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Abstract

Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous
system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of
trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-
based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is
an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and
integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate
OEC:s focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a

suitable environment in vitro.
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Introduction

The olfactory system has a unique neurogenic niche in which
olfactory sensory neurons are replaced throughout an indi-
vidual’s lifespan. Because the olfactory neuroepithelium is
exposed to the external environment, there is a constant turn-
over of olfactory neurons, and newborn olfactory neurons
are supported and guided by specialized glia called olfactory
ensheathing cells (OECs). OECs are located in the lamina
propria underlying the olfactory mucosa and surround the
axons of the olfactory sensory neurons from the epithelium
up into the nerve fiber layer of the olfactory bulb'>. Thus,
OECs can be easily obtained from an intranasal biopsy of the
olfactory mucosa including the lamina propria. OECs share
morphological and molecular features with both central ner-
vous system (CNS) glia such as astrocytes, and peripheral
glia such as Schwann cells*®. They support the continual
regeneration of neurons by acting as a suitable substrate,
and by migrating in tandem or ahead of emerging olfactory
axons’. OECs are also considered to be the primary innate
immunocytes in the olfactory system. They are a dynamic
cell population that can be stimulated from a resting state to
a phagocytic state, and they are capable of clearing bacteria
and axonal debris'®!"". Due to their numerous properties, the
transplantation of OECs to repair injuries in other regions of
the nervous system, particularly spinal cord injury (SCI), is
being explored by many research groups.

An injury to the spinal cord is devastating and often an
irreversible event that usually triggers multiple deleteri-
ous processes such as delayed and progressive cell death,
ischemia, hypoxia, inflammation, and extensive scar-
ring'?. This complex injury site microenvironment is pro-
apoptotic and anti-regenerative!>. To overcome these
inhibitory factors, OECs have been trialed extensively for
SCI repair because of their versatile and favorable biologi-
cal functions which can ameliorate the environment of the
injury site and promote regeneration. OECs can offer neu-
roprotection, enhance neurite outgrowth, provide axonal
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guidance cues, and promote remyelination in animal mod-
els and in humans (reviewed in Gomez et al.'¥). Despite
several completed clinical trials with transplantation of
OECs demonstrating safety and efficacy, the recovery
outcomes in patients are often variable. While there are
multiple factors contributing to the variable recovery out-
comes such as differences in cell source, cell purity, cell
delivery techniques, and assessment of functional read-
outs (reviewed in Kawaja et al.'’>, Miah et al.'®, Yao
et al.'”), a consistent observation across studies has been
the poor survival of transplanted cells, with the reported
survival rates of transplanted OECs being as low as 0.3%
to 3% in animal models'®2!. To compensate for this mas-
sive cell loss post-transplantation, excess cells are trans-
planted into the injury site. However, this approach comes
with limitations as it introduces additional cytotoxic prod-
ucts (apoptotic corpses) at the injury site without any
improvement in viability. In addition, it is not always fea-
sible to produce a surplus of cells for autologous therapies
due to the limitations in cell production from a small
biopsy source material. While the majority of our knowl-
edge on OEC biology comes from using rodent olfactory
tissues, OECs have also been isolated and purified from
different species such as dogs, pigs, primates, and
humans??2%, There are fundamental inter-species differ-
ences in the control of OEC proliferation and their
response to different growth factors (reviewed in
Wewetzer et al.?”). To overcome the complexities in cul-
turing OECs from different species, it is important to
identify and maintain cells under optimal conditions that
favor cell proliferation and rapid expansion while main-
taining cell-specific properties such as morphology, anti-
gen expression, and phagocytosis. For OECs to be used
clinically for cell transplantation, it will be imperative to
produce sufficient purified cells in a short timeframe in
vitro. Therefore, it is critical to test protocols for cell iso-
lation, purification, and expansion for OECs obtained
from individual species to predetermine optimal culture
conditions, rather than assume cells from different species
will respond similarly.

Strategies need to be designed that enable the in vitro pro-
duction of OECs in a state that will optimize their survival
and integration after transplantation into the hostile injury
site. However, commonly used in vitro models for cell
expansion do not reflect the conditions of the injury site and
this critical aspect of the OEC transplantation therapy is
mostly unexplored. By implementing pretreatment strategies
for the culture of OECs in an environment mimicking the
host site before transplantation, their phagocytic, secretory,
and migratory capacity can be improved to enhance viability
and neural regeneration at the transplantation site. This
review focuses on the following themes prior to cell trans-
plantation of OECs: (1) homeostatic/hypoxic precondition-
ing and (2) priming/activating cells, and (3) bioengineering a
suitable microenvironment.

Homeostatic/Hypoxic Preconditioning of OECs

Oxygen availability is a fundamental requirement for cellu-
lar function, and decreased oxygen levels can induce cellular
stress. Under homeostatic conditions, cells require oxygen
levels between 2% and 9% (14.4-64.8 mm Hg), whereas
lower oxygen levels 0.5% to 2% (<10 mm Hg) are consid-
ered hypoxic?®. Standard cell culture practice involves cul-
turing cells in liquid medium incubated at atmospheric
oxygen levels of 21% which is considerably higher than
physiological oxygen levels. Continued exposure to oxygen
concentration above physiological levels can lead to prema-
ture senescence of primary cells?®3°. It is likely that cells are
physiologically adapted to their anatomic niche conditions.
By culturing cells ex vivo under higher oxygen levels and
then transplanting them in vivo to homeostatic or hypoxic
conditions, the cells may require significant re-adaptation
which may confer additional cellular stress. This may be a
contributing factor to the poor survival of OECs after trans-
plantation. Hence, there is a need for in vitro approaches to
mimic the low oxygen conditions that the cells experience in
their tissue-specific niche and the transplantation site.

To gain insight into the potential for homeostatic oxygen
or hypoxic preconditioning where cells are cultured under
low oxygen conditions, it is useful to examine how other
cells respond, such as mesenchymal stem cells (MSCs; Table 1).
The aims of homeostatic/hypoxic preconditioning are to
improve the viability of the cell product and the therapeutic
properties of the transplanted cells. Culturing bone marrow—
derived mesenchymal stem cells (BM-MSCs) in hypoxic
conditions has been shown to increase proliferation, multipo-
tency, and the secretion of cytoprotective molecules*>>2. This
has partly been attributed to the provision of oxygen levels
similar to the resident cellular niche. The cellular niche
encompasses the local microenvironment that includes both
cellular and acellular components that nourish and regulate
the functions of cells. Oxygen levels in the niches of mesen-
chymal and neural stem cells are 2% to 8% and 1% to 8%,
respectively>34,

Olfactory mucosa—mesenchymal stem cells (OM-MSCs)
are a type of Nestin-positive stem cells identified®> in the
olfactory mucosa that have the potential to differentiate into
smooth muscle cells, adipocytes, osteocytes, and neurons
and show similar antigenic profile to BM-MSCs>*7, The
OM-MSCs secrete anti-inflammatory cytokines and have
been shown to improve myelination of rat spinal cord cell
cultures®®. Due to these favorable properties, OM-MSCs are
an alternative source of MSCs for autologous cell transplan-
tation. OM-MSCs and OECs are resident within the same
niche, the highly cellular lamina propria (reviewed in
Lindsay et al.’®). The application of conditions tested on
OM-MSCs to OECs can be an appropriate strategy to re-
create an optimized microenvironment for the culture and
expansion of OECs, and to improve their efficacy for cell
transplantation.
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Similar to BM-MSCs, hypoxic preconditioning of
OM-MSCs resulted in increased secretion of neuroprotective
paracrine factors against cerebral ischemia/reperfusion
injury. Interestingly, hypoxic OM-MSCs were able to inhibit
microglial cell death following cerebral ischemia/reperfu-
sion injury in vitro. This anti-pyroptotic and anti-apoptotic
effect of OM-MSCs on microglia was mediated by regulat-
ing expression levels of hypoxia-inducible factor 1-alpha
(HIF-1a), a key transcription factor regulating cellular
response to hypoxia**33. Preconditioning of OM-MSCs
resulted in marked increase of HIF-1a., and silencing HIF-1a
in OM-MSCs affected cell viability and resulted in accelera-
tion of apoptosis*’. A hypoxic environment could also pro-
mote differentiation of OM-MSCs to dopaminergic neurons
by upregulation of HIF-1a and activation of tyrosine hydrox-
ylase®>0, Thus, it is clear that MSCs respond in various ways
to low oxygen conditions and hence the effect of low oxygen
conditions should be considered for OECs.

Survival of OECs in culture and at the transplantation
site can be compromised by a lack of oxygen and nutri-
ents to support their viability. /n vitro sensitivity of OECs
to hypoxia and serum deprivation was tested by Pellitteri
et al., in neonatal mouse OEC cultures. OEC proliferation
and survival were reduced when exposed to a combina-
tion of hypoxia and serum starvation®'. Addition of basic
fibroblast growth factor, a mitogen for OECs®?, could
improve survival and proliferation of OECs from hypoxia
or serum deprivation. Intriguingly, the growth rate of pri-
mate OECs was unaffected by environmental oxygen
concentration in contrast to rodent OECs which appeared
to overcome replicative senescence when cultured in low
oxygen conditions?®.

A recent study® investigated the therapeutic effects of
exosomes from human umbilical cord—derived MSCs on
OEC:s in hypoxic conditions for sciatic nerve regeneration in
rats. Treating OECs with exosomes resulted in improved
viability, proliferation, and migration of OECs, and increased
the secretion of brain-derived neurotrophic factor (BDNF)
thereby resulting in improved functional recovery in injured
rats. Notably, extracellular vesicles derived from hypoxia-
preconditioned OM-MSCs (3% O,) could promote HIF-1a—
vascular endothelial growth signaling in human brain
microvascular endothelial cells via miR-612 upregulation
and downregulation of 7P53, a component of cellular stress
responses, resulting in enhanced angiogenesis in in vitro tube
formation assays>!.

While these studies make a case for preconditioning cells
to low oxygen conditions before transplantation into a “hos-
tile” hypoxic environment, the adoption of low oxygen pre-
treatment to a clinical setting will be contingent on the
protocol consistency. It will be critical to predetermine the
vulnerability and responses of the OEC cellular product to
hypoxic stress, the duration and percentage O, of low oxygen
exposure, and ultimately the ideal conditions to improve cell
survival and integration at the transplantation site.

Pretransplantation Cell Priming

The inflammatory environment and the inhibitory extracel-
lular matrix at the injury site in the CNS result in poor growth
conditions for both the endogenous and transplanted cells®*®,
OEC:s offer a potential therapeutic benefit as they can modu-
late the inflammatory environment, remove cell and myelin
debris, and offer neurotrophic and physical support to regen-
erating axons (Fig. 1, reviewed in Yao et al.'’, Brosius Lutz
and Barres®, and Fregnan et al.*’). Many aspects of OECs
and their cellular interactions for pro-regenerative functions
have been studied in vitro using assays for neurite outgrowth,
interaction with astrocytes, debris clearance, and phagocyto-
sis assays'4. One avenue to further improve the therapeutic
efficacy of OECs is to enhance their activities. Thus, there is
a need for the design of approaches to activate or train OECs
to attain a functionally relevant phenotype in vitro and to
retain or enhance their relevant function in vivo after
transplantation.

Different approaches have been tested to stimulate the
secretion of growth factors, and to enhance the migratory
and phagocytic capabilities of OECs. The main objectives of
cell priming or preconditioning cells by exposure to an acti-
vating/priming agent in vitro are to augment their potential
therapeutic properties and to better prepare the cells to face
the conditions at the transplantation site.

Soluble signaling cues. OECs secrete many neurotrophic mol-
ecules such as neurotrophin-3 (NT-3), nerve growth factor
(NGF), glial-derived neurotrophic factor (GDNF), BDNF,
neurotrophins-4/5 (NT-4/5), and vascular endothelial growth
factor (VEGF)®-7°, These molecules can also counteract the
diffusion of inhibitory molecules from neuronal debris by
phagocytosing debris.

To optimize the functional outcomes from OEC trans-
plantation, cell modulation with different neurotrophins has
been tested (reviewed in Rosner et al.”! and Wright et al.”).
NT-3 is an interesting candidate as it can promote both the
proliferation and survival of OECs, and also different groups
have shown that local application of NT-3 at the injury site
was favorable for regeneration after SCI”>”>. To achieve
long-term and site-specific delivery of NT-3 to the injury
site, OECs genetically modified to secrete high amounts of
NT-3 were transplanted to the injured spinal cord, and these
cells could significantly improve axonal outgrowth’>’°. A
recent study explored the effect of NT-3 in a rat model of SCI
and showed that NT-3 could inhibit the mitogen-activated
protein kinase (MAPK) signaling pathway’’. Similarly, NGF
and BDNF play a neuroprotective role by modulating the
MAPK/mitogen-activated extracellular signal-related kinase
(MEK) pathway’®7°.

The Wingless-related integration site (Wnt) signaling
pathway influences multiple aspects of neural development
from cell proliferation, cell fate specification, and neuronal
morphogenesis to cell death (reviewed in Ciani and Salinas®’).
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Figure |I. Schematic of the various biological roles of olfactory ensheathing cells that favour neural regeneration. The therapeutic
effects of olfactory ensheathing cell transplantation for neural repair are attributed to their biological roles such as phagocytosis of
debris, interaction with astrocytes, neurotrophic support, immunomodulation, and neuronal regeneration.

A specialized subgroup of OECs in the inner nerve layer of
the olfactory bulb was identified using Wnt reporter mice,
and Wnt signaling was implicated in appropriate olfactory
axonal targeting and in neural regeneration®'=83. Notably, the
activation of Wnt signaling could promote self-renewal of
olfactory epithelial stem cells and neuronal differentiation.
Furthermore, Wnt signaling activation is critical for the
regeneration of adult olfactory epithelium after methimazole
induced injury®®. Activation of canonical Wnt signaling
was shown to be both necessary and sufficient to drive the
transition of horizontal basal stem cells from a resting to an
activated neurogenic state in the uninjured epithelium®’.
Recently, it was reported that Wnt-activated OECs can
stimulate neural stem cell proliferation and neuronal

differentiation in neonatal mouse OECs. Interestingly, the
conditioned medium from Wnt-activated OECs was suffi-
cient to stimulate proliferation of neural stem cells deter-
mined by an increase in Ki67 and Sox2 double positive cells,
and it could also promote the differentiation of neural stem
cells into B-tubulin III positive neurons®.

There is growing evidence supporting a paracrine/secre-
tory effect of transplanted cells such as MSCs and OECs on
neural regeneration (reviewed in Makridakis et al.%”). These
studies indicate that there may not be a need for homing of
large cell numbers to the injury site to observe an effect.
Secreted signaling cues could be sufficient to drive cellular
responses, and there is potential for using activation or
stimulation of the cells as another approach to enhance
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therapeutic potency of transplanted cells by improving their
function and their resistance to inflammatory conditions.
Little is known about the immunomodulatory properties of
OM-MSCs. To address this, Jafari et al., compared the cyto-
kine secretion of stimulated OM-MSCs and adipose-derived
MSC:s by short-term priming protocols to stimulate Toll-like
receptors. Interestingly, OM-MSCs had significantly higher
levels of immunosuppressive cytokines interleukin-8,
transforming growth factor beta (TGF-B) and C-C motif che-
mokine ligand 5 secretion in comparison with adipose tis-
sue—derived MSCs even before any treatment®®. We recently
reported that OECs produced less pro-inflammatory cyto-
kines compared with Schwann cells and macrophages when
exposed to necrotic bodies and in a pro-inflammatory micro-
environment®. The secretome of OM-MSCs has been
reported previously® and the results showed that the secreted
proteins were mainly associated with neurotrophy, cell
growth, angiogenesis, cell differentiation, and apoptosis. In
cerebral ischemia reperfusion injury, models, OM-MSCs
were shown to downregulate reactive oxygen species and
lipid peroxidation levels, and eventually reduce neuronal
apoptosis®>. Recently, extracellular vesicles derived from
OECs were shown to display neuroprotective effects on neu-
ral progenitor cells and promoted peripheral nerve regenera-
tion in rats®!%2,

Overall, these studies suggest that OECs can be stimu-
lated in vitro to enhance the activity, function, and secretome
of OECs which can then exert various benefits to other cell
types. However, a robust analytical approach is required to
identify the “ideal” activators for OECs and to measure the
immunosuppressive potential of activated OECs in an
inflammatory environment.

Migration. Transplanted cells will encounter a complex and
unfavorable environment during their migration as they are
faced with different cell types such as reactive astrocytes,
activated microglia, invading fibroblasts, inflammatory mol-
ecules, and debris at the injury site. These interactions have
the potential to modulate the transplanted cells and affect
their ability to migrate. It is likely that OECs transplanted at
the site of SCI will be surrounded by glial-fibrillary acidic
protein-positive cells, possibly reactive astrocytes®, and
these astrocytes can limit OEC migration. For instance, tumor
necrosis factor alpha (TNFa) is secreted by reactive astro-
cytes at the site of injury and can modulate OEC migration in
a dose-dependent fashion, blocking tumor necrosis factor
receptor 1 alpha (TNFR1a). This can result in the reduced
migration of olfactory bulb OECs®*. Despite the odds being
stacked against migration and integration at the injury site,
OECs have been shown to migrate with the regenerating
axons®™ and interact with astrocytes™. These migratory
properties of OECs, along with their ability to interact with
astrocytes at the injury site and modulation of the inflamma-
tory environment, are thought to contribute toward favorable
neural repair in the CNS>*97%8 Moreover, OECs can also

downregulate the translocation of nuclear factor kappa beta
(NFxB) in astrocytes, an important response implicated in
astrocyte activation. Insulin-like growth factor-1, secreted by
OEC:s is considered a key contributor to the modulation of
astrocytes activation by OECs by potentially preventing the
translocation of NF«kB to astrocyte nuclei®.

Different candidates have been tested to stimulate OEC
migration with the objective of improving neural repair out-
comes. We have shown previously that OEC migration is
characterized by lamellipodial waves that appear to direct
intercellular interactions. The lamellipodia migration of
OECs could also be enhanced by GDNF which further medi-
ates the motility of axons'»!%!, Integrin alpha-7 has been
reported to play an important role in the migration of adult
OECs without directly affecting neurite regeneration!%2,
Fibulin-3, Slit2, and NogoA have been shown to inhibit OEC
migration, and interestingly they are also often found to be
overexpressed in the scar tissue at lesion sites!®319%,
Similarly, lysophosphatidic acid (LPA) is produced at the
injury site, and has been reported to promote migration and
proliferation of OECs via extracellular signal-regulated
kinase (ERK 1/2) signaling!® while also facilitating the hom-
ing of OECs to the injury site!”’. We recently showed that
liraglutide, a glucagon-like peptide-1 receptor agonist, could
stimulate OEC migration by reducing time in arrest, upregu-
lating laminin-1, and activating the ERK pathway!%. Another
approach to augment OEC migration at the site of injury is to
genetically modify cells. One such study was to modify
OEC:s to express Nogo receptor ectodomain. These modified
cells migrated longer than non-modified cells both in vitro
and post-transplantation in a rat model of SCI. The myelin
mediated inhibition of OEC migration could be partly over-
come by treatment with NEP1-40 peptide or antibodies
against Nogo receptor'®.

These studies further support the notion that stimulating
migration of OECs is feasible, and perhaps incorporating
cells with enhanced migratory properties should be a consid-
eration when designing OEC-based cell therapies for neural
repair.

Phagocytosis. The persistence of cellular and myelin debris at
the site of CNS injury impedes neural regeneration''?. Effec-
tive stimulation of OEC phagocytic activity is another ave-
nue to promote debris clearance and thereby improve neural
regeneration. Accumulating evidence from our group and
other studies has helped identify different compounds that
can increase OEC phagocytosis, including curcumin''!, cur-
cumin with lipopolysaccharide (LPS)!'%2, natural products
2-methoxy-1,4-naphthoquinone''3, the serrulatane diterpe-
noids 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid,
and 3,7,8-trihydroxyserrulat-14-en-19-oic acid!'*. The anti-
inflammatory cytokine TGF- has also been implicated in
increasing OEC phagocytosis''>.

Curcumin elicits pleiotropic effects in OECs in a dose-
dependent manner. In assays where neurons are co-cultured
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with OECs and neuronal debris, increased clearance of debris
was observed in the presence of LPS and curcumin stimu-
lus''? or TGF-B!'", and this in turn promoted neuronal sur-
vival. Strikingly, pretreatment with curcumin resulted in
improved functional recovery and axon growth in a rat model
of SCI. Cells stimulated by curcumin exhibited increased
expression of phosphatidylserine receptor suggestive of
increased phagocytosis and secreted more growth factors in
vivo at the injury site!'®. Recently, it was shown that when
activated by curcumin and LPS, OECs had pro-angiogenic
effects such as promoting proliferation, migration, and ves-
sel formation of vascular endothelial cells likely by modulat-
ing the phosphatidylinositol 3-kinase/protein kinase B
pathway!!”.

Compared with Schwann cells, OECs appear to have
more favorable neural repair characteristics. In addition to
producing less pro-inflammatory cytokines compared with
Schwann cells in a pro-inflammatory environment, we have
also demonstrated that OECs phagocytosed more myelin
debris than Schwann cells®. More data are clearly needed to
understand how OECs interact with the immune and nervous
systems, and how debris clearance is coordinated between
OEC:s and professional phagocytic cells at the injury site.

Overall, these studies show that OECs are responsive to
stimulation and the potential exists that these various activi-
ties can be manipulated to further enhance the therapeutic
benefits of OECs after transplantation. To create a microen-
vironment suitable to drive axonal regeneration, we need to
develop and test approaches to activate and train OECs in
vitro to maximize their functions in vivo. Systematic analysis
of the priming agents and optimizing the duration of priming
to modulate therapeutic efficacy will be the key to achieving
efficient cell therapy outcomes with minimum cell dosage
and side effects.

Bioengineering a Suitable Microenvironment

Another challenge in the application of cell therapies for
SCIs is the retention of biological functions of transplanted
cells. For cells to function consistently as “living drugs,” we
must aim to recreate or mimic their in vivo niche in a dish
and to standardize cell production protocols''®. The factors
that directly or indirectly affect the cell behavior such as
extracellular matrix, neighboring cells, signaling cues, and
mechanical forces caused by movement of physiological flu-
ids, all constitute the microenvironment of a cell.

OECs are conventionally cultured in vitro and expanded
as adherent monolayers under conditions commonly used for
mammalian cells. However, access to nutrition and oxygen is
not uniform and well-controlled under these conditions, and
intercellular interaction is unnatural when cells are adhered
to a dish. Moreover, the properties of these cells are depen-
dent on factors such as cell density and time in culture. Cells
are also reliant on direct contact with the surrounding extra-
cellular matrix and neighboring cells for maintenance and

regulation of their biological function. So, two-dimensional
adherent culture conditions are not ideal, and there is a dis-
parity between what the cells require for performing their
biological roles and what is provided in vitro. There is a need
for developing models mimicking both the resident cellular
niches and the transplantation niche.

Rapid advances in materials science have led to the use of
different biomaterials with the aim of promoting functional
tissue repair at the site of injury!''®'?°. Provision of three-
dimensional (3D) support has been shown to improve effi-
cacy of BM-MSCs after transplantation by mimicking the
cellular niche, and creating a conducive and stable environ-
ment for axonal regeneration and cell survival (reviewed in
Zhou et al.!?).

Different biomaterials have been trialed in combination
with OECs with varying success (Table 2). These biomateri-
als function as carriers for the cells and as structural scaffolds
for axonal regrowth. The minimum prerequisites for a suit-
able biomaterial are biocompatibility, biodegradability, and
adaptive mechanical properties. Despite the application of
fabricated and synthetic 3D scaffolds such as fibrin and poly-
mer-based scaffolds for nerve repair, there remains a need for
biologically relevant scaffolds or scaffold-free 3D culture
techniques. It is expected that decellularized scaffold-based
tissue constructs could be directly transplanted for the
regrowth of axonal tracts and to hasten the neural regenera-
tion in vivo'*. Decellularization is the process of creating an
acellular extracellular matrix scaffold by removal of the cel-
lular components of living tissues. These acellular scaffolds
are subsequently used to provide structural and spatial sup-
port, cytokine support, and integration through cell surface
molecules!®. Spinal cord decellularized scaffolds have
been shown to promote axonal regeneration and functional
motor recovery in the hind limbs of rats with SCI!46-148,
Decellularized scaffolds seeded with OECs showed good
biocompatibility with adherent and proliferating OECs
observed in the scaffold, and when transplanted into rat spi-
nal cord, the decellularized scaffold + OEC group could
promote axonal regeneration and showed significant motor
function recovery after 3 weeks of injury'#®. However, decel-
lularized materials which have a fixed architecture restrict to
some degree the movement and interactions of cells that are
seeded into the 3D construct. Thus, the resultant cell rela-
tionships may not reflect a more natural arrangement that
may occur if the cells had a less restrictive environment.

To simplify the final cell product that is transplanted and
to minimize potential adverse effects, our research has
focused on the development of stable 3D constructs that are
substrate and scaffold-free and can be cultured in standard
cell culture medium. We recently reported two 3D spheroid
culture systems: floating liquid marbles and the naked liquid
marbles'>*!15!, In the naked liquid marble system, OECs cul-
tured within a liquid drop on a superhydrophobic surface can
form spheroids within hours. This rapid formation of spher-
oids is advantageous as short-term cultured OECs have
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Olfactory tissue biopsy

Strategies to improve cell quality pre-transplantation
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Figure 2. Schematic overview of the different strategies to improve cells pretransplantation. Olfactory ensheathing cells are isolated
and purified from biopsies of olfactory mucosa or olfactory bulb tissue. The cells can be modulated by exposure to low oxygen,
stimulated to improve migratory and phagocytic properties, and cultured in three-dimensional constructs prior to transplantation at the

site of spinal cord injury.

better effects on the neural survival and axonal growth'>.
Furthermore, we could customize the size of the spheroid
using vibration at different frequencies'** or by changing cell
density.

A major advantage of culturing cells in 3D spheres is that
it closely mimics the in vivo environment and can recapitu-
late the cellular interactions and cell-matrix interactions.
Importantly, our ability to culture OECs in 3D in this naked
liquid marble system revealed two critical attributes of this
process: (1) unrestricted movement of cells within liquid
marbles enabled natural arrangement of cells reminiscent of
their in vivo organization and (2) cells retained their migra-
tion properties from spheroids when transferred to a two-
dimensional culture plate. Due to the naked liquid marble
system resulting in 3D cell constructs that closely mimic the
in vivo environment, it is suitable for a range of in vitro stud-
ies of OECs which may better reflect cell function and
responses.

3D bioprinting is a bespoke approach to address the vari-
able nature of SCIs wherein personalized tissue scaffolds
suitable to match an individual’s injury site can be generated.
For instance, Joung et al.'** reported a 3D spinal cord tissue-
like platform where multiple neural progenitor cells could be
placed within a printed scaffold. More recently, a novel bio-
ink containing hydroxypropyl chitosan, thiolated hyaluronic
acid, vinyl sulfonated hyaluronic acid, and matrigel was used
for the fabrication of a tissue scaffold to mimic the white
matter of spinal cord!'®. The feasibility of printing primary
cultured OECs was demonstrated by Othon et al.!>°, where
using biological laser printing several lines of OECs could be
printed through a multilayer hydrogel scaffold.

In summary, integration of emerging technologies such as
3D bioprinting in combination with scaffold-free models has
the potential to create highly complex environments for the

recreation of cellular and transplantation niches thereby
facilitating the use of predictive and biologically relevant in
vitro models.

Conclusion

The microenvironment of the injured spinal cord is unfavor-
able for the survival of transplanted cells. In this review, we
have discussed potential strategies to precondition and stim-
ulate OECs for transplantation to improve their survival and
to enhance their therapeutic potential (Fig. 2). When cells are
isolated from their native environment, expanded in vitro,
and then transplanted back in vivo to a harsh injury environ-
ment, the therapeutic potency of the cells is not well-pre-
served, possibly due to changes in the microenvironment of
the cells. Preconditioning OECs in vitro may improve their
migration, phagocytic, and immunomodulatory abilities.
Understanding how the manipulation of different stimuli,
such as oxygen levels, signaling cues, and 3D culture param-
eters of cells, can affect the behavior of OECs should be a
consideration in the design of cell transplantation therapies.
Future studies should focus on the development of robust in
vitro models that can activate and retain biological properties
of the cells by mimicking conditions of the tissue-specific
microenvironment. This will help to improve the overall reli-
ability of cell-based therapies and to unlock the therapeutic
capabilities of OECs for neural repair.
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