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SUMMARY Despite the advent of new diagnostics, drugs and regimens, tubercu-
losis (TB) remains a global public health threat. A significant challenge for TB con-
trol efforts has been the monitoring of TB therapy and determination of TB treat-
ment success. Current recommendations for TB treatment monitoring rely on
sputum and culture conversion, which have low sensitivity and long turnaround
times, present biohazard risk, and are prone to contamination, undermining their
usefulness as clinical treatment monitoring tools and for drug development. We
review the pipeline of molecular technologies and assays that serve as suitable
substitutes for current culture-based readouts for treatment response and out-
come with the potential to change TB therapy monitoring and accelerate drug
development.
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INTRODUCTION

Despite significant progress made in the diagnosis and management of patients in the
recent past, tuberculosis (TB) remains a global public health threat with 10 million

new cases and 1.5 million deaths annually (1). Recommended TB treatment regimens are
long and often associated with severe adverse events, which impact both adherence and
therapy outcome (2–5). To monitor treatment progress, clinicians traditionally apply a
number of clinical, radiological, and laboratory biomarkers. The World Health Organization
(WHO) recommends use of regular sputummicroscopy and culture for monitoring of treat-
ment and molecular and phenotypic drug susceptibility testing for identifying the
Mycobacterium tuberculosis complex (MTBC) drug resistance profile and adjusting the indi-
vidualized treatment regimen accordingly (3, 6). Although sputum culture conversion (i.e.,
at month 2 for drug-susceptible TB and at month 6 for drug-resistant TB) has been pro-
posed as a surrogate for treatment outcome (7–9), its use is limited by a long turnaround
time, relatively low sensitivity, and high risk of contamination.

Fourteen-day early bactericidal activity (EBA) studies, based on the quantification of TB
bacilli in sputum samples and their decline or rise after initiation of treatment, may also be
conducted to assess bactericidal activity of antitubercular drugs and their combinations.
EBA studies have traditionally relied on the well-established methodology of counting
CFU. This approach has several limitations, being both labor-intensive and requiring qual-
ity sputum samples with high bacterial burden to provide positive cultures throughout
the period of study (10). As an alternative, bactericidal activity may be determined in liquid
culture by noting the prolongation of time to positivity (TTP) from baseline (10). This
approach gives a more accurate estimate of bacterial burden, but the long time to result
limits its use in guiding adaptive trial designs and for clinical management.

TB treatment success is ultimately determined using standardized treatment out-
come definitions that are also critically important for the development and testing of
novel drugs. The WHO recommends defining TB treatment outcome based on sputum
culture positivity and the need for treatment termination or permanent regimen
change of at least two anti-TB drugs due to culture reversion, development of drug re-
sistance, or adverse drug reactions (11). However, these definitions do not account for
relapse-free survival, which is a more clinically relevant assessment of treatment effi-
cacy (9). To address this, simplified treatment outcomes based on culture conversion
and reversion and/or TB relapse within 1 year after treatment completion have been
proposed by the TB Network European Trials Group (TBnet) (9). Recently, the WHO pro-
posed updated TB outcome definitions, including an optional definition of sustained
treatment success based on the absence of TB relapse within 6 months in case of
drug-susceptible and 12 months in case of drug-resistant TB; however, this definition
has been designated for operational research use only (12). While all current definitions
continue to rely on sputum and culture conversion as monitoring tools, the drawbacks
of these methods are recognized, and the need for new treatment monitoring tools is
highlighted (12).

Diagnostic technology advances have revolutionized the management of TB. As the
most important example, sputum-based, molecular assays, including GeneXpert
(Cepheid, Inc., USA), TrueNat (Molbio Diagnostics Private Limited, India), and the line-
probe assays (e.g., Hain Lifescience GmbH, Germany), have led to the early detection of
drug resistance against important anti-TB drugs (13). Consequently, there is a pipeline
of molecular technologies and assays with the potential to change TB therapy monitor-
ing concepts. Such technologies are also potential substitutes for current culture-based
readouts for treatment response and outcome. Since phase IIA/IIB clinical studies rely
on bacteriological measurements, novel biomarkers may also be potential substitutes
for MTBC culture in novel trial designs, accelerating drug development (14). Simpler
tools to assess TB therapy response should also be able to signal TB treatment termina-
tion (i.e., according to patient response, as opposed to current standard regimen dura-
tion). The tests should be both simple and sensitive enough to replace smear micros-
copy in low-resource settings (15), ideally generating test results within few hours, and
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have very high diagnostic performance to predict relapse compared to clinical and
microbiological follow-up of patients. Ideally, the test should use nonsputum samples
to better ensure operator safety, and result output should preferably be quantitative
to allow for better assessment of treatment response over time. The test should be
suitable for both TB and extrapulmonary TB patients, including children and those
with HIV coinfection.

The aim of this review is to highlight several biomarker candidates with the poten-
tial to improve treatment monitoring, accelerate drug development, and ultimately
redefine treatment outcome definitions, enabling personalized medicine for TB.

HOST CHARACTERISTICS ASSAYS

Assays measuring the host response to TB infection as a correlate of disease severity
or measure of treatment response and cure represent one option to simplify TB treat-
ment monitoring. These approaches include tracking host immune responses through
transcriptomic profiling, metabolomic profiling, and monitoring cytokine levels, but
also can involve the use of imaging technologies as well as the evaluation of clinical
signs and symptoms (Table 1) (16–18). Such technologies are attractive options for
treatment monitoring given that they can be performed on readily accessible, nonspu-
tum patient samples (e.g., blood or urine) obtainable in primary health care clinics
(PHC) where TB patients often first enter the health care cascade. However, the devel-
opment of these technologies has generally been challenged given the large range of
host variabilities, including infection pathology, host drug metabolism, disease end-
points, coinfections, and even environmental factors (19, 20), as well as the practical-
ities of translating biomarkers into simple, rapid tests more suitable for PHC. The state
and potential of current assays based upon the identification of host biomarkers or
characteristics for treatment monitoring are detailed below.

Transcriptomic Profiling

Transcriptomic analyses from whole blood have yielded RNA signatures that correlate
with future onset of disease, active TB, and cure (21–24). These signatures often feature
genes related to type I interferon signaling (25, 26). Tracking RNA changes in whole blood
appears to be a suitable approach for TB therapy monitoring since changes can be found
both very early and at later stages of therapy in cohorts, including patients from Africa and
Europe with or without HIV coinfection (21, 27–29). However, the potential of these
approaches for TB treatment monitoring has yet to be confirmed in larger clinical trials.
Still, whole-blood RNA assessment may be used as an alternative surrogate marker for EBA
trials since changes appear rapidly following therapy initiation (27). In addition, since RNA
alterations can be detected even following culture conversion, RNA may also be a suitable
signal for phase IIB study endpoints and ultimately to indicate cure (21, 28). Recently, it
was shown that positron emission tomography-computed tomography (PET/CT) changes
over the course of TB therapy could be correlated with whole-blood RNA changes (30),
though, to date, these changes have not been correlated with relapse in large-scale clinical
trials. Furthermore, the potential for secure usage of transcriptomic data involving swarm
intelligence to differentiate diseases such as COVID-19 or TB has been presented, support-
ing this approach (31). Currently, assays for TB treatment monitoring based upon transcrip-
tomic signatures are still in early to middle stages of development, though the pipeline
includes blood-based assays suitable for use at various levels of the health care system,
from community clinics to district laboratories (32).

Host Adaptive Responses

Cellular immunological markers have promise as candidate nonsputum diagnostics
for TB suitable for both adults and children (33). Stimulation of T cells with TB antigens
and intracellular cytokine staining specifically measures these markers on TB-specific T
cells. While processing of peripheral blood mononuclear cells for this purpose requires
specialized capacity and has posed a significant obstacle to the application of this
method, a new format for the T cell activation (TAM)-TB assay allows the use of whole
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blood (34). Notably, based on this method, activation markers CD38, HLA-DR, and Ki-67
on TB-specific T cells have been demonstrated to increase at the time of TB diagnosis
and to decline with treatment in 10 patients with active, drug-susceptible TB over a 9-
month period (35). Ahmed et al. have also noted a slower decline of those markers in
HIV-negative patients with active, smear positive pulmonary TB who had a longer time
to sustained sputum culture conversion over a 26-week treatment period (with liquid
cultures performed at successive time points up to week 26), the primary endpoint
used in the PanACEA MAMS TB-01 treatment trial (clinicaltrials.gov NCT01785186),
with strong correlation (33). However, these validations of cellular immunological
markers were made only against surrogate culture-based endpoints, not against the
clinical endpoint of patient cure versus unfavorable outcome. In addition, it was dem-
onstrated that CD27, which appeared to hold promise as a diagnostic marker, did not
change with successful treatment in this small (39 patient) cohort. A principal limita-
tion will be that the assay will only work in individuals with a measurable cellular
immune response, i.e., a detectable IFN-g response. However, certain cellular markers
have been identified that demonstrate some correlation with baseline disease severity
(36, 37), raising the prospect of sputum-independent diagnostic tests that can also
inform of disease severity and prognosis, hence aiding treatment decisions and provid-
ing a measurement of treatment response in comparison to baseline. These tests, how-
ever, currently require facilities for incubation and flow cytometry, limiting their use to
research laboratories or other facilities with similar equipment (38). If these assays
could be established on the same cytometry platforms used for CD4 testing for HIV
care, a wider availability could potentially be achieved. Additional evaluations in trial

TABLE 1 Examples of assays measuring the host response to TB infection as a correlate of disease severity or a measure of treatment response
and curea

Name/type
Host response
cartridge RISK6 score

Transcriptomics
panel TB22

Other RNA
signatures TAM-TB assay IGRAs

Developer Cepheid QuantumDX Biomerieux Research Center
Borstel

Various Ludwig-Maximilian
University of Munich

Qiagen, Oxford
Immunotec

Concept 3-Marker mRNA
signature
capturing an
inflammatory
response
associated with
TB

6-Marker mRNA
signature
capturing an
inflammatory
response
associated
with TB

30-Marker mRNA
signature
capturing an
inflammatory
response
associated with
TB

22-Marker
mRNA
signature
associated
with relapse-
free cure

RNA signatures with
different no. of
gene targets
involved

Detection of
upregulated
activation markers
on MTB antigen-
specific T cells
associated with
active TB disease

IFN-g release upon
specific
stimulation

Use-case TB detection,
prediction, Rx
monitoring

TB detection,
prediction, Rx
monitoring

TB detection, Rx
monitoring

TB diagnosis, Rx
monitoring

TB diagnosis, Rx
monitoring

TB detection in
children, Rx
monitoring

Diagnosis of latent
TB infection

Development
stage

RUO, design locked RUO, design
locked

RUO, design locked In-house In-house Design locked RUO, design locked

Sample 50mL of capillary
blood

50mL of capillary
blood

Tempus tube PaxGene tube PaxGene tube Whole blood, PBMCs Whole blood, PBMCs

Instrument GeneXpert 6- or 10-
color instrument

Q-POC platform
with cassette

BioFire FilmArray
platform

Array or RNA-
seq

Array or RNA-seq Fluorescence-activated
cell sorting

ELISA, ELISPOT

Time to result 45 min 30 min 120 min 8 h 1–2 days 10 h 1 day
Relevant

clinical
data

3-Gene signature
expression level
changed
significantly with
respect to
baseline for 31
pulmonary TB
patients who
were
microbiologically
cured by end of
Rx. In first month,
a median score of
1.97 (IQR = 1.03–
2.33) suggested a
promising Rx
response (150).

Study in patients
with and
without HIV
infection in
Africa, Peru
and Brazil.
RISK6
differentiated
between
patients with
cure and Rx
failure (AUC
77.1, 95% CI =
52.9–100) (29).

This assay is currently
being validated
for diagnosis of
active TB in
conjunction with
risk assessment,
clinical context
and diagnostic
information in
South Africa
(ClinicalTrialsgov
identifier
NCT0499540) The
Rx monitoring
potential of the
assay remains
unclear.

TB22 model
predicted
clinical
outcomes for
TB patients
without HIV
infection
with an AUC
of up to 94%,
(95% CI =
0.9–0.98) in
patients
mainly from
Europe and
Africa (21).

Large list of RNA
signatures
potentially
serving as Rx
monitoring tools
based upon early
exptl data
showing Rx
monitoring
potential (24, 25,
27, 151–153).
Certain signatures
were identified in
TB patients
without HIV
infection at risk of
Rx failure 1–4 wks
after start of Rx in
South Africa (25,
151).

Frequencies of TB-
specific cells from
peripheral blood
significantly
declined over the
course of Rx in a
cohort without HIV
from sub-Saharan
Africa (n = 39) with
active TB and a 16-
yr-old HIV-negative
patient with
extrapulmonary TB
from Afghanistan
(33, 154).

A systematic review
of 30 studies (24
QFT, 3 T-SPOT.TB,
and 3 used both)
noted a general
decline of IFN-g
over time but
with a large
variation,
concluding that
the markers are of
no use for Rx
monitoring (41).

aAI, artificial intelligence; CAD, computer-aided detection; CRP, C-reactive protein; CT, chest tomography; CXR, chest X-ray; DM, diabetes mellitus; ELISA, enzyme-linked
immunosorbent assay; IGRA, interferon gamma release assay; LC, liquid chromatography; MS, mass spectrometry; MTB,Mycobacterium tuberculosis; NA, not applicable;
PBMC, peripheral blood mononuclear cell; PET, positron emission tomography; QFT, QuantiFERON-TB; RUO, research use only; Rx, treatment; TAM, T cell activation marker;
TB, tuberculosis.
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settings will be needed to confirm the clinical relevance of these markers for TB treat-
ment monitoring.

Cytokines and Other Biomarkers

Proinflammatory cytokines produced by TB-specific T cells are well established as
significant contributors to TB immunity (39, 40), as demonstrated by the inability of the
host to control infection in their absence. The importance of IFN-g expression in TB-
infected subjects is reflected in the assay used to determine infection in the first place:
commercially available IFN-g release assays (IGRAs) such as QuantiFERON TB Gold
(Qiagen, Germany) and T-SPOT-TB (Oxford Immunotec, Ltd., UK) assays frequently
replace tuberculin skin tests (TSTs) to identify patients infected with TB. While levels of
IFN-g production in IGRAs have been suggested as a potential biomarker for treatment
monitoring, a systematic review of 30 studies did not find uniform patterns of IGRA lev-
els following treatment due to the high degree of variation between participants,
undermining the usefulness of these tests for treatment monitoring (41). A more prom-
ising approach may be to directly measure cytokines circulating in plasma or serum
samples, removing the added variability inherent to in vitro stimulation. Several tech-
nologies are available for this purpose, including simple enzyme-linked immunosor-
bent assays (ELISAs), as well as multiplexed bead-based and plate-based approaches
(42–44). Using these approaches, it was demonstrated that several cytokines, including
IFN-g (42), TNF-a (42), IL-4 (42), IL-6 (44), and IP-10 (45), were increased in active TB dis-
ease compared to healthy or latently infected individuals, confirming their association
with disease severity, and declined with TB treatment. These studies included evalua-
tions of protein levels in blood samples from 319 active TB, HIV-positive and -negative
patients at baseline versus following 8 weeks of combination therapy in TBTC Study 29
(44), plasma samples from 42 HIV-positive and -negative individuals with active pulmo-
nary TB undergoing 26 weeks of treatment followed over 18 months in Durban, South

TABLE 1 (Continued)

Cytokines CRP assay
Metabolomics (e.g., tryptophan
catabolism)

Deep learning imaging
(CAD, CXR) CT scan 18F-FDG PET-CT TB scores

Various Various Various (LC-MS/MS) Qure.ai and others Various Various BANDIM
Release of cytokines

upon specific
stimulation

Quantitative
measurement of
CRP

Measurement of tryptophan
catabolism

AI-based abnormality
scoring of paired
digital CXR: change in
abnormality score is
associated with Rx
response

Extent of TB lesions on
CT scan and change
over time

Change of tracer
uptake in TB
lesions (PET) and
lesion change
over time (CT)

Baseline and on-Rx
clinical markers of
risk can predict
individual patient Rx
success

Diagnosis of latent TB
infection, Rx
monitoring

Rx monitoring Rx monitoring TB detection, Rx
monitoring

TB detection, Rx
monitoring

TB detection, Rx
monitoring

TB detection, Rx
monitoring

In-house RUO, design locked Experimental, in-house On market RUO, design locked RUO, design locked;
additional
radiotracers being
evaluated

NA

Whole blood, PBMCs Serum/plasma Serum/plasma CXR images and CAD
scoring

CT images, trained
evaluation

PET-CT images,
trained evaluation

None

ELISA Various Various Digital CXR, CAD/AI
software

Various Various None

1 day 2 h Days ,1 min 5 min 1 h Dependent on
contributing
variables

Several studies have
described IFN-g,
TNF-a, IL-4, IL-6, and
IP-10 as potential
markers for Rx
monitoring, though
the significantly up-
regulated data
obtained to date is
too heterogeneous
to draw a conclusion
that these cytokines
are useful for Rx
monitoring (42–45).

This assay has shown
potential for Rx
monitoring in
active TB patients
(with and without
HIV infection).
One study of HIV-
positive and
-negative patients
in South Africa
showed CRP
decline to#55%
of the baseline
value by wk 2, a
prediction of
hospitali-
zation or death
with 99%
negative
predictive value
was described
(44–46).

A study in samples from 48 TB
patients, 20 TB-DM patients,
and 48 healthy controls
without HIV infection from
Indonesia revealed a three-
target model to distinguish
between groups (AUC = 0.91–
0.97) and identified
metabolites that lowered
during Rx. Another study
conducted in samples from
HIV-negative, pulmonary TB
patients from Georgia focused
on decreased tryptophan/
kynurenine ratios, which
changed under Rx, and
identified indoleamine 2,3-
dioxygenase-1 as a potential
target for host-directed
therapy (52, 53).

Deep learning software
has mainly been
applied to CXRs from
active TB patients at
baseline for TB
detection (64, 155,
156). Its value as Rx
motoring tool is not
yet well described.

CT findings correlate
with Rx outcome,
with larger cavities
identified during Rx
having a high
predictive value for
Rx failure in an HIV-
uninfected South
African drug-
susceptible TB
cohort. Cavity wall
thickness and the
total volume of
intraparen-
chymal radio-dense
lesions at the end of
Rx were also found
to have high
predictive value of
Rx failure in this
cohort (65–67).

The potential of PET-
CT scans to serve
as markers for Rx
shortening is
currently under
evaluation in a
randomized
control trial. PET-
CT has correlated
with clinical and
sputummarkers
in HIV-negative
TB patients in an
EBA trial in South
Africa
(NCT02821832)
(79, 80).

Several Rx response
scores have been
presented involving
clinical, microbio-
logical and
radiological data. A
risk stratification
tool using patient
demographics and
clinical parameters
(from phase III trials)
in drug-susceptible,
HIV-negative TB
patients identified
groups at low,
moderate, and high
risk for poor
outcome in
Germany (67, 85–88,
157).
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Africa (45), and 67 patients with drug-susceptible TB disease followed over 6 months
of treatment in Beijing, China (42). Unfortunately, even though multiple studies have
measured the same cytokines, the evidence base is heterogeneous, suggesting poor
sensitivity and specificity of these markers for the prediction of treatment progress. To
date, no cytokine-based assay for treatment monitoring has progressed from early de-
velopment stages, and currently used technologies are limited to central laboratories.

Beside cytokines, new or updated proteomic approaches have identified additional
serum proteins as potential biomarkers for anti-TB treatment monitoring.
Commercially available, C-reactive protein assays based upon finger-prick blood test-
ing have already undergone WHO review and recommendation for community triage
in people living with HIV (32) and the C-reactive protein has additionally been shown
to consistently decline during treatment (44, 46, 47). In an assessment of 33 patients in
a high-TB and -HIV setting with serial changes in C-reactive protein evaluated over
8 weeks (46), the failure of C-reactive protein to reduce to #55% of the baseline value
by week 2 predicted hospitalization or death with 99% negative predictive value for
patients with confirmed or presumed TB. Apolipoproteins and members of the com-
plement cascade are also modulated by TB treatment and have been suggested as
components of predictive proteomic signatures (48–50).

In addition, one study with access to patients who relapsed following treatment
completion assessed whether a proteomic signature would be able to predict treat-
ment outcome (51). Ronacher et al. showed distinct patterns of changes in immune
markers (including cytokines, chemokines, soluble receptors and acute phase proteins)
following treatment initiation in 78 cured and 12 relapsed HIV-negative patients with
drug-susceptible TB from the Action TB Study who were used as a discovery cohort. A
combination of four immune markers (TNF-b , sIL-6R, IL-12p40, and IP-10), in addition
to TTP and body mass index at diagnosis, was able to discriminate relapsed from cured
patients with an Area Under the Receiver Operating Characteristics (AUROC) curve of
0.819 (95% confidence interval [CI] = 0.679 to 0.942) in this discovery cohort, and this
was validated in a second cohort of 23 cured and 17 relapse patients from Uganda and
Brazil with an AUC of 0.718 (95% CI = 0.509 to 0.903). Interestingly, the predictive
potential of this biosignature was most pronounced when measured at baseline since
immune markers tended to normalize during treatment (51). As multiplex assays, such
as those of SomaLogic, Inc. (USA), and O-link Holdings AB (Sweden), are becoming
more widely available, confirmatory studies will allow for a targeted assessment of
some of these markers as potential predictors of treatment outcome.

Metabolomic approaches are similarly being assessed for their potential for anti-TB
treatment monitoring. Multiple metabolic pathways are affected by TB infection, with
tryptophan catabolism in particular being heavily influenced by TB and its treatment
(52, 53). Of note, this metabolic pathway is also being explored as a target of host-
directed therapies, with blockade of indoleamine 2,3-dioxygenase (IDO; the rate-limit-
ing host enzyme for catabolism of tryptophan to kynurenine) activity showing promis-
ing results in reducing clinical manifestations and pathological correlates of TB in a
macaque model (54). Further studies will be necessary to determine whether these
early findings translate clinically for TB patient treatment monitoring.

Imaging

Chest X-rays (CXRs) are a fast and inexpensive way to screen for active TB with
many portable devices now available for testing in community settings. However, the
process is subject to interpretation and thus the accuracy of this method largely
depends on the experience of the reader. The use of computer-aided detection (CAD)
technologies for TB detection in digital CXRs has the potential to standardize interpre-
tation and improve the feasibility of CXRs for widespread TB screening and diagnosis
(55). CAD software generates a score from 0 to 100 with some products, such as qXR
from Qure.ai (India), further allowing comparisons of images obtained during treat-
ment to provide a quantitative measure of treatment success (56). Recently, the WHO
recommended three specific commercially available CAD software packages after
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finding the diagnostic accuracy and the overall performance of the software to be simi-
lar to the interpretation of digital CXR by a human reader (57). Many studies have addi-
tionally demonstrated the potential for CXR to be used for monitoring bacterial load
and estimating TB disease severity alone and in combination with smear microscopy
(58–61), with evidence of the association between extensive parenchymal involvement
and 2-month culture conversion, as well as the number of cavities with relapse in non-
HIV-infected patients (62). However, despite strong associations with patient-important
treatment outcomes (58), studies have had conflicting results, as an assessment of the
potential for treatment shortening in patients with noncavitary TB (with culture and
CXR) found that month 2 sputum culture conversion and the absence of cavitation
was insufficient to support treatment shortening (63). Ultimately, this use case has not
been well evaluated for CAD software to date, with most studies using human readers
(62, 63), and the potential of this technology for treatment monitoring remains ques-
tionable (64).

Chest computed tomography (CT) is more sensitive and specific for active TB diag-
nosis than CXR given cross-sectional imaging and higher resolution, and changes in CT
findings over time have been shown to correlate with treatment outcome (65).
Notation of greater volume of cavities on chest CT performed at baseline, month 1,
and month 6 of treatment had a high predictive value for treatment failure in an HIV-
uninfected South African drug-susceptible TB cohort (66), consistent with evidence
that the presence and extent of cavities at initiation and conclusion of TB treatment is
a risk factor for poor treatment outcome or delayed culture conversion (67–69). CT-
detected cavity wall thickness and the total volume of intraparenchymal radiodense
lesions at the end of treatment were also found to have high predictive value of treat-
ment failure in the same cohort (66). However, only eight patients had treatment fail-
ure in this specific cohort, and it is notable that a significant proportion of individuals
continue to have residual chest CT abnormalities even after apparent successful com-
pletion of TB treatment. It can be difficult to determine the presence of live TB bacteria
in these lesions and the risk for subsequent disease recurrence with CT alone (70, 71).
Combining 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) with
CT imaging (PET/CT) is an area of great interest for TB treatment monitoring to address
this limitation. 18F-FDG accumulates in metabolically active cells, including inflamma-
tory cells typically involved in active TB lesions (i.e., neutrophils, macrophages, and
lymphocytes) (72). PET/CT thus overlays functional information about metabolic activ-
ity onto the pathological lesions identified on CT. Data from multiple cohorts have
demonstrated that PET glycolytic activity decreases in response to effective TB treat-
ment and can predict treatment outcome (31, 66, 73–78), though persistent lesions
with ongoing inflammation, as well as new inflammatory lesions after completion of
successful TB treatment, have also been noted (75, 76). The significance of these heter-
ogenous patterns is unclear. The ability of PET/CT, along with other clinical and micro-
biologic parameters, to identify individuals with drug-susceptible TB for whom first-
line anti-TB treatment can be shortened to 4 months is currently being tested in a
randomized trial (NCT02821832) (79). PET/CT is also being explored for its potential
role in identifying new drugs and regimens in EBA trials through the information it pro-
vides on lesion volume and PET glycolytic activity (80). The high cost and logistical
complexity of performing PET/CT limit its broader implementation as a treatment mon-
itoring tool, but this biomarker nonetheless holds promise as a potentially useful trans-
lational tool for confirming preclinical results of promising new drugs and regimens in
earlier stage phase I/II trials before undertaking large expensive phase III trials.

Clinical Score, Signs, and Lung Function

A range of risk factors have been shown to be associated with poor TB patient out-
comes, including demographic variables such as age, sex, ethnic background, and
occupation, and clinical variables such as clinical form of TB, history of TB treatment,
disease severity (e.g., smear grade and cavitary disease), comorbidities (e.g., HIV coin-
fection and malnutrition), and clinical signs and symptoms (e.g., weight, cough, lung
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function, and chest pain) (67, 81–84). Although current practice guidelines suggest
that certain risk factors may indicate the need for adjustment of treatment regimens
(e.g., treatment duration) (82), clinical risk scores and risk stratification algorithms using
a suite of readily available predictors can be useful to further differentiate individuals
to monitor treatment response, in both drug-susceptible and drug-resistant TB popula-
tions (67, 85–88). For example, a risk stratification tool has been developed using
patient demographics and clinical parameters from pooled data obtained in contem-
porary phase III trials in drug-susceptible TB-treated patients, leading to identifying
groups of low, moderate, and high risk for poor outcome (67, 89). In a patient popula-
tion where the high-risk group had unfavorable outcome rates of roughly 30%, the
tool provided support for the use of clinical scoring systems and algorithms to triage
patients at baseline or during treatment to improve the probability of treatment suc-
cess. Although clinical scoring systems and algorithms may provide a simple approach
to evaluate response to treatment, careful consideration is required on the mecha-
nisms for handling of missing data, on the cost, resources, and devices/tools necessary
to measure variables, and on the high interobserver variability for subjective measure-
ments (e.g., clinical symptoms). Importantly, more research is needed to assess the util-
ity of clinical scoring systems to predict treatment outcomes and monitor treatment
response across regimens of various compositions and dosing, as well as by demo-
graphics (e.g., ethnicity and sex) and clinical factors (e.g., weight and HIV status) that
have also been associated with poor outcomes (68, 90–92). The overall moderate per-
formance of clinical scoring systems may benefit from combination with drug expo-
sure variables, along with other more quantitative and sensitive bacterial or host-
derived markers, to serve as integrated tools to maximize precision in predicting treat-
ment outcomes.

PATHOGEN BURDEN AND FITNESS ASSAYS

Treatment monitoring tools based upon the quantification of viable bacteria allow
for better precision in TB clinical care by providing a specific metric for TB treatment ef-
ficacy and outcome prediction (93). Although TB burden may be inferred by growth-
based MGIT culture, this method is time-consuming, requires sophisticated laboratory
infrastructure, and is prone to contamination. While molecular methods to estimate TB
burden such as Xpert MTB/RIF (Cepheid, Inc.) can overcome these limitations, the pres-
ence of DNA from dead or killed bacilli, which can remain detectable for months and
even years after treatment, limits the use and interpretation of findings (94, 95). In this
context, rapid and simple molecular assays to quantify both MTBC burden and viability
in a patient sample present useful options for TB treatment monitoring (Table 2).

Sputum-Based Molecular Load Assays

The TB molecular bacterial load assay (TB-MBLA) is a culture-free assay that specifi-
cally detects and quantifies the viable MTBC bacillary load from a patient’s sample via
reverse transcriptase quantitative PCR (RT-qPCR) in ,4 h (96). By detecting 16S rRNA
(rRNA), a component of the multiple ribosomes in a viable cell, the test can detect as
few as 10 to 100 bacteria in a milliliter of sample (97–101). Targeting RNA makes TB-
MBLA an accurate measure of live bacteria and distinguishes it from molecular tests
that detect DNA (99, 100) and differentiates the assay from culture-based methods of
monitoring the response to anti-TB therapy, where the TTP increases as patients clear
their bacterial load (100). As early as 3 days after the initiation of therapy, TB-MBLA
effectively detects the bactericidal effect of anti-TB therapy and is able to provide
long-term assessment of slow treatment responders (100, 102). The assay has the
added advantage of detecting viable, nonculturable MTBC bacilli, obviating complicat-
ing factors of media variability and dormant cell states (103, 104), as well as the need
to decontaminate sputum, removing a significant variable in laboratory processing
(99). It is also possible to perform the assay following heat inactivation of sputum sam-
ples with a small, but predictable, loss in measured viable count (105), reducing the
need for expensive, high-containment facilities. A design locked TB-MBLA is entering
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TABLE 2 Examples of assays based upon the quantification of viableM. tuberculosis bacteria to monitor treatment response and predict
outcomea

Name/type
Solid and liquid
culture

Xpert MTB/RIF
ultra PMA/eMA pCR TB LAM assays TB-MBLA

Culture-free TB
test

rRNA synthesis
ratio

tNGS (e.g.,
Deeplex Myc-TB) WGS

Developer BD and others Cepheid Various Otsuka, LSI
Medience
Corporation,
FujiFilm Corp.,
SD Biosensor,
Inc.

LifeArc Tauns University of
Colorado

Genoscreen Illumina and others

Concept Time to positivity
in liquid
culture/count
of CFU on
solid culture

Semiquantitative
detection of
mycobacterial
DNA. Use of
Xpert cycle
threshold for
estimate of
bacterial
burden and
treatment
monitoring

Membrane-
permeable
dyes modify
and prevent
amplification
of dead cell-
derived DNA,
allowing
quantification
of viable
bacteria via
PCR or RT-PCR

Quantification of
LAM in sputum
as a correlate for
MTBC burden

Quantification
of rRNA as a
correlate with
the burden of
live bacilli

Quantification
of MPT64
released from
live MTBC
following 1 h
of heat
treatment of
the sample
correlating
with MTBC
burden

Quantification of
the ratio of
rRNA and
liable splice as
a correlate of
bacterial
burden and
fitness

tNGS targets
genes
associated
with TB drug
resistance and
identifies
lineage

Genome
sequencing
provides
complete
mutation
information for
MTBC, including
identification of
TB drug
resistance
mutation and
MTBC lineage

Use-case EBA, Rx
monitoring

Diagnosis of TB,
Rx monitoring

EBA, Rx
monitoring

EBA, Rx monitoring EBA, Rx
monitoring

EBA, Rx
monitoring

EBA, Rx
monitoring

Differentiating
new infection/
relapse;
identification
of resistance
and resistant
populations

Differentiating new
infection/
relapse,
Identification of
resistance and
resistant
populations

Development
stage

On market On market In-house RUO RUO, on market CE-MARK In-house CE-MARK In-house

Sample Sputum Sputum Sputum Sputum and urine Sputum Sputum or
other

Sputum Sputum Sputum

Instrument MGIT 6- and 10-color
GeneXpert
System

In-house PCR Various ELISA and
CLEIA and
associated
platforms (e.g.,
PATHFAST)

PCR Automated
ELISA

PCR Illumina,
Nanopore

Illumina, Nanopore

Time to result Up to 8 wks 2 h 4–6 h Unknown ,4 h 2.5–3 h Unknown 48 h 48 h
Relevant

clinical data
Time to culture

conversion, as
well as 2- and
6-month
culture
conversion
status, are
currently used
as surrogates
for Rx
response and
outcome. The
number of
CFU on solid
media or the
time to
positivity are
also used to
quantify
bacteria in
EBA studies (8,
9, 158–160).

Xpert Ultra
appeared to
be of no use
as Rx
monitoring
tool in HIV-
positive and
-negative TB
patients from
the REMOX
trial (n = 221,
Cape Town,
South Africa,
and Mbeya,
Tanzania).
Furthermore,
Xpert results
had a high
sensitivity but
very low
specificity
when smear
and culture
were used as
reference
standard
(sensitivity
(97.0%, 95% CI
= 95.8297.9),
specificity
(48.6%, 95% CI
= 45.0252.2),
though results
are conflicting
and the use of
cycle
threshold for
treatment
monitoring is
still being
explored
(161–163).

The method
seems to be
promising to
specifically
detect viable
MTBC bacilli,
with a
specificity of
84.6% and a
sensitivity of
84.6%
compared to
counting CFU.
No clinical
evaluation has
been
performed to
evaluate the
potential of
this
technology for
Rx monitoring
to date (107–
109).

A study involving
57 TB patients
showed that
HIV-positive and
-negative
participants with
positive LAM
test at month 2
had a 5.6-fold
(95% CI = 1.2 to
25.2) greater risk
of mortality.
Another study
involving 40
drug-susceptible
pulmonary TB
patients
demonstrated
that decline of
sputum LAM
concentrations
during the first
56 days of
therapy
correlated with
increases in time
to culture
positivity, with
notable changes
during the first
14 days (120,
121).

The MBLA
corresponded
well with
culture in
several early-
phase clinical
studies. In a
study
involving
samples from
178 HIV-
positive and
-negative
patients from
Southeast
Africa, it was
shown that
individuals
with high
pretreatment
bacillary
burdens were
less likely to
convert to
negative by
wk 8 of Rx
than those
with a low
burden (96,
97, 100).

A study
conducted in
Taiwan
involving
1102 patients
with
suspected TB
infection
revealed a
sensitivity of
86.9% and a
specificity of
92.0% with
culture as
reference
standard. A
follow-up
study with
HIV-negative
TB patients
from Japan
showed a
specificity of
89.5% to
predict
negative
culture results
on day 14
(114, 115).

The rRNA
synthesis ratio
was quantified
for sputa from
17 Ugandan,
28
Vietnamese,
and 19
Beninese HIV-
positive and
-negative
patients
treated with
HRZE for drug-
susceptible
pulmonary TB.
Rx was
demonstrated
to lead to a
rapid decline
of the rRNA
synthesis ratio
(106).

tNGS has been
demonstrated
to rapidly
provide
clinical data to
guide
personalized
Rx and Rx
management,
with the
potential for
detection of
acquired drug
resistance,
including low-
level resistant
populations,
during Rx
(140, 164).

WGS is the method
currently used
to fully,
genotypically
characterize
MTB, allowing
for
differentiation
between
reinfection and
relapse in
principle. WGS,
like tNGS, can
also guide
personalized Rx
and Rx
management
with the
potential for
detection of
acquired drug
resistance,
including
heteroresistance
(137, 165).

aCLEIA, chemiluminescence enzyme immunoassay; EBA, early bactericidal activity; ELISA, enzyme-linked immunosorbent assay; EMA, ethidiummonoazide; LAM,
lipoarabinomannan; MBLA, molecular bacterial load assay; MPT64,M. tuberculosis complex protein 64; MTBC,Mycobacterium tuberculosis complex; PMA, propidium
monoazide; RT-PCR, real-time PCR; RUO, research use only; Rx, treatment; TB, tuberculosis; tNGS, targeted next-generation sequencing; WGS, whole-genome sequencing.
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clinical evaluation with the hope that, if successful, it can be introduced into the clinic
as a suitable substitute for culture conversion for monitoring treatment response.

The mycobacterial precursor rRNA synthesis ratio assay has additionally shown promise
in quantifying the ability of various anti-TB treatment regimens to potentially shorten
treatment (106). This assay operates on the principle that rRNA synthesis in MTBC is dis-
tinctly impacted by sterilizing versus nonsterilizing drugs. Sterilizing drugs and highly
effective drug regimens profoundly suppress M. tuberculosis rRNA synthesis, whereas non-
sterilizing drugs and weaker regimens do not. Thus, the rRNA synthesis ratio provides a
metric for drug effect and bactericidal activity that may help to differentiate sterilizing
drugs and regimens that shorten treatment and promote cure (i.e., suppressing MTBC
rRNA synthesis), as opposed to drugs and regimens that allow infecting MTBC to maintain
rRNA synthesis. Although this technology is only recently being developed for TB treat-
ment monitoring, assays including quantification of rRNA synthesis to this end may serve
as a marker of the ability of a drug or drug regimen to shorten TB treatment.

Another sputum-based option to discriminate viable bacilli is to use propidium
monoazide (PMA)- or ethidium monoazide (EMA)-PCR or real-time PCR. The PMA and
EMA dyes can penetrate the bacterial membrane, where they modify DNA derived
from dead cells, preventing PCR amplification. These assays have been demonstrated
to rapidly discriminate dead from viable M. tuberculosis cells in early studies (107–109),
avoiding the limitations of PCR-based assays such as Xpert MTB/RIF and Xpert MTB/RIF
Ultra (Cepheid, Inc.), which are capable of detecting DNA from dead bacteria (94, 95),
though further clinical evaluations will be necessary to determine the potential of
PMA/EMA assays for anti-TB treatment monitoring and outcome.

The shorter time to result and the absence of the need to decontaminate samples
mean that RNA-based assays like the TB-MBLA and rRNA synthesis ratio assays and
DNA based assays such as PMA/EMA have the potential to inform clinical decision-
making in real time (100). Furthermore, the decline in bacillary load correlates with
patient resolution of clinical signs, particularly cough, and differentiates the patient
response to different regimens (100, 110), which widens the application of these
approaches to clinical trial monitoring.

M. tuberculosis Complex Protein 64 Release Assays

Studies suggest that the load and fitness of bacteria in a sample can be quantified by
providing nutrients to it and measuring the induced protein expression response (111), by
incorporating fluorescent trehalose in the M. tuberculosis membrane (112), or by conduct-
ing short-term culture with resuscitation promoting factors (113). Another recently
described approach is to briefly expose the patient sample to 46°C heat to specifically
induce the release of M. tuberculosis complex protein 64 (MPT64) from live bacilli (114).
The MPT64 release assay has demonstrated 88% sensitivity and 97% specificity for TB
detection, with MPT64 release strongly correlating with both sputum smear grade and
MGIT TTP (115). When measured in sequentially collected sputum samples (days 0, 14, and
28) from 50 active pulmonary TB patients undergoing treatment, MPT64 release was
strongly correlated with treatment response, with a sensitivity of 81% (95% CI = 58.1 to
94.6) for predicting positive day 28 cultures (116). The MPT64 release assay is currently
under early development by Tauns Laboratories, Inc. (Japan), and in particular, given the
simplicity and speed of the test, this approach could provide a useful alternative to the
time- and labor-demanding phenotypic methods currently used for treatment monitoring,
though it will likely still be limited to central laboratories, and it has been demonstrated to
have some lineage-specific limitations (i.e., MPT64 is a poor predictor for L5 MTBC strains)
(116). In addition, there are some concerns that MTBC genetic polymorphisms in the
mpt64 gene change the MPT64 antigen sufficiently to result in false-negative results for
MPT64 detection assays (117).

Lipoarabinomannan

Lipoarabinomannan (LAM) is a prominent glycolipid in the cell wall of M. tuberculosis
with utility as a pathogen biomarker to assess patient therapeutic response (118, 119). As
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demonstrated by Drain et al., LAM decreases during anti-TB therapy, and patients with de-
tectable LAM after an intensive phase of therapy appear to have greater mortality risk
(120). As a marker of active TB, LAM is an attractive target for TB diagnostics and treatment
monitoring, including one assay measuring LAM in sputum developed by LSI Medience
Corporation (Japan) for EBA studies and treatment monitoring (121), and a number of
urine-based LAM diagnostics, e.g., the SILVAMP TB test by FujiFilm Corporation (Japan)
and the TB LAM assay by SD Biosensor, Inc. (Republic of Korea) (122, 123). Compared to
sputum, urine samples are easily obtained from patients, have shown no evidence of TB
transmission, and provide an opportunity to better diagnose TB in patients who have trou-
ble producing sputum, such as HIV patients, children, and patients with extrapulmonary
TB (120). Urine-based lateral-flow tests are also rapid, and there is no need for sophisti-
cated laboratory infrastructure or highly trained technicians, making these technologies
appropriate for use in community settings. However, there is generally less LAM present in
urine compared to sputum (124), and the performance of LAM-based assays can be highly
variable (125, 126), although their general performance appears to be at least as good as
smear (121). In addition to urine-based LAM, serum-based LAM detection presents another
option for treatment monitoring. However, even less LAM is present in serum compared
to urine, and therefore lower detection limits of serum-based LAM diagnostics must be
achieved to ensure these technologies are sufficiently sensitive to be useful as treatment
monitoring tools. A number of LAM-based assays are at various stages of development,
though to date only the urine-based LAM assays have demonstrated adequate diagnostic
accuracy while maintaining ease of use and rapid time to result (121). Generally, these
assays have shown higher sensitivity for HIV-positive compared to HIV-negative sub-
groups, with diagnostic performance correlating with immunosuppression (127). Clinical
studies will be key to determine the potential of these assays for anti-TB treatment moni-
toring in all patient populations.

Whole-Genome Sequencing, Strains, and Fitness

MTBC has been considered to be of clonal origin due to the low level of overall
genomic variation (128). However, very little consideration has been given to the fact that
lineages could influence the clinical picture of the disease as well as drug response.
Emerging data now associate specific lineages with clinical manifestations, including
increased virulence of infections and the capacity to acquire drug resistance (129–133),
directly impacting treatment response. In addition, some lineages may have an increased
MIC to new anti-TB drugs and may require both an adjustment of the dosage and the criti-
cal concentration to be tested “in vitro” to inform treatment regimen selection (134, 135).
For these reasons, it is crucial that any new trial for drugs and diagnostics includes settings
where different lineages are sufficiently represented and drug effects are considered in
light of MTBC lineage and sublineage.

Whole-genome sequencing (WGS) not only provides important information regard-
ing MTBC lineage but also serves to screen for drug resistance development during
treatment (136). Although WGS can be performed directly from smear-positive samples
(137), it is mainly performed on isolates grown in culture, even though early liquid cul-
tures are suitable specimens to lower the time to result. Targeted next-generation
sequencing (tNGS), which detects known and novel variants in specific gene regions as
opposed to the entire genome, is another attractive option for use in primary samples
for similar purposes, with the advantage of detecting the presence of multiple strains
in a primary specimen (i.e., mixed infection) and allowing the detection of minority var-
iants bearing mutations associated with drug resistance (138). Since there is evidence
that even slightly elevated MICs to first-line drug compounds can impact treatment
outcome (139), tNGS presents a distinct advantage to identify resistance markers even
when present in minority populations. In addition, the use of tNGS/WGS on smear-pos-
itive samples during therapy is the most efficient tool to promptly identify emergence
of resistance. In addition, sequencing is the only tool currently capable of providing
genomic information for gene regions associated with resistance to new and repur-
posed drugs.
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Most importantly, the information provided by tNGS can be crucial to differentiate
relapse from new infection, especially in case of strain selection during culture.
Therefore, it is necessary to collect samples throughout therapy to enable comparative
analysis in case of relapse or reinfection after therapy end. Although WGS and tNGS
technologies are mostly limited to high-level, high-throughput testing centers with
sufficient infrastructure and well-trained staff to perform these assays, they are both
powerful tools for treatment response monitoring and provide key information for any
anti-TB treatment response trial. New user-friendly and low-cost platforms such as the
Oxford Nanopore Technologies Limited (Oxford, UK) MinION sequencer have the
potential to move sequencing closer to point of need, supporting the management of
people affected by TB and drug-resistant TB (140). The COVID-19 pandemic has
increased the capacity to perform sequencing in a wide variety of settings, which also
benefits the TB field. Currently, an array of sequencing solutions suitable for district
labs are commercialized and on the pathway to WHO review (32).

MISCELLANEOUS

In addition to the previously referenced technologies, there is a variety of TB diagnostic
innovations with TB treatment monitoring potential. For example, certain breath and
cough tests operate under the principle that expelled air from TB patients harbors unique
pathogen biomarkers or volatile organic compounds that can be used to diagnose infec-
tion, thereby providing a quick and potentially easy method for patient screening and
detection. Although there are a number of developers investigating the potential of this
type of technology (141–147), early clinical studies have shown variable results (sensitivity,
74 to 100%; specificity, 11 to 93%). The treatment monitoring and programmatic potential
of this type of technology still remains unclear. Several manufacturers are also developing
artificial intelligence (AI) algorithms to interpret and quantify images obtained by point-of-
care ultrasound (148), sounds recorded with digital stethoscopes, and cough analyzers,
and with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
these tools have been fast tracked with promising results (149).

CONCLUSIONS AND FUTURE DIRECTIONS

TB biomarkers for therapy monitoring have the potential to serve as future surro-
gates for anti-TB treatment outcome in clinical trials and in routine clinical settings.
However, few markers have been prospectively evaluated for this purpose and studies
proving their applicability are desperately needed. In particular, studies with rigorous
methodology to specifically evaluate treatment response are necessary, since the vast
majority of clinical studies of biomarkers have only provided preliminary data, being
underpowered, using only surrogate outcomes for treatment response, or failing to
include sufficient time points or comparators. Although many markers appear promis-
ing for therapy monitoring or as markers for outcome prediction, most studies are not
designed to prove the markers’ performance. Clinical evaluation in designated bio-
marker studies is especially important for markers that indicate cure during treatment,
which may allow for personalized therapy durations for TB patients and may even
identify those at risk for relapse after therapy end. Biomarkers signaling relapse risk
would need to clearly identify relapse patients immediately following completion of
standard or experimental therapies. It is important to note that most studies reporting
clinical outcome as endpoint do not include relapse but rather indirect surrogates for
therapy failure. This is especially important for studies evaluating biomarker guided
individualized therapy durations, where studies would need to compare standard ver-
sus biomarker-guided therapy durations with relapse as most important endpoint.
Regardless, long follow-up periods to exclude relapse will be necessary to underscore
the potential of any biomarker to serve as a future outcome-defining surrogate.

Despite the promise of biomarkers for TB treatment and outcome monitoring,
research in this area has not yet yielded a single marker that can sufficiently or com-
pletely substitute for established culture-based markers at any level of the health care
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system (32). It is very likely that no single marker can be used to identify all endpoints
of interest (e.g., incipient disease, active disease, or cure versus relapse), and it may
therefore be more promising to identify a marker’s disease stage-specific potential. For
example, assays detecting sputum-based markers such as the MBLA are likely suitable
indicators of bactericidal activity (i.e., in EBA trials) but might not indicate risk of
relapse at the termination of therapy in phase III trials. In addition, a combined marker
approach would likely improve the accuracy of individual markers for certain end-
points. In this context, a combination of host, pathogen, and imaging markers may
eventually lead to suitable and rapid individual risk assessments. To accelerate the dis-
covery of promising marker combinations, machine learning and artificial intelligence
could be applied to large data sets to identify clinically interpretable marker sets or
may even be included in individual assessments in the future.

In conclusion, there are a wide variety of TB treatment monitoring and outcome
marker candidates currently under development or already on the market. The combi-
nation of these markers may be key to the comprehensive assessment of individual
risks for various endpoints, and modern computational approaches are very suitable to
accelerate marker identification and interpretation.
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