Skip to main content
. 2022 Jul 13;24(28):5014–5017. doi: 10.1021/acs.orglett.2c01642

Table 1. Optimization of Conditionsa.

graphic file with name ol2c01642_0006.jpg

entry ratio solvent catalyst yieldb (%)
1 1:1:1 MeOH Sc(OTf)3 24
2 2:1:2 MeOH Sc(OTf)3 74
3 2.2:1:2.2 MeOH Sc(OTf)3 64
4 1.3:1:1.3 MeOH Sc(OTf)3 34
5 2:1:2 TFE Sc(OTf)3 45
6 2:1:2 water Sc(OTf)3 11
7 2:1:2 MeCN Sc(OTf)3 36
8 2:1:2 solvent free Sc(OTf)3 21
9 2:1:2 PEG40 Sc(OTf)3 17
10 2:1:2 MeOH PTSA 64
11 2:1:2 MeOH perchloric acid 43
12 2:1:2 MeOH acetic acid 48
13 2:1:2 MeOH NH4Cl 51
14 2:1:2 MeOH ZrCl4 63
15c 2:1:2 MeOH Sc(OTf)3 40
16d 2:1:2 MeOH Sc(OTf)3 54
a

Reaction conditions: unless otherwise stated, all the reactions were performed with 1a (1 mmol), glyoxal dimethyl acetal (60% in H2O, 0.5 mmol), 2a (1 mmol), and catalyst (20 mol %) in solvent (0.5 mL) at 100 °C under microwave radiation for 1 h. PTSA = 4-methylbenzenesulfonic acid; TFE = trifluoroethanol.

b

Isolated yield.

c

Glyoxal (40 wt % in H2O) was used as dialdehyde source.

d

Heated at 80 °C for 12 h in sealed vial using aluminum heating blocks.