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Dear Editor,

We appreciate the positive comment, from Drs. Menno Hoekstra Ezra J. van der Wel, 

and Miranda Van Eck, on our recent work of PLTP deficiency-mediated atherosclerosis 

regression [1]. We agree that the lesion regression effect observed by us can also be 

attributed to the effect of PLTP deficiency specifically in macrophages, although the 

mechanism remains unclear.

There are certain important mechanisms are involved in atherosclerosis regression through 

macrophages in mouse models[2]: 1) suppression of monocyte infiltration into the 

atherosclerotic plaques. 2) depletion of M1 and enrichment of M2 microphages; 3) 

upregulation of macrophage CCR7 and increase of CCR7-dependent egress of resident 

macrophages from atheroma; 4) increasing cholesterol efflux from macrophages on the 

lesions. The results reported Hoekstra M et al. have enriched the existing mechanisms. They 

found that 1) treatment of hypercholesterolemia could facilitate CCR7-positive macrophage 

polarization and migration; and 2) new macrophages continuously infiltrate regressing 

atherosclerotic lesions.

In fact, PLTP deficiency can effectively reverse diet-induced or LDL receptor deficiency-

mediated hypercholesterolemia [1]. Pltp knockout (KO) mice have lower circulating levels 

of interleukin-6 (IL-6)[3, 4] and less infiltrating macrophages in aortic tissue [5], compared 

with controls. All these effects could contribute to promote the regression of atherosclerosis, 

although PLTP activity has no effect on macrophage cholesterol efflux in mouse models [6].

Previously, it was reported that global PLTP deficiency not only greatly reduced plasma 

HDL-cholesterol and apoAI levels but also greatly reduced plasma sphingosine 1 phosphate 

(S1P) levels (60%), compared with controls [7]. Recently, we confirmed that both male 

and female Pltp KO mice significantly reduced S1P in the circulation (about 45%) (Fig. 

1A) and we also found that inducible male and female Pltp KO mice, under a high fat and 
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high cholesterol diet, had about 50% reduction of plasma S1P (Fig. 1B), respectively. This 

PLTP deficiency-mediated S1P reduction could contribute to reduction of atherosclerosis 

progression and induction of regression[1].

S1P is a potent lipid mediator composed of one long hydrophobic chain and one phosphoric 

acid group. S1P in blood is produced primarily by red blood cells (RBC), platelets, and 

endothelial cells[8], and secreted by major facilitator superfamily transporter 2b (Mfsd2b) 

[9] and S1P transporter spinster homolog 2 (Spns2) [10], respectively. S1P acts on 

macrophages to alter their functional phenotype[11]. S1P activates NF-κB [12], promotes 

chemotaxis, and stimulates the production of TNF-α in macrophages and/or monocytes[13]. 

S1P exerts potent physiological effects through five S1P receptors (S1PR1–5) located 

on cell membranes. The order of S1P receptor expression levels in macrophages are as 

follows: S1PR2 > S1PR1 >>S1PR3 and SIPR4 and there is no detectable S1PR5 [14]. 

The association between S1PR1 and CCR7 has been reported [15]. Activation of S1PR1 

by a specific compound, KRP-203, can inhibit atherosclerosis by modulating macrophage 

and lymphocyte function [16]. S1PR2 signaling in macrophages is sufficient to promote 

atherosclerosis in the apolipoprotein (Apo) E KO mice [14]. Moreover, S1P promotes 

inflammatory M1 polarization of macrophage and promotes macrophages chemotaxis [17]. 

These studies provides support for S1P-mediated proatherogenic property.

Due to its hydrophobic nature, S1P is poorly water soluble and requires carrier proteins 

for efficient transport and circulation. Based on previous reports, plasma S1P is carried 

by HDL and albumin[18]. HDL-bound apoM as a physiologically-relevant S1P chaperone 

[19], which is defined as S1P carrier protein that facilitates specific receptor activation 

and biological response. despite the potential of the apoM-S1P axis as an endothelium-

protective mechanism, the effect of apoM-S1P on atherosclerosis is still controversy [20, 

21]. Moreover, global apoM deficiency causes about 45% reduction of plasma S1P [19, 

21], global albumin deficiency has no significant impact on S1P in the circulation [22], 

and global apoM/albumin double deficient mice still have sufficient amount of plasma 

S1P [22]. These observations suggested that there are other S1P chaperones exist to 

mediate S1P functions, such as apoA4 [22]. Thus, PLTP (as a lipid carrier) depletion 

and PLTP deficiency-mediated HDL dramatical reduction could be two potential reasons 

for the dramatical reduction of S1P in the circulation. This effect of PLTP deficiency is 

independent from apoM, since global PLTP deficiency has no significant impact on plasma 

apoM (Fig. 2A) [7], and apoM deficiency has no effect on plasma PLTP activity (Fig. 2B). 

Unlike apoM, it is known that PLTP deficiency prevents and PLTP overexpression promotes 

atherosclerosis in animal models. Thus, we hypothesize that there is a PLTP-S1P axis, which 

is different from apoM-S1P axis, affecting atherosclerosis regression through influencing 

macrophages.

We agree that more detailed mechanistic studies are warranted into the possible effect of 

(inducible) PLTP deficiency on atherosclerosis regression. In particular, we would like to 

investigate the effect of PLTP deficiency-mediated S1P reduction on monocyte migration 

and macrophage differentiation and polarization as well as emigration of macrophages from 

atherosclerotic lesions.
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Figure 1: 
Plasma S1P levels in mice. (A), WT and Pltp KO mice on chow diet. (B), WT and inducible 

Pltp KO mice on a high fat high cholesterol diet (0.15% cholesterol, 20% saturated fat). M, 

male; F, female. Values are mean ± SD.
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Figure 2: 
Western blot analysis for plasma apoAI and apoM in WT and Pltp KO mice (A); Plasma 

PLTP activity in the WT and Apom KO mice (B). Values are mean ± SD.

Zhen et al. Page 6

Atherosclerosis. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Dear Editor,
	References
	Figure 1:
	Figure 2:

