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Abstract 

Age-related cognitive impairment is multifactorial, with numerous underlying and frequently co-morbid pathological 
correlates. Amyloid beta (Aβ) plays a major role in Alzheimer’s type age-related cognitive impairment, in addition to 
other etiopathologies such as Aβ-independent hyperphosphorylated tau, cerebrovascular disease, and myelin dam-
age, which also warrant further investigation. Classical methods, even in the setting of the gold standard of postmor-
tem brain assessment, involve semi-quantitative ordinal staging systems that often correlate poorly with clinical out-
comes, due to imperfect cognitive measurements and preconceived notions regarding the neuropathologic features 
that should be chosen for study. Improved approaches are needed to identify histopathological changes correlated 
with cognition in an unbiased way. We used a weakly supervised multiple instance learning algorithm on whole slide 
images of human brain autopsy tissue sections from a group of elderly donors to predict the presence or absence of 
cognitive impairment (n = 367 with cognitive impairment, n = 349 without). Attention analysis allowed us to pinpoint 
the underlying subregional architecture and cellular features that the models used for the prediction in both brain 
regions studied, the medial temporal lobe and frontal cortex. Despite noisy labels of cognition, our trained models 
were able to predict the presence of cognitive impairment with a modest accuracy that was significantly greater than 
chance. Attention-based interpretation studies of the features most associated with cognitive impairment in the top 
performing models suggest that they identified myelin pallor in the white matter. Our results demonstrate a scalable 
platform with interpretable deep learning to identify unexpected aspects of pathology in cognitive impairment that 
can be translated to the study of other neurobiological disorders.
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Introduction
Cognitive impairment is not an invariable part of the 
aging process and unimpaired cognition is a core feature 
of most criteria of successful aging [1]. While Alzheimer’s 
disease (AD) type amyloid-beta peptide (Aβ) deposition 
in senile plaques may play a role in age-related cognitive 
impairment, it is clear that removing or ameliorating Aβ 
alone will not alleviate all cognitive impairment in aging 
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[2]. The neuropathologic correlates of cognitive impair-
ment are multifactorial, with mixed pathologies account-
ing for the majority of cases in community samples [3, 
4]. Data suggest that multiple forms of brain pathology 
can each be uniquely associated with risk of age-related 
cognitive impairment, including cerebrovascular disease, 
neuritic plaques and neurofibrillary tangles, Lewy body 
disease, TDP-43 pathology, and hippocampal sclerosis 
[5, 6]. To pave the way towards better prevention and 
treatment options for age-related cognitive impairment, 
there is an urgent need to identify the structural features 
of brain microanatomy that are robustly associated with 
the condition using unbiased assessment protocols [7, 8]. 
One approach to identifying structural correlates of cog-
nitive impairment is to perform clinicopathologic corre-
lation in postmortem human brains.

Recent advances in digital pathology, namely whole 
slide image (WSI) scanning and analysis, provide an 
opportunity to address the question of clinicopathologic 
correlation in a way that is less biased towards estab-
lished paradigms [9]. Studies have begun to apply com-
putational analysis of WSI data using deep learning to 
answer neuropathologic questions [10–12]. However, the 
use of deep learning in neuropathology has often been 
limited by the need for intensive manual annotations. 
Moreover, deep learning analysis in neuropathology 
has often used supervised learning to study an existing 
domain of structural features, rather than the discovery 
of potentially unexpected features.

Weakly supervised deep learning offers a clear path 
towards WSI analysis in neuropathology with less bias 
and without the need for laborious manual annotations. 
In weakly supervised learning, the deep learning algo-
rithm attempts to classify the WSI on the basis of a sin-
gle slide-level diagnosis or label, rather than pixel-level 
inputs [13]. Weakly supervised learning approaches 
using multiple instance learning have had remarkable 
success thus far in digital pathology, especially in oncol-
ogy [13, 14]. However, unlike cancer pathology, where a 
gold standard diagnosis can be ascertained, the neuro-
pathologic etiologies of cognitive impairment are poorly 
understood, graded rather than categorical, overlapping, 
and dynamically interacting [15–17]. Moreover, clini-
cal measures of cognitive function available for clinico-
pathologic correlation in neuropathology are frequently 
imprecise, non-standardized, ephemeral, and collected 
at distant time points prior to death [18–20]. As a result, 
the use of weakly supervised learning to correlate age-
related cognitive impairment with neuropathologic fea-
tures using WSI data will be dependent on noisy labels of 
cognition.

To the best of our knowledge, no study has yet reported 
a weakly supervised deep learning approach on brain 

tissue WSI data to identify features associated with age-
related cognitive impairment. It is uncertain the degree 
to which deep learning models will be able to identify 
robust features to make the prediction of whether an 
autopsy brain donor had antemortem cognitive impair-
ment in the setting of noisy labels. In this study, we used 
WSI data stained with Luxol fast blue (LFB), hematoxy-
lin, and eosin (LH&E), from the hippocampus and frontal 
cortex in a previously described cohort of elderly individ-
uals with a spectrum of age-related pathologies [21–25]. 
We leveraged a published weakly supervised deep learn-
ing algorithm, clustering-constrained-attention multiple 
instance learning (CLAM) [14], on this histopathologic 
data to identify pathoanatomic features that are asso-
ciated with cognition. Our approach re-purposes the 
classification procedure as a method for inferring patho-
anatomical group differences between those found to 
have any aspect of cognitive impairment and those who 
were not. We explored the association between the deep 
learning model predictions on neuropathologic data and 
antemortem evidence of cognitive impairment. To inter-
pret these results, we dissected the deep learning model’s 
attention weights using additional machine vision tech-
niques. Our study shows that weakly supervised deep 
histopathology is a promising platform to perform clin-
icopathologic correlation in neuropathology.

Materials and methods
Description of the overall cohort and subset analyzed 
in this study
Our study used digital WSIs of stained formalin-fixed 
paraffin embedded (FFPE) tissue from the frontal cor-
tex and hippocampus of a subset of individuals from a 
previously described collection [21–23]. The cohort is a 
convenience sample derived from our ongoing studies 
of brain aging, which was collected by eliciting samples 
from multiple institutions. Extensive neuropathologi-
cal assessments were completed at the contributing 
institutions using standardized criteria. This assessment 
included CERAD neuritic plaque severity score and Braak 
stage [26]. This cohort contains individuals with varying 
degrees of primary age-related tauopathy (PART) patho-
logic change, including PART possible (mild amyloid 
plaques) and PART definite (amyloid plaque negative), 
among other age-related changes [27]. Neuropathological 
exclusion criteria consisted of other neurodegenerative 
diseases including Lewy body disease, progressive supra-
nuclear palsy (PSP), corticobasal degeneration (CBD), 
chronic traumatic encephalopathy (CTE), Pick disease, 
Guam amyotrophic lateral-sclerosis-parkinsonism-
dementia, subacute sclerosing panencephalitis, globular 
glial tauopathy, and hippocampal sclerosis. There are also 
individuals that do not meet the neuropathologic criteria 
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for PART (e.g., two cases with moderate amyloid), and 
therefore it should be considered an aging-related cogni-
tive impairment cohort. Cerebrovascular pathology was 
defined in an inclusive manner based on clinical or gross 
pathoanatomic evidence of vascular disease in the brain 
in the provided records. In this cohort, ARTAG positiv-
ity or absence was assessed on matched phosphorylated 
tau immunohistochemical stains as previously described 
[22].

Inclusion criteria in the subset of this cohort analyzed 
in this paper were individuals who had antemortem 
clinical evidence of either normal cognition or cogni-
tive impairment, while those without such data were 
excluded. This led to a data set with WSI and matched 
pathoclinical data from a total of n = 716 donors 
(Table 1). For the definition of cognitive impairment, we 
used a hierarchical method based on the three metrics 
in the available clinical data to identify any evidence of 
cognitive impairment. First, if available, a clinical demen-
tia rating (CDR) score >  = 0.5 was used as the primary 
measure of cognitive impairment; if CDR was not avail-
able, then the presence of any clinical diagnosis sugges-
tive of cognitive impairment was used as the secondary 
measure; and finally, if the first two more global metrics 
were not available, then a Mini-Mental State Exami-
nation (MMSE) score <  = 24 was used as a measure of 
cognitive impairment [28]. To maximize the sample size 
available for the study, cognitive data was included even 
if the time of assessment relative to death was unknown. 
Brain donors with any evidence of cognitive impairment 
were considered a part of the cognitively impaired (CI) 
group, while donors with negative data in all the available 
categories were included in the non-cognitively impaired 
(NCI) group. CDR scores with dementia severity score 
greater than 3 were converted to a maximum of 3 for 
consistency across centers.

Slide preparation
For the hippocampus, the WSIs represented the entire 
hippocampal tissue block, which variably included 
adjacent structures (e.g., parahippocampal gyrus, tem-
poral horn of the lateral ventricle). Luxol fast blue, 
hematoxylin, and eosin (LH&E) stains were performed 
on 4-µm-thick FFPE sections as previously described 
[23]. Sections mounted on positively charged slides 
were dried overnight. For each batch of slides stained, a 
known severe AD case was included as a positive staining 
control. WSI were scanned using an Aperio CS2 (Leica 
Biosystems, Buffalo Grove, IL) digital slide scanner at 
20 × magnification (0.5 microns per pixel).

Weakly supervised learning pipeline
We used Python (v. 3.7.7), PyTorch (v. 1.3.1), and CLAM 
to perform deep learning on WSIs [14]. Models were 
trained using 4 NVIDIA V100 GPUs available on Min-
erva, a high-performance computing cluster at the Icahn 
School of Medicine at Mount Sinai. LH&E WSIs were 
segmented into non-overlapping tiles of 256 × 256 pix-
els using the default automated segmentation settings 
in CLAM. After segmentation, there was a median of 
16,310 tiles per WSI (minimum of 2546, maximum of 
32,036) in the hippocampus data set and 19,878 tiles per 
WSI (minimum of 2886, maximum of 31,535) in the fron-
tal cortex data set. All the tissue in the WSI was included 
in the segmentation and downstream analysis. For exam-
ple, for WSIs generated from blocks with two tissue sec-
tions on the slide, both tissue sections were automatically 
segmented and used in downstream analyses.

To perform feature extraction, for each tile, the first 
three blocks of a ResNet50 model pre-trained on Ima-
geNet was used to convert each 256 × 256-pixel tile into 
a 1024-dimensional feature vector. Training in CLAM 
uses attention-based pooling to leverage tile-level feature 

Table 1  Description of cohort subset and whole slide image dataset used in this study

This table describes the pathoclinical characteristics of the subset of brain donors employed in this study. The significance of differences in categorical variables 
between the non-cognitively impaired and cognitively impaired groups was assessed with a two-proportions z-test, while the significance of differences in numerical 
variables was assessed with a t-test. WSI = Whole slide image; SEM = Standard error of the mean; ARTAG = Aging-Related Tau Astrogliopathy; CERAD = Consortium to 
Establish a Registry for Alzheimer’s Disease

Category Non-cognitively 
impaired

Cognitively impaired Total group p-value for difference*

Sample size 367 349 716 Not applicable

Age (Mean ± SEM) 83.0 ± 0.58 87.4 ± 0.48 85.2 ± 0.39 p = 1.02 * 10–8

Proportion female 0.54 0.53 0.54 Not significant

Mean Braak score 2.4 2.5 2.4 Not significant

Proportion CERAD neuropathology positive 0.15 0.18 0.17 Not significant

Proportion hippocampal ARTAG positive 0.22 0.31 0.27 p = 0.015

Proportion with hippocampal WSI 0.99 0.99 0.99 Not significant

Proportion with frontal WSI 0.46 0.46 0.46 Not significant
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vectors in assembling slide-level representations for each 
of the two classes. For network training, we used the 
default CLAM parameters, with a single attention branch 
model and a learning rate of 2e−4. For WSI classification 
training, we used tenfold Monte Carlo cross-validation 
to split the data set into 10 folds of training sets (80% of 
cases), validation sets (10% of cases), and test sets (10% 
of cases). A separate model was trained on each of the 10 
folds, using performance on the validation set for early 
stopping during training, and performance on the test set 
at the end of training as a measure of prediction accuracy.

We used R (v. 4.0.1) and ggplot2 (v. 3.3.5) to perform 
downstream analysis and visualization of results from 
the weakly supervised deep learning analysis. To evalu-
ate the performance of the deep learning algorithm, 
we compared the performance of all 10 independently 
trained models to chance (i.e., an area under the receiver 
operating characteristic (ROC) curve, or AUC, of 0.5) 
using one-sample Wilcoxon signed rank tests with con-
tinuity correction and plotted the average ROC curves 
using vertical averaging and linear interpolation [29]. For 
the analysis from each of the two brain regions studied, 
we used the best-performing model, as measured by the 
arithmetic mean of the area under the curve and the bal-
anced accuracy on the test set, for subsequent analyses. 
To perform differential rank correlation analysis between 
groups, we used the DGCA package [30], with 10,000 
permutations of the data used to generate empirical 
p-values.

Attention interpretation analysis
For each WSI, we used CLAM to perform tissue-level 
attention analysis of the top performing trained mod-
els. In these heatmaps, the red colors represent regions 
assigned relatively higher attention by the model and 
blue colors represent regions assigned relatively lower 
attention, normalized to the attention values in the rest 
of the slide.

To evaluate the macrostructural features most associ-
ated with cognitive impairment, we used V7 to annotate 
the macroscopic tissue types in a randomly chosen subset 
of WSIs from both the hippocampus and frontal cortex. 
One trained researcher (M.S.) created the annotations, 
and an expert neuropathologist (J.F.C.) reviewed them to 
ensure accuracy. The V7 annotations were converted to 
the same tile-level space as the tile-level attention score 
output from CLAM. We z-transformed the attention 
scores and we then calculated the median tile-level atten-
tion score for each tissue region within each slide. We 
compared the median attention scores across tissue types 
with paired t-tests.

To evaluate the microstructural features most associ-
ated with cognitive impairment, we examined the 100 

tiles with the highest attention scores from each WSI. 
In order to quantify the amount of dark blue staining in 
LHE stained tiles, we used the positive pixel counting 
function in the Python package HistomicsTK (v 0.1.0) 
[31]. This function converts RGB color space images to 
HSI (hue, saturation, intensity) color space and calcu-
lates the number of pixels in a user-defined hue range. 
The parameters used to count the positive pixels were 
created based on manually identifying the appropri-
ate dark blue hue range in HSI space (Additional file 1: 
Fig. S1). As a normalization measure, we also measured 
the ratio of the dark blue to light blue color stain in each 
tile. Outlier tiles with zero positive pixels were removed 
from further analysis. The same positive pixel count-
ing analysis pipeline was applied to each of the top 100 
attention tiles identified from each WSI in the data sets. 
To minimize the impact of outliers, the median of the 
results was found for each slide. The slide-level median 
values between different groups were then compared 
with t-tests. The multivariate combination of the total 
dark blue pixel counts and the ratio of dark to light blue 
pixel counts between groups predicted to be cognitively 
impaired or not were compared with two-dimensional 
kernel density estimation using the MASS R package (v. 
7.3–51.6) and visualized with contour lines.

Association of deep learning predictions with pathoclinical 
traits
We used rank correlation analysis to compare slide-
level probability estimates of cognitive impairment 
and slide-level averages of dark blue color density with 
other pathoclinical traits in the data set, namely age, 
cerebrovascular pathology, hippocampal aging-related 
tau astrogliopathy (ARTAG) positivity, and Braak score 
provided by the brain bank of origin. To further dis-
sect the relationships between age, clinical labels of the 
presence or absence of cognitive impairment, and the 
slide-level median values of dark blue pixel counts, we 
used asymptomatic chi square conditional independ-
ence tests from the R package bnlearn (v. 4.6.1) [32].

Code availability
We used the publicly available software tool CLAM 
[14] to perform deep learning on WSIs and the publicly 
available software tool HistomicsTK [31] to perform 
positive pixel counting of the top attention tiles. Scripts 
used to perform key custom parts of the downstream 
data analysis are available at the following URL: https://​
github.​com/​andym​ckenz​ie/​deep_​histo​patho​logy_​
manus​cript.

https://github.com/andymckenzie/deep_histopathology_manuscript
https://github.com/andymckenzie/deep_histopathology_manuscript
https://github.com/andymckenzie/deep_histopathology_manuscript
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Results
Prediction of cognitive impairment using weakly 
supervised deep learning
We re-purposed a weakly supervised deep learning algo-
rithm previously used for classification in the setting of 
a known gold standard label as method for inference of 
pathophysiology in the setting of noisy cognitive labels 
(Fig. 1) [14]. We ran this analysis pipeline on an existing 
collection of WSIs and trained the model to classify brain 
tissue sections as coming from the subset of individuals 

with evidence of antemortem cognitive impairment 
or not (Table  1). We trained two sets of models across 
10 folds of cross-validation, one for the hippocampus 
and the other for the frontal cortex. In the hippocam-
pus, across the test set of each 10 folds of cross-valida-
tion, we found a mean AUC on the 10% of held out test 
subsets of 0.63 (one-sample Wilcox signed rank test 
p-value = 0.006; Fig. 2b, c) and a mean balanced accuracy 
of 0.59 (p = 0.013, Fig. 2c). In the frontal cortex, we found 
a mean AUC of 0.67 (p = 0.002, Fig.  2b, c) and a mean 

Fig. 1  Workflow for performing weakly supervised deep learning of age-related cognitive impairment. a: Generation of digital neuropathology 
whole slide images (WSI) with associated cognitive labels. Human brain sections were stained with Luxol fast blue (LFB) and counterstained with 
hematoxylin & eosin (LH&E). Cognitive labels were generated based on clinical diagnosis, clinical dementia rating (CDR) scores, and/or mini-mental 
state exam (MMSE) scores. b: WSI were segmented into tiles and passed through a convolutional neural network for feature extraction. The resulting 
tile-level feature vectors were passed through an attention network. Each feature vector was multiplied by its associated attention score and a 
weighted summation operation was performed to create slide-level feature vectors. The slide-level feature vectors were then passed through a 
classification network. The attention and classification networks were trained via backpropagation. c For interpretation analysis, attention heatmaps 
were created by mapping the attention scores at their associated tile locations in the original WSI. Among the top attention tiles, a dark blue hue 
range associated with LFB staining was counted and quantified to calculate a slide-level median staining intensity value
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Fig. 2  Weakly supervised classification predicts cognitive impairment based on whole slide image data from the hippocampus and frontal 
cortex. a Venn diagram showing the overlap of the measures used for defining the presence of cognitive impairment in brain donors. b Average 
receiver operating characteristic curves across tenfold cross-validation. Error envelopes show ± 1 standard deviation. Horizontal dotted lines 
show chance-level predictions. c Summary statistics for test evaluation of model performance across tenfold cross-validation in the frontal cortex 
and hippocampus. Balanced accuracy refers to the accuracy of predictions weighted by the proportion of labels in both groups in the test split. 
Horizontal lines are shown at the arithmetic mean values. d, e Probability estimates of cognitive impairment from the top-performing model by 
each measure of cognitive impairment in the hippocampus (d) and frontal cortex (e). CDR = Clinical Dementia Rating; MMSE = Mini-Mental State 
Examination; AUC = Area Under the Curve
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balanced accuracy of 0.58 (p = 0.009; Fig. 2b). While the 
models have modest accuracy as a pure classification 
task, in both brain regions the classification accuracy 
was significantly greater than chance, suggesting that the 
models have utility for the inference of pathophysiology.

We next evaluated slide-level predictions of the prob-
ability of cognitive impairment using the highest per-
forming models in each brain region, parsing out the 
sub-components of the cognitive impairment classifi-
cations (Fig.  2d, e). In the hippocampus data, we found 
that the probability of cognitive impairment estimate 
was significantly associated with the diagnostic category 
(57% in the CI group vs 33% in the NCI group, t-test 
p-value < 2.2e−16), MMSE (ρ = −  0.32, p = 1.1e−7), and 
CDR (ρ = 0.5, p < 2.2e−16). In the frontal cortex data, 
we found that the probability of cognitive impairment 
estimate was also significantly associated with the diag-
nostic category (49% in the CI group vs 39% in the NCI 
group, p = 9.8e−11), MMSE (ρ = − 0.30, p = 1.2e−4), and 
CDR (ρ = 0.52, p = 3.9e−12). While these strong associa-
tions with the cognitive labels are expected because they 
are what the models were trained on, they show that the 
model has not overly anchored on any one of the three 
cognitive labels employed. The correlation of the prob-
ability estimates of the models from the hippocampus 
and frontal cortex was highly significant and of moderate 
strength (ρ = 0.41, p = 1.5e−14; Additional file 1: Fig. S2), 
suggesting that the models trained on the two different 
brain regions are identifying partially independent sig-
nals for cognitive impairment.

To explore the reasons for the imperfect classifica-
tion accuracy we identified, we found the correlation of 
the probability estimates of cognitive impairment with 
age across groups (Fig. 3a, b). In the hippocampus, there 
was a significant correlation between age and the esti-
mated probability of cognitive impairment in the non-
cognitively impaired group (ρ = 0.37, p = 1.2e−12), a 
weaker but still significant correlation in the cognitively 
impaired group (ρ = 0.18, p = 9.0e−4), and a significant 
difference in correlation (z-score for difference = −  2.6; 
empirical p-value = 0.014). In the frontal cortex, there 
was a significant correlation between age and the esti-
mated probability of cognitive impairment in the non-
cognitively impaired group (ρ = 0.45, p = 1.1e−9), no 
significant correlation in the cognitively impaired group 
(ρ = − 0.12, p = 0.11), and a significant difference in cor-
relation (z-score = − 5.3; empirical p-value = 1e−4). Lon-
gitudinal biomarker imaging data has shown that there 
is a substantial time lag between the development of 
AD pathophysiology in the brain and the emergence of 
cognitive impairment, which may be mediated by differ-
ences in cognitive reserve [33]. These differential correla-
tion results with age suggest that there may a differential 

association between aging and the delay between devel-
opment of brain pathology and phenotypic expression of 
that pathology as cognitive impairment. Another possible 
reason for these observed differential correlations may 
be mislabeling of brain donors with more advanced age 
who did have cognitive impairment as not cognitively 
impaired.

Attention‑based interpretation identifies an association 
of white matter pathology with cognitive impairment
To explore the underlying anatomical features used as 
evidence by the deep learning algorithm, we performed 
attention-based interpretation analysis using the highest 
performing models from each brain region. In the hip-
pocampus, on a macro-anatomic scale, the model was 
found to have qualitatively higher attention in white mat-
ter regions as opposed to grey matter (Fig.  4a, b). On a 
microanatomic scale, the models were qualitatively found 
to have a lower level of LFB staining intensity in the hip-
pocampal top attention tiles from the cases labeled with 
cognitive impairment (Fig. 4c). To quantify sub-regional 
differences of the attention signal in the hippocampus, 
we manually annotated tissue types in a randomly cho-
sen subset of WSIs and used these annotations to meas-
ure the region-specific attention scores produced by the 
model. Quantitative attention scores were found to be 
significantly higher in the white matter (average atten-
tion z-score = 0.62) than in the grey matter (average 
attention z-score = −  0.41; paired t-test for difference 
p-value = 9.4e−8). The same trend of higher attention 
scores in the white matter was found across cognitive sta-
tus labels (Fig. 4d), suggesting that this result is not due 
to confounding by cognitive impairment label but instead 
to properties of the models.

To quantify the microanatomic scale results from the 
hippocampus, we used positive pixel counting on the 
100 tiles with the highest attention scores as measured 
by the model, henceforth called the “top tiles.” LFB stains 
CNS myelin sheaths dark blue [24] and our chosen pixel 
range was designed to capture this LFB staining intensity 
(Additional file 1: Fig. S1). In the hippocampus, the WSIs 
predicted to be from brain donors with cognitive impair-
ment had a significantly lower LFB staining intensity in 
the top tiles (t-test difference p-value = 7.6e−7, Fig. 4e). 
To normalize for possible variation in staining intensity 
across slides, we measured the ratio of dark blue stain-
ing to light blue staining in the top 100 attention tiles. We 
found that there was a significantly lower ratio of dark 
blue staining to light blue staining (t-test p = 4.1e−5; 
Fig. 4f ). The LFB staining intensity and the ratio of dark 
blue to light blue staining intensity in the top tiles are 
correlated (ρ = 0.14, p = 2.8e−4) and jointly distinguish 
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donors predicted by the model to be cognitively impaired 
or not (Fig. 4g).

We next performed the same analysis in the frontal 
cortex data set, where the results largely echoed those 
of the hippocampus, with generally stronger effect sizes. 
Qualitatively, the frontal cortex model was also found to 
have higher attention in white matter regions (Fig. 5a, b) 
and a lower level of LFB staining in the top tiles (Fig. 5c). 
Quantitatively, attention scores were found to be sig-
nificantly higher in the white matter (average attention 
z-score = 1.03) than in the grey matter (median attention 
z-score = −  0.85, t-test p-value < 2.2e−16; Fig.  5d). The 
group labeled as cognitively impaired had a significantly 
lower LFB intensity in the top tiles (t-test p = 7.3e−6, 

Fig. 5e) and there was a significantly lower ratio of dark 
blue staining to light blue staining (t-test p < 2.2e−16, 
Fig. 5f ). And as with the hippocampus data set, these two 
measures are correlated and jointly distinguish between 
brain donors with and without labels of cognitive impair-
ment (Fig. 5g).

Deep histopathological findings are partially independent 
of several known pathoanatomic features
We compared the deep learning model results with previ-
ously established clinicopathologic features, namely age, 
Braak stage, cerebrovascular pathology, and hippocam-
pal ARTAG. This association analysis was focused on the 
hippocampal data set because it has a substantially higher 

Fig. 3  Differential correlations of cognitive impairment probability estimates and age by clinical cognitive impairment label. Scatter plots for the 
correlation of age and the deep learning model probability estimates for cognitive impairment in the hippocampus (a) and frontal cortex (b) are 
shown. Trend lines show predictions using a linear model in each group of data and grey error envelopes show the associated 95% confidence 
intervals. NCI = Not Cognitively Impaired; CI = Cognitively Impaired
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sample size and is therefore better powered to detect cor-
relations (Fig. 6a). We found that there was a significant 
rank correlation of the model’s cognitive impairment 

probability estimates with age (ρ = 0.32, p < 2.2e−16), 
Braak stage (ρ = 0.13, p = 6.2e−4), ARTAG positivity 
(ρ = 0.15, p = 1.5e−4), and cerebrovascular pathology 

Fig. 4  Interpretation of tissue-level attention maps and tile-level staining intensity in the hippocampus suggests myelin loss. a, b Representative 
WSIs labeled and predicted to be in the non-cognitive impaired (upper) or cognitively impaired (lower) groups (a) and corresponding 
representative attention heatmaps (b). In these heatmaps, dark red indicates relatively high attention values, while dark blue indicates relatively 
low attention values. c Top 5 highest attention tiles (upper) and blue hue range positive pixel annotations (lower) from the matching WSIs as 
shown in sub-figures A/B. Scale bar = 20 μm. d Median z-transformed attention score values in the grey matter and white matter. Each data point 
is a median attention score from the white matter or the grey matter from one WSI. e, f Median dark blue range pixel counts as a measure of LFB 
staining intensity (e) and ratio of the dark blue to light blue pixel counts in the top attention tiles of WSIs predicted and labeled to have cognitive 
impairment or not (f). g Scatter plot and contour lines showing the relationship between dark blue range pixel counts and the ratio of the dark blue 
to light blue pixel counts in the top attention tiles of WSIs. Orange dots indicate that the WSI was predicted to come from a CI donor, while blue 
dots indicate NCI. *p < 0.05, ***p < 0.001. GM = Grey Matter; WM = White Matter; CI = Cognitively Impaired; NCI = Not Cognitively Impaired
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Fig. 5  Interpretation of attention maps and tile-level myelin density in the frontal cortex suggests myelin loss. a, b: Representative WSIs labeled 
and predicted to be in the non-cognitive impaired (upper) or cognitively impaired (lower) groups (a) and corresponding representative attention 
heatmaps (b). In these heatmaps, dark red indicates relatively high attention values while dark blue indicates relatively low attention values. c Top 
5 highest attention tiles (upper) and blue hue range positive pixel annotations (lower) from the matching WSIs as shown in sub-figures A/B. Scale 
bar = 20 μm. d Median z-transformed attention score values in the grey matter and white matter. Each data point is a median attention score from 
the white matter or the grey matter from one WSI. e, f Median dark blue range pixel counts as a measure of LFB staining intensity (e) and ratio of 
the dark blue to light blue pixel counts in the top attention tiles of WSIs predicted and labeled to have cognitive impairment or not (f). g Scatter 
plot and contour lines showing the relationship between dark blue range pixel counts and the ratio of the dark blue to light blue pixel counts in the 
top attention tiles of WSIs. Orange dots indicate that the WSI was predicted to come from a CI individual, while blue dots indicate NCI. ***p < 0.001. 
GM = Grey Matter; WM = White Matter; CI = Cognitively Impaired; NCI = Not Cognitively Impaired



Page 11 of 17McKenzie et al. Acta Neuropathologica Communications          (2022) 10:131 	

(ρ = 0.29, p = 9.0e−5). We also found that there was a sig-
nificant association of LFB staining intensity in the top 
attention tiles with age (ρ = − 0.18, p = 1.0e−6) and cer-
ebrovascular pathology (ρ = −  0.24, p = 0.0014), but not 
with Braak stage (ρ = − 0.05, p = 0.18) or with the pres-
ence of ARTAG pathology (ρ = −  0.05, p = 0.24). This 
result suggests that the deep learning algorithm has iden-
tified a signal for cognitive impairment that is associated 
with some aspects of known pathophysiology.

We further dissected the association between age, LFB 
staining intensity in the top tiles, and cognitive impair-
ment labels in the hippocampal data set with conditional 
independence tests. We found that the label of cognitive 
impairment was not conditionally independent of age 
when accounting for LFB staining intensity in the top 
tiles (mutual information = 42.3, p = 3.4e−9 by asymp-
tomatic chi square test). Additionally, the label of cog-
nitive impairment was not conditionally independent of 
LFB staining intensity in the top tiles when accounting 
for age (mutual information = 21.8, p = 7.1e−5). These 
results suggest that while these three variables are all 
significantly associated with one another, chronological 
age does not fully explain the association of LFB staining 
intensity in the top tiles with cognitive impairment, nor 
vice versa.

We next performed correlation analysis on the frontal 
cortex data set (Additional file  1: Fig.  S3), omitting cer-
ebrovascular pathology as a variable because the inter-
sected sample size was too low for reliable estimates in 
the frontal cortex data set. While the results between 
brain regions were predominantly similar, one difference 
is that there was not a significant correlation identified 
between the model’s cognitive impairment probability 
estimates and Braak stage in the frontal cortex, although 
it trended towards significance (ρ = 0.11, p = 0.06). 
Because the hippocampus has a larger sample size than 
the frontal cortex, it is better powered to detect a sig-
nificant correlation between Braak stage and probability 
of cognitive impairment. To address the possibility that 
this difference in sample size affected any differences in 
correlation between the regions, we filtered the sample 
to select only those cases containing data from both the 

hippocampus and frontal cortex and tested for a differ-
ential correlation. In this subset of the data, we found a 
higher rank correlation between Braak stage and the 
probability of cognitive impairment derived from the 
hippocampus (ρ = 0.29, p = 7.4e−8) than in the frontal 
cortex (ρ = 0.11, p = 0.06), which was a significant dif-
ference in correlation (z-score for difference = −  2.4, 
empirical p-value = 0.02; Fig.  6b). In order to query the 
robustness of this result, we employed data on positive 
pixel counts for AT8 staining in the medial temporal lobe 
(MTL), a measure of tau burden that has been previously 
described in this cohort [22]. We found that there was a 
significant rank correlation between AT8 staining burden 
in the MTL and the probability of cognitive impairment 
derived from the hippocampus (ρ = 0.37, p = 9.2e−12), 
a weaker but still significant correlation with the prob-
ability of cognitive impairment derived from the frontal 
cortex (rho = 0.12, p = 0.029), and that there was a sig-
nificantly higher correlation between these two meas-
ures in the hippocampus (z-score for difference = 3.2, 
empirical p-value = 0.001; Fig. 6c). One way to interpret 
these findings is that the contributions of different types 
of histopathology to the deep learning-derived predicted 
probability of cognitive impairment may differ by brain 
region.

Discussion
In this study, we used deep learning models to identify 
a reduction in LFB staining intensity in the top attention 
tiles from brain sections of donors with antemortem evi-
dence of cognitive impairment. Because LFB staining in 
brain tissue is generally used to quantify the amount of 
myelin [24, 25], the signal that we identified is likely due 
to decreased myelin staining intensity. Our results are not 
able to distinguish decreased myelin density with spared 
axons as opposed to axon injury and associated myelin 
loss. In many cases, diminished myelin density in aging is 
associated with cerebrovascular disease [34]. This is con-
sistent with the strong correlations we identified in this 
study between cerebrovascular pathology, the predicted 
probability of cognitive impairment, and decreased LFB 
staining in the top attention tiles. Even when accounting 

(See figure on next page.)
Fig. 6  Deep histopathology features are partially associated with several known clinicopathologic features and partially independent. a Correlation 
analysis of deep histopathology results and clinicopathologic features: age, Braak score, evidence of cerebrovascular pathology (coded as 0 = not 
present and 1 = present), ARTAG positivity in the hippocampus (coded as 0 = not present and 1 = present), cognitive label (coded as 0 = not 
cognitively impaired and 1 = cognitively impaired), probability of cognitive impairment as predicted by the top-performing model trained on the 
hippocampal data, and median LFB staining intensity in the top attention tiles in the hippocampus data set. Upper right: rank correlation values 
and associated p-values (*p < 0.05, **p < 0.01, ***p < 0.001). Diagonal: histograms of variables. Lower left: scatterplots with linear model trend lines 
for the variable pairs (red lines) and 95% confidence intervals (blue envelopes). This plot was made using the R package GGally (v. 2.1.2). b, c Scatter 
plots for probability of cognitive impairment estimated in the frontal cortex and hippocampus with Braak stage (b) and AT8 staining positive pixel 
counts in the medial temporal lobe (MTL) (c). Trend lines show predictions via a linear model and grey envelopes show associated 95% confidence 
intervals. CI = Cognitive impairment; ARTAG = Aging-related tau astrogliopathy; LFB = Luxol Fast Blue
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for age, there was still an association between decreased 
LFB staining in the top attention tiles and cognitive 
impairment. Treating cerebrovascular disease risk factors 

such as hypertension has been found to decrease white 
matter pathology and partially reverse age-related cogni-
tive impairment [34]. However, age-associated decreases 

Fig. 6  (See legend on previous page.)
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in myelin density have numerous possible causes other 
than cerebrovascular disease, such as nearby AD corti-
cal pathology [35, 36], a primary effect of aging [37–39], 
repetitive head impacts [40], or the accumulated effects 
of excessive alcohol use [41]. It is unclear the extent 
to which the decreased myelin density we found to be 
associated with age-related cognitive impairment are 
explained solely by cerebrovascular pathology as opposed 
these other possible etiologies, which warrants further 
investigation.

While postmortem brain gene expression and patho-
anatomical studies in aging and AD have often focused 
on grey matter, neuroimaging findings over the past 
several decades have frequently found alterations in the 
white matter to be strongly associated with cognitive 
impairment [42]. Leukoaraiosis (leuko–white, araiosis–
rarefaction) is a common neuroimaging abnormality of 
the white matter that can be found in periventricular or 
subcortical areas [43, 44]. On T2-weighted and FLAIR 
MRI, leukoaraiosis is frequently described as white mat-
ter hyperintensities [45]. While leukoaraiosis is strongly 
associated with cerebrovascular disease, the precise etiol-
ogy remains unclear [44, 45]. Clinically, leukoaraiosis is 
associated with cognitive deficits such as bradyphrenia 
[34]. Histologically, leukoaraiosis has been suggested to 
be associated with decreased density of myelin sheaths 
[46]. Our deep learning models identified a neurohisto-
logic signal for cognitive impairment that was (a) focused 
in the white matter, (b) in some cases scattered in a non-
uniform pattern across the tissue, (c) and associated 
with decreased myelin staining intensity. Although our 
data set lacks associated in  vivo neuroimaging data to 
draw conclusive statements, one clear possibility is that 
the white matter histologic alterations the deep learning 
models identified may reflect similar etiopathology as 
the neuroimaging finding of leukoaraiosis. We propose 
that diminished LFB staining intensity in particular areas 
identified by a deep learning model may be a quantitative 
way to assess for the presence of leukoaraiosis-associated 
neuropathology in postmortem brains.

It is important to consider the limitations of this study. 
First, compared to previously published weakly super-
vised learning publications in oncology (which are often 
n > 1000), the data set employed here (n = 716) is not as 
large [13, 14]. Because there is an absence of significant 
Aβ burden in this cohort, it also limits the representative-
ness of the cohort to the population at large. This adds 
to the numerous selection biases in brain donation-based 
autopsy cohorts in general [47]. Second, the WSI data 
set analyzed only contains one stain, the LH&E stain. 
While LFB staining is ideal for detecting myelin, it is pos-
sible that it may have highlighted the white matter to a 
disproportionate degree that affected the deep learning 

algorithm results. Third, we were unable to assess for 
comorbid TDP-43 pathology, which would allow us 
to screen for limbic-predominant age-related TDP-43 
encephalopathy (LATE), a common TDP-43 proteinop-
athy associated with an amnestic dementia in elderly 
individuals [48]. Additionally, because we only looked at 
two brain regions, we have limited anatomical sampling, 
which is problematic because we know that cognitive 
impairment is determined by accumulated lesion burden 
across the brain.

Another potential limitation is the possibility of sys-
temic variation in staining properties across WSIs. We 
did not perform WSI color stain normalization because 
the slides were all stained uniformly at the same center 
and with the same platform, minimizing systemic hetero-
geneity. Furthermore, as a tile-level normalization meas-
ure, we calculated the ratio of the blue color intensity in 
each tile, which yielded the same general result as when 
we only used the dark blue pixel range. It is still possi-
ble that a fixation or staining artifact may have affected 
the cognitive impairment probability estimates and/or 
attention signals. For example, deeper areas of the brain 
often had qualitatively higher attention signals. However, 
the attention signal appeared to follow anatomical com-
partments, such as the deep white matter, while sparing 
the subcortical U-fibers, regardless of the depth of these 
compartments, and therefore our results are considered 
less likely to be due to artifactual variation in staining 
intensity. Taken together, addressing the issue of stain 
normalization without introducing other biases is a com-
plex topic, especially in WSIs stained with multiple types 
of stains such as in our data, warranting further research 
[49].

One of the concerns with contemporary deep learn-
ing models is that the basis of their predictions is chal-
lenging to understand. In this study, we provided one 
measure of interpretability, by leveraging the intrinsic 
attention mechanism of the model to quantify the degree 
of myelin pallor in the top attention tiles. However, this 
interpretability measure does not explain all of the mod-
el’s attention scores, nor does it fully explain the model’s 
predictions of cognitive impairment. For example, it is 
unclear why some of the top attention tiles from brain 
donors predicted to have cognitive impairment, espe-
cially those in the model trained on the hippocampus, 
still appear to have intact myelination. This suggests that 
other structural or cellular features are playing a role. 
Additionally, the probability of cognitive impairment pre-
diction is more strongly correlated with Braak stage in 
the model from the hippocampus than the frontal cortex, 
but the features that underlie this difference remain to 
be determined. As a result, much of the variance in the 
models’ predictions remains opaque. Furthermore, our 
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interpretability result was derived manually, by inspect-
ing the results of the trained models, noting a qualitative 
difference, and then developing a metric to quantify this 
difference. If deep learning models are eventually going to 
be used safely and effectively in neuropathology research 
and clinical practice, then there is a critical need to make 
them understandable to humans. Improving the trans-
parency of deep learning model predictions in a more 
automated way, for example by using more explainable 
architectures or distillation tools, is an essential research 
direction for the field [50].

Although there are some additional limitations to our 
study, we expect that our methodology lays the ground-
work for further probing of the histopathology of age-
related cognitive impairment in future studies that will be 
able to address these limitations. While our current slide-
level predictive accuracy is modest, as our annotated 
WSI data sets grow, we expect that our trained models 
will improve in stability, discriminative power, and ability 
to pinpoint morphological features associated with cog-
nitive impairment. Related to this, while some of the clin-
icopathologic correlations were statistically significant, 
they occasionally had weak correlation strengths. Larger 
and more richly annotated data sets will help to further 
parse out the practical implications of these correlations. 
Because the accuracy of our trained models is limited, 
this study can be conceptualized as a proof of concept 
for further studies, and certainly not fully dispositive of 
the underlying pathophysiology of cognitive impairment 
or applicable to clinical practice. Additionally, while we 
only focused on a robust yet general approach to assess-
ing myelin, i.e. LH&E stained tissue sections, future stud-
ies deploying additional modalities of assessing myelin 
injury, such as immunohistochemical staining for oligo-
dendrocyte, axonal, vascular, inflammatory, and myelin 
markers, will help to further elucidate the pathogenesis 
of age-related cognitive impairment. Finally, because we 
only have WSI data available from two brain regions, we 
are limited in our ability to explain why the results from 
the two brain regions appeared to differ in some ways.

Our ability to interpret differences in deep learn-
ing-derived metrics across brain regions will improve 
with richer data sets containing WSIs from more brain 
regions. As compared to cancer pathology, which has 
heretofore been the main use case of weakly supervised 
deep learning in digital pathology, in studying the neu-
ropathology of dementia, there is less of an emphasis on 
diagnosis and more of an emphasis on the inference of 
pathophysiology. This is in part because cancer can be 
more frequently associated with one causal type, whereas 
cognitive deficits in the brain are generally due to over-
lapping pathologies with complex patterns of comorbid-
ity. The multifactorial nature of cognitive deficits lends 

itself well to multidimensional interpretation studies. 
First, it emphasizes the value of quantitative probabil-
ity estimates of cognitive impairment instead of binary 
labels, which allow for more precise correlation analysis 
with other clinicopathologic features. Second, the relative 
focus on understanding pathophysiology in neuropathol-
ogy also underscores the value of deterministic com-
puter vision studies, such as positive pixel counting, as a 
downstream method for interrogating attention or other 
interpretability signals present in deep learning models. 
While the prediction capacity of deep learning models in 
digital pathology can be expected to continue to improve 
rapidly, our ability to understand what histopathologic 
features those models are focused on is lagging. Improv-
ing our suite of methods for the interpretation of deep 
learning models will allow us to best harness them and 
to understand how they may be flawed or biased. Because 
the study of the neuropathology of dementia remains 
driven by human ingenuity, more interpretable deep 
learning methods will be essential to accelerate its adop-
tion across the field.

Our results also suggest several future directions that 
would illuminate additional aspects of the histopathology 
of cognitive impairment. One possible analysis would be 
to combine tiles from the hippocampal and frontal cor-
tex regions into one unified data set prior to training the 
model. This analysis would potentially show similarities 
and differences in the pathology present in the frontal 
cortex and hippocampus, as well as allow an assessment 
of the relative contributions of each to the models’ pre-
dictions. Another future research direction would be 
to query the pixel-level features that are important in 
making the prediction, rather than tile-level summary 
statistics such as positive pixel counts. This will require 
approaches such as semantic segmentation that can parse 
a tile into overlapping components. This would allow a 
dissection of which pixel-level features, such as vacuoli-
zation, nuclei shape, or fiber orientation, are important 
for making the cognitive impairment predictions. Finally, 
assessing the impact of preprocessing procedures, for 
example to determine the robustness of training deep 
learning models with different scanners, tile parcellation 
schemes, and color normalization methods, is a critical 
future research direction.

Predicting the presence or absence of cognitive impair-
ment with the use of single histology sections on an indi-
vidual level is an extremely challenging task. There are 
known barriers related to disease heterogeneity, varia-
tion in clinician practices, and cognitive reserve [8, 51]. 
In this study, we employed a deep learning classification 
model for inference of pathophysiology from histology 
slides with noisy labels of cognitive impairment, result-
ing in predictions with modest accuracy but significantly 
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above chance level. Interpretation studies suggested that 
top performing models in the hippocampus and frontal 
cortex focused on similar aspects of white matter pathol-
ogy. On a macroanatomic level, they had higher attention 
on white matter than gray matter; on a microanatomic 
level, the highest attention tiles showed differences in 
LFB staining intensity between slides from brains donors 
predicted to have cognitive impairment or not. Both the 
probability estimates of cognitive impairment and the 
measure of LFB staining intensity in the top attention 
tiles were partially independent of several known patho-
clinical features, suggesting that they may be identifying 
unexpected aspects of pathophysiology. On the other 
hand, the probability estimates of cognitive impairment 
were not completely explained by LFB intensity in the top 
attention tiles; for example, ARTAG positivity was signif-
icantly associated with the probability estimates of cogni-
tive impairment from the deep learning models but not 
with LFB intensity in the top attention tiles. Our results 
demonstrate that weakly supervised deep learning is a 
promising approach to dissect pathoanatomic features 
associated with cognitive deficits in neurohistologic data 
sets in an unbiased manner.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40478-​022-​01425-5.

Additional file 1: Figure S1 Annotation procedure of blue hue ranges 
in Luxol fast blue, hematoxylin, and eosin-stained tiles. Representative 
tiles show the annotation method used for positive pixel counting in the 
Luxol fast blue, hematoxylin, and eosin (LH&E) stained histology tiles. For 
the annotation heatmap, the darker blue pixel range is highlighted as 
red while the lighter blue pixel range is highlighted as light blue. Figure 
S2 Correlation of slide-level probability estimates of cognitive impair-
ment in matched brain donors between the two brain regions. Scatter 
plots showing the probability estimates of cognitive impairment by the 
top-performing models in the same brain donors between WSIs in the 
hippocampus and frontal cortex data sets. The blue line shows predictions 
from a linear model and grey error envelopes show 95% confidence 
intervals for the linear model. Figure S3 Scatterplot matrix of deep histo-
pathology features with clinicopathologic features in the frontal cortex. 
Correlation analysis of deep histopathology results and clinicopathologic 
features: age, Braak score, ARTAG positivity in the hippocampus (coded 
as 0 = not present and 1 = present), cognitive label (coded as 0 = not 
cognitively impaired and 1 = cognitively impaired), probability of cogni-
tive impairment as predicted by the top-performing model trained on 
the frontal cortex data, and median LFB staining intensity (pixel counts) in 
the top attention tiles in the frontal cortex data set. Upper right: rank cor-
relation values and associated p-values (* = p < 0.05, ** = p < 0.01, *** = 
p < 0.001). Diagonal: histograms of variables. Lower left: Scatterplots with 
linear model trend lines for the variable pairs (red lines) and 95% confi-
dence intervals (blue envelopes). This plot was made using the R package 
GGally (v. 2.1.2). CI = Cognitive impairment; ARTAG = Aging-related tau 
astrogliopathy; LFB = Luxol Fast Blue.
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