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Background
Gene and cell-based therapies usually rely on stable expression of transgene to replace 
defective genes [1, 2], enhance cell functions [3], and improve the safety of engineered 
cells [4, 5]. However, most of the transgenes are delivered with lentivirus/retrovirus vec-
tors and integrated into the genome in a random or semi-random manner [6], leading 
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to unpredictable gene expression patterns, disruption of endogenous transcription, and 
malignancy [7]. One approach to improve the safety is to deliver transgenes into prede-
fined genomic loci called genomic safe harbors (GSHs).

An ideal GSH needs to have several properties. First, it should be highly accessible 
to transgene integration and allow high efficiency in the transgene delivery via homol-
ogy directed repair (HDR) in the desired cells/tissues. Second, it should be in an actively 
transcribed region and not be targeted by silencing mechanisms, allowing cell type- and 
tissue-specific expression. Most importantly, for safety consideration, a GSH should 
not overlap any known functional sequences in the genome, including exons, promot-
ers, enhancers, transcription units, and ultra-conserved regions, or affect nearby gene 
expression [4]. So far, only a few human GSHs have been defined, including AAVS1 [8], 
CCR5 [9], and the human ortholog of the mouse Rosa26 locus [10]. However, none of 
the current GSH sites show adequate evidence for therapeutic safety. For example, the 
inserted gene in the AAVS1 site could affect the expression of myosin binding subunit 85 
(PPP1R12C) and could also be silenced [11]. Similarly, studies regarding the mutation at 
the CCR5 site also showed increased risk of West Nile virus and Japanese Encephalitis 
[12, 13]. Thus, stringent GSH selection and evaluation are needed.

With the increasing availability of genomics and epigenomics data, different criteria 
have been applied to genome-wide searches for GSHs in the human genome [14, 15]. 
Generally, those criteria require a minimal linear distance from functional DNA ele-
ments such as promoters, enhancers, and coding sequences. However, the distance 
selected is usually arbitrary, and the locus-specific features along the genome are not 
considered. For example, a locus that is linearly distant from a gene can still be involved 
in long-range chromatin interaction and contribute to gene activation [16]. Indeed, sev-
eral studies have shown regulation of genes through long-range interactions [16–18]. In 
addition, most current methods are based only on genomic features and do not consider 
tissue-specific gene expression and regulatory elements. A knowledge-based approach 
that takes the three-dimensional (3D) chromatin organization of the human genome and 
tissue-specific expression pattern into consideration can overcome these limitations and 
better define GSHs.

As the starting point of GSH screening, common genetic variants in healthy human 
populations, particularly large structure variations, can serve as markers for neutral 
regions. Mobile element insertion is one type of structure variation that is ideal for this 
purpose. Mobile elements (MEs) are segments of DNA that contribute to at least 50% of 
the human genome [19, 20]. MEs can move around within the genome and create new 
insertions. As a result, thousands of polymorphic mobile elements insertions (pMEIs) 
are present in human populations [21, 22]. pMEIs with high allele frequency (AF) among 
human populations are considered as common pMEIs. Common pMEIs that are not 
associated with expression of nearby genes in the tissue of interest can be considered as 
natural landmarks for genomic loci that can potentially harbor transgene integrations 
without deleterious effects.

Here, we developed a framework to identify and validate cell type-specific GSHs by 
integrating pMEI distribution among healthy individuals with gene expression, 3D chro-
matin organization, and epigenetic modification information. Using data from the 1000 
Genomes project and the Genotype-Tissue Expression (GTEx) projects, we identified 19 
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blood GSH candidate loci. For three candidate loci, we demonstrated the stable expres-
sion of transgene without alternating transcription of nearby genes in erythroid cells. 
We further extended the framework to gene expression data in brain tissues and identi-
fied 5 candidate brains GSHs. In addition, we developed a computer program for knowl-
edge-based GSH selection.

Results
Overall design of the genomic safe harbor identification procedure

Our goal is to identify genomic loci that meet two main criteria for genome engineering: 
have minimal effects on normal functions of host cells and maintain stable transgene 
expression. The overall strategy is illustrated in Fig. 1. Because common pMEIs, espe-
cially those with high AF in the genomes of healthy people, can harbor large insertions 
(300 base pairs (bps)—6000 bps) without apparent deleterious effects, we reasoned 
that these pMEI sites are plausible candidates for GSH selection (Fig. 1a). From com-
mon pMEIs, we remove pMEIs associated with tissue-specific gene expression based on 
expression quantitative trait loci (eQTL) analysis (Fig. 1b). To assess the potential inter-
actions between transgene and the genome of host cells, we use genomic spatial prox-
imity information identified by technologies such as whole-genome Hi-C and promoter 
capture Hi-C. These technologies can extract genome-wide interactions among different 
genomic loci. These unbiased long-range interactions allow us to remove pMEI sites that 
may affect functionally significant genes, such as oncogenes, tumor suppressor genes, 
and dosage-sensitive genes, through long-range interactions (Fig. 1c). To avoid hetero-
chromatin regions that can potentially decrease the transgene cassette integration and 
transcription efficiency, genomic regions with repressive and quiescent state markers are 
also excluded (Fig. 1d). Active chromatin regions have been reported to be associated 
with high editing efficiency and expression of transgenes. So, we further labelled GSH 
sites that overlap with active chromatin markers.

Identification of GSHs in blood cells

To test our framework, we identified common pMEIs in the 1000 Genomes project [23, 
24] and conducted eQTL analysis between these common pMEIs and genome-wide 
expression profiles in matched lymphoblastoid cell lines [25]. We excluded pMEIs that 
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Fig. 1  A schematic representation of the overall genomic safe harbor identification strategy. a Selection 
of common pMEIs from healthy individuals with AF > 0.1. b Removing pMEIs significantly associated with 
gene expression (FDR < 0.1 in eQTL mapping). c Removing pMEIs showing spatial proximity with oncogenes, 
tumor suppressor genes, and dosage-sensitive genes based on TADs and chromatin interaction mapping. d 
Removing pMEIs overlapping repressive chromatin regions
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are associated with gene expression within 500 thousand base pairs (kbs) (eQTL FDR 
< 0.1) (Additional file 1: Figure S1). We then used Hi-C data from GM12878 cells [26] 
to define topological associated domains (TADs), which are fundamental units of 3D 
chromatin organization. Because most chromatin interactions happen within the same 
TAD [26], we removed pMEIs that are within the same TAD as tumor suppressor genes, 
oncogenes, or dosage-sensitive genes [27–29]. We then removed pMEIs that formed 
loops with gene promoters within the same TAD using promoter capture Hi-C data [30]. 
We also removed pMEIs that are within high gene density TADs, defined as TADs with 
more than the mean gene density of all TADs (28.13 genes/million bps). To avoid the 
less-frequent inter-TAD interaction, we further removed pMEIs that formed loops with 
promoters of tumor suppressor genes, oncogenes, or dosage-sensitive genes that are not 
within the same TAD. To ensure the accessibility of the candidate loci for genome edit-
ing, we removed pMEIs that are located within regions with repressive marks, including 
the heterochromatin regions, regions with polycomb modification signals, and regions 
labelled as the quiescent state. After filtering, we identified 16 candidate GSHs in blood 
cells from the 1000 Genomes project data (Table 1, Additional file 1: Figure S2a).

Next, we examined the contribution of different genomics features to the GSH filter-
ing (Additional file 1: Figure S1). Repressing marks was the most important factor, with 
94.7% of pMEI loci overlapping repressive regions. Another major factor is AF, with 
55.3% of pMEIs’ AF outside of our requirement (10% < AF < 90%). This is consistent with 
the hypothesis that the majority of pMEIs are deleterious and under purifying selection. 
About 32% of pMEIs were within a TAD harboring oncogenes, tumor suppressor genes, 
or dosage-sensitive genes. In addition, 27.6% of pMEIs form a loop with promoters of 
those genes within the same TAD (16.3%) or across different TADs (11.3%).

Fifteen of sixteen candidate GSHs are in intronic regions, and one is in an intergenic 
region. All GSHs are in active chromatin regions, and 13 are located outside of TADs 
identified in GM12878 cells. For example, BLD_GSH_10 (chr3:37361602-37361603) is 
in the intron of GOLGA4 (Fig. 2a, Additional file 1: Figure S2a), which is the only gene 
within the TAD. This pMEI has a 10.4% AF, is in active chromatin regions, and does not 
form any loops with surrounding genes or their promoters.

To test the reproducibility of our framework, we conducted a similar analysis using a 
published pMEI-associated eQTL dataset generated in blood cells from the GTEx pro-
ject [21]. In the GTEx dataset, our framework identified nine candidate blood GSHs. 
Six of these sites (66.7%) overlap (defined as within 15 bps) with GSHs identified in the 
1000 Genomes data (Table 1). For the three unique GSHs in the GTEx data, two (BLD_
GSH_19, BLD_GSH_16) were removed from the 1000 Genomes project data by the 
AF filter and eQTL filter respectively, and for the other (BLD_GSH_18) the pMEI was 
present only in the GTEx data. The highly consistent results between two independent 
datasets further confirmed the robust performance of our framework.

Identification of GSH sites in brain

To test the selection criteria in a different tissue, we mapped GSHs in brain cells using 
GTEx pMEI and brain-specific gene expression data [21], epigenetic profiles, and 3D 
chromatin organization profiles [31, 32]. Altogether, we identified five candidate GSH 
sites (Additional file  1: Figure S2b, Table  2, one example (BRN_GSH_4) is shown in 
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Fig. 2b). Similar to GSHs identified in blood cells, all the brain-GSHs were in intronic 
regions and labelled as active chromatin region. GSHs identified in brain and blood cells 
were unique to each other, highlighting the importance of tissue-specific mapping for 
GSHs.

Validation of GSH site in HUDEP2 cells

To experimentally assess the candidate blood GSHs identified by our framework, we 
integrated a green fluorescent protein (GFP) expression cassette into candidate GSH 
loci through homologous recombination in HUDEP2 cells. HUDEP2 is an erythroid 
progenitor cell line and can be differentiated into mature erythroid cells. We tested 
three GSHs identified in blood cells. As controls, we included two randomly selected 
non-GSH pMEIs, one GSH identified in brain tissue but is located within heterochro-
matin in blood cells, and the AAVS1 locus. We designed two CRISPR guide RNAs for 
each locus and chose the one with higher editing efficiency for the cassette integra-
tion (editing efficiency for all gRNAs are greater than 50%, Additional file 2: Table S1). 
GFP cassettes were integrated into the GSH loci through HDR-mediated insertion. 
We sorted GFP-positive cells and established the stable cell line for each locus. We 
further carried out PCR assays to validate each integration site (Additional file 1: Fig-
ure S3).

To compare the expression profiles between GFP integrated cell lines and wild-type 
(WT) HUDEP2 cells, we performed RNA-seq assays with 4 replicates per cell line 
(Fig.  3a). In general, genome-wide expression profiles among all samples are highly 

Table 1  Identified GSH sites in blood from the 1000 Genomes project and the GTEx data

GSH_ID: Unique GSH ID, Position: genomic coordinates for the GSH (hg19), FDR: eQTL FDR value, n.s. non-significant, AF: 
pMEI allele frequency, TAD gene density: Gene density of GSH TAD,  NA GSH not assigned to a TAD, Active regions: active 
transcription region based on ChromHMM states, Gene: GSH overlapping gene, Location: position of GSH (intron, exon, 
intergenic), Dataset: data source, 1KG the 1000 Genomes Project, GTEX the Genotype-Tissue Expression Project

GSH_ID Position FDR AF TAD 
gene 
density

Active regions Gene Location Dataset

BLD_GSH_1 chr1:150200138-150200139 0.84 0.14 NA 4_Tx,5_TxWk ANP32E Intron 1KG

BLD_GSH_2 chr1:198243300-198243301 1 0.11 4.94 5_TxWk NEK7 Intron 1KG, GTEx

BLD_GSH_3 chr11:129759556-129759557 1 0.25 NA 4_Tx,5_TxWk NFRKB Intron 1KG

BLD_GSH_4 chr12:122722288-122722289 1 0.23 NA 4_Tx,5_TxWk VPS33A Intron 1KG

BLD_GSH_5 chr13:111559414-111559652 0.87 0.2 NA 4_Tx,5_TxWk ANKRD10 Intron 1KG

BLD_GSH_6 chr15:49609604-49609605 1 0.17 10.7 5_TxWk GALK2 Intron 1KG, GTEx

BLD_GSH_7 chr15:59169388-59169389 0.47 0.16 NA 4_Tx,5_TxWk - Intergenic 1KG

BLD_GSH_8 chr2:39071477-39071819 0.16 0.32 NA 4_Tx,5_TxWk DHX57 Intron 1KG

BLD_GSH_9 chr2:223481690-223481979 0.93 0.28 NA 4_Tx,5_TxWk FARSB Intron 1KG

BLD_GSH_10 chr3:37361602-37361603 1 0.1 25 4_Tx,5_TxWk GOLGA4 Intron 1KG, GTEx

BLD_GSH_11 chr3:45542662-45542663 0.13 0.36 NA 4_Tx,5_TxWk LARS2 Intron 1KG, GTEx

BLD_GSH_12 chr3:45768351-45768676 0.26 0.38 NA 4_Tx,5_TxWk SACM1L Intron 1KG

BLD_GSH_13 chr4:88032137-88032469 0.76 0.58 NA 4_Tx,5_TxWk AFF1 Intron 1KG, GTEx

BLD_GSH_14 chr6:157397700-157397701 1 0.13 NA 2_TssAFlnk,5_TxWk ARID1B Intron 1KG, GTEx

BLD_GSH_15 chr8:120800792-120800793 0.89 0.21 NA 4_Tx,5_TxWk TAF2 Intron 1KG

BLD_GSH_16 chr9:100675550-100675551 n.s. 0.16 NA 4_Tx,5_TxWk TRMO Intron GTEx

BLD_GSH_17 chr9:115937084-115937379 0.34 0.35 NA 4_Tx,5_TxWk FKBP15 Intron 1KG

BLD_GSH_18 chr1:1654012-1654013 n.s. 0.15 NA 5_TxWk CDK11A Intron GTEx

BLD_GSH_19 chr15:79167169-79167170 n.s. 0.12 NA 1_TssA,2_TssAFlnk MORF4L1 Intron GTEx
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correlated (minimal spearman correlation coefficient R=0.89, Additional file  1: Figure 
S4). We then performed differential gene expression analysis (See “Methods”). On aver-
age, there are ~ 250 genes upregulated and ~ 800 genes downregulated in GFP inte-
grated cell lines (FDR<0.01, Log2 Fold Change (LFC) >1 or LFC<−1, Additional file 3: 
Table  S2). Interestingly, most (~80%) of these differential expressed genes are shared 
among at least three cell lines with different integration sites (Fig. 3b–d, Additional file 1: 
Figure S5). Gene ontology (GO) enrichment analysis showed that genes which involved 
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Fig. 2  Epigenetic and chromatin interactions near the candidate GSH sites in blood and brain. a Genome 
browser screenshot of a representative GSH in blood. From top to bottom: Interaction heatmap and TADs 
from Hi-C in GM12878 cells. Chromatin interaction loops from promoter capture Hi-C in blood cells (see 
Method section for details). The coordinate of the GSH. Active and repressive genomic regions defined by 
15-state ChromHMM from blood cells in the Roadmap project (Additional file 9: Table S8), and reference 
genes. b Genome browser screenshot of a representative GSH in brain. From top to bottom: Interaction 
heatmap and TADs from Hi-C in brain hippocampus. Chromatin interaction loops from promoter capture 
Hi-C in brain cells (dorsolateral prefrontal cortex, hippocampus, and neural progenitor cells). The coordinate 
of the GSH. Active and repressive genomic regions defined by 15-state ChromHMM from brain cells in the 
Roadmap project (Additional file 9: Table S8), and reference genes. Regions surrounding the GSH sites are 
highlighted with blue shade
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protein degradation such as Ubl conjugation are highly enriched (FDR 1.1E-8), indicating 
that the expression level changes of those genes are likely triggered by cellular response 
to GFP [33, 34]. To assess the cis effect of GFP integration at each GSH, we focused on 
genes within the same TAD of integration sites. Among the three blood GSHs, there are 
no significantly changed genes (Fig. 3b, Additional file 4: Table S3) within same TAD. In 
contrast, the GFP cassette integrated into one randomly selected MEI (MEI_chr3_3707_
INS) leads to significantly increased (LFC =1.12, FDR=9.39E−05) expression of PTX3 
(Fig.  3c). GFP integrated in the AAVS1 locus also alternated the expression of two 
genes, TNNI3 (LFC=1.684, FDR=3.1E−04) and PPP6R1 (LFC=−1.59, FDR=1.34E−07) 
(Fig. 3d, Additional file 4: Table S3). This result is consistent with previous studies show-
ing that cassette integration at the AAVS1 site could affect the nearby gene expression 
[11].

Expression cassettes integrated in intron regions can potentially affect RNA splic-
ing. To assess this risk, we performed alternative splicing analysis on genes with GFP 
cassettes integrated in their introns. No significant alternative splicing events were 
detected in any locus (rMATS FDR<0.01, Additional file  5: Table  S4). We further 
flipped the orientation of the GFP cassette at the BLD_GSH_10 locus and found 
that neither direction affects the splicing of GOLGA4 (Additional file 5: Table S4). In 
addition, the expression levels of GOLGA4 and other genes within the same TAD did 
not change significantly (FDR< 0.01, LFC>1 or LFC <−1) between the two cassette 
integration directions (Additional file 4: Table S3).

To assess the stability of GFP expression at the GSH sites, we continually cul-
tured the cells for 1 month. Among the three cell lines with GFP integrated into the 
heterochromatin regions, two cell lines lost more than 30% GFP-positive cells. In 
contrast, at least 85% cells with GFP integrated into the active regions remain GFP 
positive (Additional file 6: Table S5, Additional file 1: Figure S6). We further gener-
ated 5 clones of GOLGA4 locus and cultured the cells for 3 months. In all 5 clones, 
strong GFP signals were well-maintained (average normalized geometric mean 
of 42.1) for 3 months of continued culture (Fig.  4a, b, Additional file  1: Figure S7, 

Table 2  Identified GSH sites in brain from the GTEx data

GSH_ID: Unique GSH ID, Position: Genomic coordinates for the GSH (hg19), FDR: eQTL FDR value, n.s. non-significant, AF: 
pMEI allele frequency, TAD gene density: gene density of GSH TAD,  NA GSH not assigned to a TAD, Active regions: active 
transcription region based on ChromHMM states, Gene: GSH overlapping gene, Location: position of GSH (intron, exon, 
intergenic), Dataset: data source, GTEX the Genotype-Tissue Expression Project

GSH_ID Position FDR AF TAD 
gene 
density

Active regions Gene Location Dataset

BRN_GSH_1 chr1:247027889-
247027890

n.s 0.46 NA 4_Tx,5_TxWk AHCTF1 Intron GTEx

BRN_GSH_2 chr12:987960-
987961

n.s 0.14 NA 4_Tx,5_TxWk WNK1 Intron GTEx

BRN_GSH_3 chr22:18283915-
18283916

n.s 0.32 NA 5_TxWk MICAL3 Intron GTEx

BRN_GSH_4 chr4:5834890-
5834891

n.s 0.22 NA 4_Tx,5_TxWk CRMP1 Intron GTEx

BRN_GSH_5 chr7:5553845-
5553846

n.s 0.15 NA 1_TssA,2_TssAFlnk LOC221946 Intron GTEx
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Additional file  7: Table  S6), suggesting that the integrated transgene can maintain 
stable transcription in the target cells. To assess whether the integrated transgene 
affects normal red blood cell functions, we induced terminal maturation for 5 days 
and fractionated cells according to expression of the late-stage erythroid marker 
Band3. All five clones show similar expression level of Band3 (14.2–41.2%) com-
pared to WT (10.1%) in undifferentiated cells and in differentiated cells (71.7–82.7% 
compared to 73% in WT) (Fig. 4c, d and Additional file 1: Figure S8).

User‑friendly pipeline for identifying GSH sites in different tissues

To extend the application of our framework, we developed a user-friendly program: 
Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper, https://​
github.​com/​dewshr/​GEG-​SH). To use the program, a user first provides a list of 
genomic variants with genomic coordinates and optional information, such as AF 
and eQTL significance. Then, GEG-SH mapper will select candidate GSH sites by 
integrating TAD information; chromatin interaction information; epigenetic infor-
mation such as repressive chromatin region and active chromatin region; and anno-
tation of oncogenes, tumor suppressor genes, and dosage-sensitive genes. Because 
epigenetics features can be tissue-specific, a user can also replace the default data 
sets with those from the tissue/cell type of interest. The program reports candidate 
GSHs and the link to the UCSC genome browser for visualization of the candidate 
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GSHs. A file containing annotations for all input variants is also generated to allow 
users to conduct custom query and filtering (Additional file 8: Table S7).

Discussion
Genome engineering technologies have developed rapidly over the last decade. Gene 
and cellar therapies have the potential to treat once-incurable diseases [1, 2, 35]. How-
ever, the functions of the human genome are not fully understood. Avoiding unintended 
changes in important genomic regions remains a major consideration during genome 
engineering. A large amount of effort has been spent to establish complicated experi-
ment systems to identify and prevent these potential deleterious effects [36–38]. How-
ever, since the functional consequences of genomic alternation may only be detected in a 
specific cell type during a specific development stage and/or under specific conditions, it 
is challenging to include all these factors in the experimental design.

In this study, we developed a novel GSH discovery approach. First, we select GSH can-
didate regions based on common pMEIs in healthy human populations. Because these 
pMEIs have been subjected to hundreds of thousands of years of purifying selection and 
remained common in human populations, they marked genomic regions that are selec-
tively neutral with little or no impact on genomic functions. Among common pMEIs, 
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we then excluded loci that are associated with tissue-specific expression of nearby genes 
to further increase the likelihood of selecting region with no functional impacts. Sec-
ond, unlike most current GSH mapping approaches that mask genome with arbitrary 
defined linear windows near important DNA elements [14, 15], our approach is knowl-
edge-based and considers 3D chromatin organizations of the genome and the 3D spa-
tial distance between genomic loci. Third, stable expression of the transgene is essential 
for an effective gene therapy. Thus, it is crucial that the GSHs are outside of the repres-
sive/heterochromatin regions. To this end, we use tissue-specific epigenetic signatures 
to identify genomic regions that are open for transcription in the tissue of interest. This 
step is crucial for GSH selection, as we found that 94.7% (5880/6206) of the pMEIs from 
the 1000 Genomes project overlaps repressive chromatin marks. More importantly, we 
identified no shared GSHs between blood and brain. The large amount of tissue-specific 
repressive regions in the genome and the tissue-specific nature of the candidate GSHs 
highlight the importance of including tissue-specific epigenetic information for GSH 
identification. Using a cell-culture system, we showed that GFP transgene cassette can 
be effectively integrated into candidate GSH loci. After integration, the cassettes were 
stably expressed for several months, and they did not alter the expression of nearby 
genes in host cells. These results demonstrate that our method can identify tissue-spe-
cific GSH candidates. It is worth mentioning that the commonly used AAVS1 locus is 
located within a high gene density TAD. In our cell line-based validation system, GFP 
cassette integration in AAVS1 significantly altered the expression of two nearby genes. 
Thus, there is an urgent need to identify more and better GSHs.

Importantly, our goal is to provide a framework for GSH identification. Although 
our validation experiments demonstrate promising results, our experiments have sev-
eral limitations and the GSHs we tested should not be considered fully validated. One 
safety concern of gene therapy is that the integration of gene expression cassettes can 
potentially change RNA splicing of host genes [39]. Even though no significant alterna-
tive splicing events were detected in our study, we cannot completely exclude the pos-
sibility for other expression cassettes, especially those with splicing acceptor consensus 
sequences, could affect the nearby gene splicing. Thus, carefully assessing the splicing 
events is important for new expression cassettes. Another concern is the transcriptional 
leakage of gene expression cassettes [40]. In our validation experiment, we observed 
transcriptional leakage that can extend up to 600 bps downstream of GFP cassettes. One 
potential solution is adding insulator elements to the cassettes [41]. Another limit in our 
pipeline is that some functional genomic data used are from cell lines instead of more 
clinically relevant primary cells such as CD34+ hematopoietic stem and progenitor cells 
(HSPCs). This is largely due to the data availability. Our pipeline does have an option 
to let users provide their own functional genomic data and identify best GSHs for their 
own systems. Last but not least, we used a GFP expression cassette in our experimen-
tal validation. Since transgene-genome interaction can be transgene-dependent, expres-
sion cassettes with different transgene can potentially induce different local epigenetic 
and chromatin interaction changes. Thus, researchers should perform their own tests 
to select the GSHs that work the best for their specific studies. Nevertheless, the evi-
dence that more than 10% of the healthy human population has large DNA fragments 
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integrated in these candidate GSHs for thousands of years provides extra information 
that is not available from any cell or animal models.

Conclusion
We developed a knowledge-based computational tool (GEG-SH mapper) for selecting 
tissue-specific GSH sites for gene therapy and genomic engineering studies and dem-
onstrated its utility in blood and brain. In total, we identified 19 GSH in blood and 5 in 
brain tissues. We also validated three GSH sites and showed high gene expression cor-
relations in cells with and without the transgene integration as well as similar prolifera-
tion and differentiation state in these cells. Combining with targeted cassette integration 
technology, our approach will allow more efficient development of genomic engineering 
studies and gene therapies in the near future.

Methods
pMEI‑associated eQTL identification in the 1000 Genomes project

Genotypes for pMEI loci in 2504 individuals were extracted from the 1000 Genomes 
project phase 3 release of structure variation (ftp://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​
phase3/​integ​rated_​sv_​map/) [23, 24]. In this dataset, 16,631 pMEIs were present in cer-
tain samples but not in the reference genome (referred as insertions), and 1304 were 
present in the reference genome but missing in certain samples (referred as deletions). 
RNA-Seq data from 462 individuals were downloaded from GEUVADIS RNA sequenc-
ing project for the 1000 Genomes project samples [25]. Among the 462 individuals, 445 
individuals matched the pMEI genotype file. The following analyses were based on these 
445 individuals.

For the eQTL analysis, pMEI were filtered to include pMEI with >1% and <99% AF 
in the 445 individuals. The gene expression level was calculated as the Reads Per Kilo-
base of transcript, per Million mapped reads (RPKM) values using cufflinks software 
[42]. Both protein-coding and non-coding genes defined in the GENCODE annotation 
[43] were used. Matrix-eQTL [44] was used to perform eQTL tests for the associa-
tion between pMEIs and expression changes in cis (i.e., a pMEI and a gene are located 
within 500 kbs of each other) by using an additive linear regression model. Population 
and gender information were considered in the matrix-eQTL analysis as covariates. 
pMEIs that are more than 500 kbs away from genes are also included in the down-
stream analysis.

GSH‑mapper filtration of pMEIs

The eQTL data from the 1000 Genomes project (as described above) and the GTEx 
project [21] were processed to generate the GSH-mapper input format containing ID, 
position, eQTL FDR, and AF. Both eQTL datasets included pMEI’s association with the 
expression of protein coding and non-coding genes. The position column was used to 
generate a bed file with the chromosome coordinates, which was used for further filtra-
tion steps.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/
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Oncogenes, tumor suppressor genes, and dosage‑sensitive genes

The lists of oncogenes and tumor suppressor genes were downloaded from [27, 28], 
respectively. The list of dosage-sensitive genes was downloaded from the Exome Aggre-
gation Consortium [29], supplementary table 13 with a pLI (probability loss of function 
intolerant) value greater than 0.9. The gene coordinate information was assigned by 
using BioMart Ensemble genes 104 database for GRCh37.

TAD

TAD information for blood was obtained from GSE63525 [26], and brain data were 
obtained from GSE86189 [32]. For blood pre-processed arrowhead [45], data for 
GM12878 cells were used. For brain hippocampus, raw data (SRA: SRR4094699) was 
downloaded and processed locally using Hic-pro [46] (Version 2.11.1) with default 
parameters. A bin size of 100 kbs was used to generate Iterative Correction and Eigen-
vector decomposition (ICE) normalized contact maps. Normalized contact maps were 
converted into “h5” format by using hicConvertFormat, and TADs were identified using 
hicFindTADs. Both tools are parts of HiCExplorer (version 3.6) [47–49] and were run 
using default parameters through the command line version. TAD information was 
assigned to pMEIs using Bedtools intersect (Version 2.29.2) [50]. The gene coordinate 
information was downloaded from BioMart Ensemble genes 104 database for GRCh37. 
Gene density for each TAD was calculated as:

Mean gene density was calculated based on gene densities of all TADs in the genome 
for the given cell/tissue. pMEIs within TADs with gene density greater than the mean 
gene density were removed. The mean gene density value will vary depending on the 
input TAD regions.

Promoter interaction

Gene promotor chromatin interaction data for blood (PCHiC_peak_matrix_cutoff5.txt.
gz) [51] were downloaded from https://​osf.​io/​u8tzp/ and all the interactions files were 
combined except for endothelial precursors and fetal thymus cells. Similarly, for brain 
data, supplementary Tables 3 and 4 were downloaded from Jung et  al [32], and inter-
actions involving dorsolateral prefrontal cortex, hippocampus, and neural progenitor 
cells were combined. For promoter-promoter interaction data in supplementary Table 4, 
where only gene name was provided, promoter regions were defined as regions 2 kbs 
upstream and downstream of the gene transcription start site (TSS). pMEIs interacting 
with gene promoters within the same TAD were removed. pMEIs with chromatin inter-
action to promoters of dose-sensitive genes, tumor suppressor genes, or oncogenes were 
removed.

Chromatin regions

The pMEIs were further filtered and annotated based on chromatin regions. Chroma-
tin region information inferred by ChromHMM [52, 53] for both blood and brain were 
obtained from the Roadmap Epigenome Consortium (Additional file 9: Table S8) [31]. 

Gene density = number of genes in TAD/length of TAD × 1000000.

https://osf.io/u8tzp/
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Heterochromatin, Repressed Polycomb, Weak Repressed Polycomb, and Quiescent 
regions defined by ChromHMM were considered as repressive regions. Active TSS, 
Flanking TSS, Strong transcription, and Weak transcription regions were considered as 
active regions.

HUDEP2 clone generation with GFP marker at GSH

For Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) integration, 1 
μl of 50 μM sgRNA and 0.5μl of 40μM 3xNLS-Cas9 protein were mixed and incubated at 
room temperature for 10 min. The gRNA and Cas9 (RNP) mixture were then transferred 
to ice. A total of 200,000 HUDEP2 cells were resuspended in 10 μl buffer R (Invitrogen: 
MPK1096R). Then 1.5 μl of RNP mixture was added along with 1 μl of 1 μg/μl Donor 
EGFP plasmid (Additional file 1: Figure S9), which contains homologous arms and GFP 
expression cassette. The cells were subjected to electroporation using Invitrogen Neon 
transfection system at 1200v, 40 ms, 1 pulse. After electroporation, cells were transferred 
into 2-well plates, with 1 mL/well containing 10% FBS without any antibiotics. After 1 
week of cell culture, GFP+ single cell was sorted into 96-well u-bottom plates. When cell 
pellets are visible (around 10–14 days), the subclones were then transferred into 12-well 
plates for clonal expansion. GFP insertions in cells were validated by PCR to amplify 
GFP cassette. The sequences of gRNAs and PCR primers are listed in Additional file 2: 
Table S1.

HUDEP2 cell differentiation and FACS staining

For cell differentiation analysis, HUDEP2 cells were cultured in IMDM medium con-
taining 2% human AB plasma, 3% human AB serum, 1% penicillin/streptomycin, 3 U/
mL heparin, 10 μg/mL insulin, 3 U/mL EPO, 1 mg/mL transferrin, 50 ng/mL hSCF, and 
1 μg/mL doxycycline for 3 days. The cell density was maintained between 0.7×106/mL 
and 1.4×106/mL. After day 4, hSCF was withdrawn from the culture medium and cell 
density was maintained between 1×106/mL and 2×106/mL. For cell sorting, 0.5×106/
mL cells were resuspended in 1000 mL of PBS with 2% FBS. Then, 2 mL of Band3-APC 
(Dr. Xiuli An from Laboratory of Membrane Biology, New York Blood Center provided 
the antibody) was added, and the cells were kept on ice for 20 min. The cells were then 
washed twice with 200 mL of PBS containing 2% FBS and resuspended in 200 mL of PBS 
containing 2% FBS for Fluorescence Activated Cell Sorting (FACS).

RNA sequencing and analysis

RNA sequencing was performed as previously described [54]. Briefly, quick-RNA 
MiniPrep kit (Zymo Research, R1054) was used to extract RNA from one million 
normal HUDEP2 cells or HUDEP2 GFP cells. For each cell line, RNAs were pre-
pared from four batches of bulk sorted GFP cells as biological replicates. The TruSeq 
Stranded RNA Library Prep Kit (Illumina) was used to create libraries for sequencing. 
Sequencing was performed using NovaSeq 6000 (Illumina) with 100PE format.

Kallisto quant (0.43.1) [55] with the default setting using bootstrap-samples set 
to 100, and Ensembl gene annotation (version 75) for the human reference genome 
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(hg19) was used to get the transcript abundance data. Differential gene expression 
analysis was performed using Sleuth [56] with the default parameters. FDR<0.01, 
LFC>1, or LFC<-1 were used to identify significantly changed genes. In addition, 
the normalized TPM counts generated by Sleuth were used for correlation analysis 
among the GFP inserted cell lines and HUDEP2 WT.

For alternative splicing analysis, RNA sequencing data were mapped using STAR 
(version 2.5.3a) [57] and alternative splicing events were analyzed using rMATS 
(4.0.2) [58] using default settings, where each GFP inserted cells were compared with 
WT HUDEP2 cells. GENCODE v39lift37 is used as annotation file. Five different 
events (skipped exon, mutually exclusive exon, alternative 3′ splice site, alternative 5′ 
splice site, and retained intron) were evaluated to identify significant alternative splic-
ing events.
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