (GSIS) in isolated islets. G: TUNEL quantification in
b-cells from control and ib-YY1KO 16 weeks after tamoxifen treatment. H: b-Cell mass 16 weeks after tamoxifen treatment. *P < 0.05,
**P < 0.01, ***P < 0.001 compared with control assessed by multiple t test (two-stage step-up [Benjamini, Krieger, and Yekutieli]). Com-
parisons in panel F were made using two-way ANOVA, followed by the �Sid�ak posttest.
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b-cell loss in diabetes and that YY1 is implicated in this
process. The mechanisms for induction of DNA damage in
YY1-deficient b-cells is not completely clear, but our ChIP
analysis of the human b-cell line identified DNA repair
pathways, including ATM-mediated double-stranded breaks
repair, as a direct target of YY1. ATM and p53 are key me-
diators of the DNA damage response, and both play a role
in b-cell death induced by streptozotocin (47). The previ-
ously identified interaction of YY1 with p53 induces its
ubiquitination, and the increase in YY1 levels inhibits the
accumulation of active p53 as well as the expression of p53
target genes after DNA damage (48,49). In support for a
YY1/p53 axis in regulation of survival, loss of YY1 has
been shown to cause an increase in p53 levels and apopto-
sis (49). We also found a decrease in the expression of
DNA repair genes in nonobese db/db mice, including
GADD45 (Fig. 1B). Published data showed that YY1 can in-
hibit p53-dependent transcription of target genes such as
GADD45 and p21Waf1 (50). Finally, YY1 can also induce

DNA damage by regulating mitochondrial function and re-
active oxygen species production (26,51,52). In summary,
our data, together with published studies, suggest that YY1
can regulate DNA damage in b-cells by different pathways.

In summary, our data show that YY1 is downregulated
in b-cells from different models of mouse and human dia-
betes and that this transcriptional regulator orchestrates
a gene expression profile that regulates key biological pro-
cesses, including cell identity and DNA repair mechanisms
that are critical for survival of the b-cell. These studies
demonstrate that YY1 emerges as an important regulator
of b-cell maintenance and function.

Funding. This work was supported by the National Institutes of Health
(NIH) National Institute of Diabetes and Digestive and Kidney Diseases Grant

R01-DK073716 and U.S. Department of Veterans Affairs Merit Review Award

no. IBX002728A to E.B.-M. and NIH R01DK118099 grant to A.B.
Duality of Interest. No potential conflicts of interest relevant to this

article were reported.

Figure 7—DNA damage is increased in YY1-deficient b-cells. Staining for phospho-H2AX (pH2AX) in 3-week-old Ripb-YY1KO mice (A),
2-week-old Ins1b-YY1KOmice (C), and ib-YY1KOmice at 16 weeks (E) and quantification (B, D, and F, respectively) after tamoxifen treat-
ment. *P< 0.05, **P < 0.01 compared with control assessed by t test.

diabetesjournals.org/diabetes Peçanha and Associates 1703
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