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SUMMARY Despite the recent decrease in overall prevalence of Helicobacter pylori
infection, morbidity and mortality rates associated with gastric cancer remain high. The
antimicrobial resistance developments and treatment failure are fueling the global bur-
den of H. pylori-associated gastric complications. Accurate diagnosis remains the open-
ing move for treatment and eradication of infections caused by microorganisms.
Although several reports have been published on diagnostic approaches for H. pylori
infection, most lack the data regarding diagnosis from a clinical perspective. Therefore,
we provide an intensive, comprehensive, and updated description of the currently avail-
able diagnostic methods that can help clinicians, infection diagnosis professionals, and
H. pylori researchers working on infection epidemiology to broaden their understanding
and to select appropriate diagnostic methods. We also emphasize appropriate diagnos-
tic approaches based on clinical settings (either clinical diagnosis or mass screening),
patient factors (either age or other predisposing factors), and clinical factors (either
upper gastrointestinal bleeding or partial gastrectomy) and appropriate methods to be
considered for evaluating eradication efficacy. Furthermore, to cope with the increasing
trend of antimicrobial resistance, a better understanding of its emergence and current
diagnostic approaches for resistance detection remain inevitable.

KEYWORDS Helicobacter pylori, laboratory diagnosis, urea breath test, stool antigen
test, rapid urease test, RT-PCR, antimicrobial resistance

INTRODUCTION

H elicobacter pylori is a bacterial pathogen that was classified as a type 1 carcinogen by
the International Agency for Research on Cancer in 1994 (1). Subsequently, its carcino-

genic behavior and association with cancer development were reinforced in 2001, when a
study showed the association of H. pylori infection with gastric cancer. In this study, none of
the individuals who were not infected with H. pyloriwere found to develop gastric cancer after
a median follow-up of 8 to 10 years (2). The persistent infection established by this pathogen
has been associated with the development of severe gastric complications (3, 4). This patho-
gen has been found as the major etiologic factor responsible for the development of gastric
adenocarcinoma and is considered responsible for more cancer cases worldwide than hepatitis
B and C viruses combined (5). Although a recent decline in gastric cancer incidence has been
observed, it remains one of the leading causes of cancer-related deaths worldwide (6).
According to the GLOBOCAN 2020 report, gastric cancer ranked as the fourth most common
cause of cancer-related mortality, leading to estimated deaths of 769,000 individuals in 2020 (7).

Being a bacterial complication, the eradication therapy for H. pylori requires appro-
priate antibiotic regimens, which are recommended for all patients who are positive
for infection by this pathogen. Successful eradication of this pathogen decreases the
risk of developing severe gastric complications (8–15). However, to treat the infection,
accurate diagnosis is of utmost importance.

MICROBIOLOGICAL ASPECTS (VIRULENCE FACTORS) OF H. PYLORI

H. pylori is a Gram-negative bacterium with a helical shape that chronically infects
the human gastric epithelium (16). For successful infection of H. pylori, multiple factors,
such as host factors, environmental conditions of the stomach, and bacterial virulence
factors, play important roles. Among bacterial virulence factors, some factors, such as
bacterial shape, polar-sheathed flagella, motility, chemotaxis, and adherence (reviewed
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by Ansari and Yamaoka [17]), render bacterial colonization in the gastric epithelium
successful, whereas pathogenic factors, such as cagPAI and cytotoxin-associated gene
A (CagA), vacuolating cytotoxin A (VacA), blood group antigen-binding adhesin (BabA),
outer inflammatory protein A (OipA), duodenal ulcer promoting gene A product
(DupA), and sialic acid-binding adhesin (SabA), are associated with increased virulence
and pathogenicity of H. pylori (reviewed by Ansari and Yamaoka [18]). The virulence-
associated proteins CagA and VacA are the two most studied factors that are closely
involved in epithelial cell apoptosis and development of severe gastric complications
such as peptic ulcer disease (PUD), gastric cancer, and gastric mucosa-associated
lymphoid tissue (MALT) lymphoma (19, 20).

H. pylori, after its transmission and passage to the gastric lumen, localizes to a spe-
cific location and binds with specific host cell receptors. Although the gastric lumen
consists of a harsh acidic condition for its survival, the H. pylori possesses well-estab-
lished urease-dependent and -independent mechanisms to survive in the gastric
lumen (reviewed by Ansari and Yamaoka [17]). In addition to the acid neutralization
function, urease induces angiogenesis, which involves the formation of new blood ves-
sels from preexisting vasculature. Angiogenesis is important for tumor growth and
metastatic dissemination, which plays an important role in the progression of gastric
cancer (21, 22). The bacterial attachment mediated by the binding of BabA with the
host epithelial cells protects the bacteria from gastric washing, thereby mediating the
development of persistent infection (reviewed by Ansari and Yamaoka [23]). In addition
to protection from bacterial washing, the BabA-mediated bacterial attachment with
Leb to the gastric epithelial cells aids in the induction of double-stranded DNA breaks
in the host cells (24), triggering the production of proinflammatory cytokines involved
in cancer development and enhancement of type IV secretion system (T4SS)-mediated
direct translocation of CagA and gastric inflammation (25). Moreover, the strains pos-
sessing functional triple-positive status (CagA, VacA, and BabA) are associated with a
higher colonizing bacterial density, an increased level of gastric inflammation, and an
increased incidence of intestinal metaplasia in patients compared with the strains pos-
sessing only CagA and VacA (26, 27).

More than 70% of strains isolated globally demonstrate cagPAI, a region with a size
of approximately 40 kb in the chromosomal DNA, with a regional variation in 95% of
strains isolated from East Asian countries and 60% of strains isolated from Western
Hemisphere (28, 29). The cagPAI open reading frames (ORFs) encode the effector pro-
tein CagA and other proteins that are involved as components of the bacterial T4SS,
which forms a syringe-like structure to deliver the CagA protein directly to the gastric
epithelial cells (30, 31). Among the cagPAI ORFs, at least 17 CagPAI proteins are
required for synthesizing functional and intact T4SS (30, 32). H. pylori strains harboring
intact cagPAI have been associated with increased risks for developing gastric cancer
and peptic ulcer (28, 33, 34). CagA is an oncogenic effector protein demonstrating one
or multiple specialized regions termed EPIYA (Glu-Pro-Ile-Tyr-Ala) motifs (reviewed by
Ansari and Yamaoka [35]). Depending on the geographic variation, the EPIYA motifs
can be of four different types, i.e., EPIYA-A, -B, -C, and -D. The CagA of H. pylori strains
isolated from East Asian regions possesses EPIYA-A, -B, and -D types, whereas the CagA
of strains isolated from western regions typically demonstrates EPIYA-A, -B, and -C
types, and one to five EPIYA-C motifs (ABCCCCC) can be observed (36). The third type
of EPIYA motif, i.e., EPIYA-C or EPIYA-D, possesses geographic, genotypic, and patho-
genic properties determining the virulence characteristics of the protein associated
with the increased risk for developing gastric cancer (36). CagA, after its synthesis, is
directly translocated to the gastric epithelial cells, and the tyrosine (Y) residue present
in the EPIYA motifs undergoes phosphorylation by several types of cellular kinases,
including Csk, Src family kinases, and c-Abl, leading to the dysregulation of cell signal-
ing, which induces alterations in cellular physiology (reviewed by Ansari and Yamaoka
[35]). The CagA protein possessing the D type of its third EPIYA motif (EPIYA-D) medi-
ates a higher level of dysregulation of cellular functions than CagA harboring the C
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type (EPIYA-C). Thus, the strains that possess the EPIYA motifs, namely, EPIYA-A, EPIYA-
B, and EPIYA-D types, are considered more virulent, as they are frequently associated
with gastric cancer than strains possessing EPIYA-A, EPIYA-B, and EPIYA-C motifs, which
are considered less virulent (37). However, a large number of EPIYA-C sequences
increase the strength of virulence, inducing a significant increase in the risk for devel-
oping PUD in populations of Asian countries and an increased risk for developing gas-
tric cancer in the United States and European populations (36).

After its synthesis as a 140-kDa protoxin, VacA undergoes enzymatic degradation to
produce mature VacA consisting of an 88-kDa monomer (possesses two proteolytic
fragments of the N-terminal p33 domain and the C-terminal p55 domain). The trypto-
phan-rich region of the p33 domain is involved in host cell membrane binding,
whereas the entire p33 domain together with the 111 N-terminal amino acid residues
in the p55 domain is involved in the efficient formation of vacuoles (reviewed by
Ansari and Yamaoka [38]). After its intracellular transportation, VacA accumulates
inside different cellular compartments, induces the formation of vacuoles inside host
epithelial cells (39), distorts the function of mitochondria (40, 41), inhibits the activity
of T cells (42, 43), activates mitogen-mediated protein kinase pathways (44), and medi-
ates apoptosis and cell death (45–47).

Other virulence proteins, such as OipA, DupA, SabA, and a protein that is activated
on contact with the epithelium (IceA), are involved in the stimulation of gastric epithe-
lial cell apoptosis and development of severe gastric complications, including peptic
ulcers and gastric cancer (48–52). The H. pylori strains that harbor these proteins are
considered more pathogenic than strains that lack these proteins.

EPIDEMIOLOGY OF H. PYLORI INFECTION AND ASSOCIATED DISEASES

Typically, H. pylori infection is contracted during childhood after an infant is weaned
(53). Although the exact mode of bacterial transmission remains unclear, epidemiological
studies suggest its transmission via an oral-oral or fecal-oral route from person to person,
particularly among family members, such as from mother to child (54–56). After transmis-
sion, H. pylori neutralizes the gastric acidic conditions and survives in harsh environments,
leading to the colonization and persistent infection of the gastric epithelium (17) (Fig. 1). It
is estimated that at least half of the world’s population is infected by H. pylori (57, 58).
Factors such as geographic variation, socioeconomic status, urbanization level, and poor
sanitation during childhood play a key role in determining the prevalence of H. pylori infec-
tion in countries. According to a meta-analysis conducted examining its global burden in
2018, the highest prevalence of 89.7% was found in Nigeria and the lowest prevalence of
8.9% was found in Yemen (57); however, a more recent study conducted in 2021 found an
even lower prevalence of 2.5% in Sri Lanka (59). The persistent infection leads to the devel-
opment of severe gastroduodenal complications, including chronic gastritis, peptic ulcer,
gastric ulcer, gastric cancer, and gastric MALT lymphoma (3, 4). However, the frequency of
developing these complications among infected patients is very low, and it has been esti-
mated that 100 to 1,000 patients, 10 to 300 patients, and less than one patient develop
PUD, gastric cancer, and gastric MALT lymphoma, respectively, among every 10,000
patients infected with H. pylori (60). H. pylori infection is thought to be associated with
approximately 70% of all gastric ulcers and up to 80% of all duodenal ulcers, and the risk
increases with a history of H. pylori infection even after its successful elimination compared
with that observed in noninfected individuals (60). According to a cohort study, 1 to 2% of
H. pylori-infected individuals develop gastric cancer (2).

“TEST-AND-TREAT” STRATEGY

Eradication therapy for H. pylori has been significantly associated with reduced risks
for gastric cancer development if administered to healthy and asymptomatic patients
before the development of preneoplastic lesions (8, 12, 61, 62). However, some studies
have reported significant improvement and reversal of atrophy and even intestinal
metaplasia, to a lesser degree, after successful eradication therapy (63–65). Moreover, a
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recent clinical trial conducted in South Korea found that endoscopic removal of early
gastric cancer lesions can significantly prevent the development of gastric cancer (10).
A systematic review and meta-analysis reported that eradication therapy administered
to infected healthy adults was associated with a 46% reduction in the incidence of gas-
tric cancer and a 39% reduction in the mortality associated with gastric cancer (13). A
significant reduction has been observed in the incidence of gastric cancer among par-
ticipants accurately diagnosed with successful eradication of the bacterium (8, 10, 12,
66, 67). Furthermore, the successful eradication of H. pylori also reduces the risk of
transmission of infection, and thus, the financial burden associated with this infection
may be avoided. Therefore, screening should be performed with the intention to rec-
ommend eradication therapy if the test results are positive for H. pylori infection, also
known as the “test-and-treat” strategy (68).

Simple, noninvasive, and relatively low-cost tests are recommended for the test-
and-treat strategy. A locally validated serology test to detect anti-H. pylori antibody in
serum could be an optimal approach if sufficient accuracy could be achieved (69).
However, since IgG detection cannot differentiate between past and current infection
status, serology as a single test may not be appropriate, especially in countries with
high prevalence (70, 71). In countries with high prevalence, individuals who are posi-
tive for the presence of IgG should also be tested by other suitable tests capable of dif-
ferentiating between past and present infections. The urea breath test (UBT) is a simple
test and one of the most examined tests capable of detecting active H. pylori infection.
Hence, it is the most widely recommended noninvasive test for the test-and-treat strat-
egy (69, 72). This test is also recommended for assessing the success of eradication
after antibiotic therapy (72). In the test-and-treat strategy, the monoclonal antibody-
based stool antigen test (SAT) can also be used after its local validation; it is also a

FIG 1 H. pylori-associated pathogenicity. After ingestion, H. pylori enters the stomach, and the urease produced by the bacteria
hydrolyzes the urea, thereby generating CO2, which can be detected by the urea breath test (UBT), and ammonia. Ammonia
neutralizes the acidic pH, creating an almost neutral microenvironment around bacterial cells that enables the bacteria to survive
under adverse gastric conditions. Later, the bacteria find their way into the mucus layer owing to multifactorial mechanisms such as
their helical shape, the presence of flagella, and chemotaxis. Several proteins (such as BabA, SabA, and OipA) produced by bacteria
help in the colonization and persistence of infection. Moreover, these proteins are detected in stool specimens of infected patients
by stool antigen tests (SATs). The immune response targeting numerous immunogenic proteins is evaluated by identifying antibodies
using serological tests. The protein CagA is directly translocated into the gastric epithelium, and CagA-mediated carcinogenesis is
triggered, whereas the VacA protein contributes to apoptosis and epithelial cell death.
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recommended test (69). However, if patients are subjected to proton-pump inhibitor (PPI)
treatment, the sensitivity of these tests decreases to an unacceptable level. Hence, the PPI
treatment should be discontinued before 14 days of performing the tests (69, 73).
Irrespective of the diagnostic methods used, the eradication therapy based on the antibi-
otic resistance rate of that geographic region should be offered to all patients positive for
H. pylori infection.

The Maastricht IV/Florence consensus report in 2012 recommended the test-and-treat
strategy for H. pylori infection, particularly in populations comprising communities with a
high burden of gastric cancer (69). The Kyoto global consensus report published in 2015 rec-
ommended the test-and-treat strategy and suggested screening for H. pylori infection after
12 years of age and administration of eradication therapy for all positive cases even in the
absence of any related symptoms or conditions (74). Regarding the Kyoto global consensus
recommendation, the Maastricht V/Florence consensus report in 2016 recommended the
test-and-treat strategy for patients showing dyspeptic symptoms and even for patients with
hematological disorders such as iron deficiency anemia, immune-thrombocytopenic purpura,
and vitamin B12 deficiency because of the considerable evidence of the association of H.
pylori infection with these hematological disorders (72). Similarly, the Houston consensus
report on testing for H. pylori infection in the United States. in 2018, also recommended an
antibiotic therapy to eradicate H. pylori infection in all individuals with proven infection (75).
However, because of the low incidence of H. pylori-related gastric cancer in the United
States, the American College of Gastroenterology (ACG) suggests testing for H. pylori infec-
tion in patients with predisposing factors, such as a current case or a history of PUD, low-
grade gastric MALT lymphoma, and history of endoscopic resection of early gastric cancer
lesions (68). The American Gastroenterological Association (AGA) strongly recommends the
test-and-treat strategy for individuals with confirmed gastrointestinal metaplasia (76). The
Bangkok consensus report for the Association of Southeast Asian Nation countries
(Indonesia, Thailand, the Philippines, Malaysia, Singapore, Vietnam, Myanmar, Cambodia,
Laos, and Brunei) published in 2018 recommended testing for H. pylori infection in patients
with chronic dyspeptic symptoms and not in asymptomatic patients, owing to the infection
being more commonly observed among patients with dyspepsia (77). In 2020, the Taipei
global consensus report recommended screening and eradication therapy for H. pylori infec-
tion in populations with a high incidence or high risk for gastric cancer (78). The test-and-
treat strategy should be routinely implemented for individuals belonging to high-risk popula-
tions. Although the eradication stops the progression of infection, the genetic instability is
not completely reversed. Therefore, the early screening and treatment of H. pylori infection
are performed before developing irreversible genetic instability histologically reflected in
atrophic gastritis and intestinal metaplasia (63–65).

LABORATORY DIAGNOSIS

Given the association and the causative role of H. pylori in PUD and gastric cancer, find-
ing the best diagnostic method is of utmost importance for clinicians and microbiologists.
Since the presence or absence of current infection provides information for determining
the type of treatment to be administered, testing for H. pylori infection is crucial for the
monitoring of the effectiveness of treatment and disease management (79, 80).

Currently, H. pylori infection can be diagnosed by several methods, such as noninva-
sive tests, which do not require endoscopy or biopsy specimens (antibody detection
from serum and urine, UBT, SAT, and PCR from stool), and invasive tests, which require
biopsy specimens collected via endoscopy (histopathology, rapid urease test [RUT],
culture, and PCR from biopsy specimen) (81, 82). All these methods have their own
merits and limitations. Some of these methods demonstrate superiority over other
methods depending on the clinical setting. Therefore, promising diagnostic tests for H.
pylori infection with high sensitivity, high specificity, cost-effectiveness, rapid perform-
ance, and noninvasiveness are recommended depending on clinical circumstances (81,
83). Although noninvasive tests provide added advantages of cost-effectiveness, con-
venience of sample collection, and rapid results, the antibody detection methods have
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relatively lower reliability owing to their low specificity compared with invasive tests
(83). It is universally accepted that no single test is considered the gold standard for
infection diagnosis, and the reliability and accuracy of the diagnosis strengthen when
multiple diagnostic tests are performed (79, 80, 82, 84). Furthermore, all the diagnostic
tests should be validated to achieve high diagnostic accuracy in a specific region. The
performance of different diagnostic methods according to the latest published reports
is summarized in Tables 1 to 5.

Urea Breath Test

The UBT is a noninvasive and highly reliable diagnostic test widely used for diagnos-
ing H. pylori infection. The test is based on the hydrolysis of 13C or 14C isotope-labeled
urea (85). The orally administered urea is hydrolyzed by bacterial urease into ammonia
and isotope-labeled carbon dioxide in the stomach. The isotope-labeled carbon dioxide
is diffused into the blood circulation and expelled during exhalation. The exhaled carbon
dioxide is measured using an isotope ratio mass spectrometer (82, 86–88). Since its intro-
duction in clinical settings, the 13C-labeled UBT has garnered significant interest, and
thus, it is recommended by several national and international guidelines and several
expert consensus reports over 14C-labeled urea because 13C is a stable, nonradioactive

TABLE 1 Performance of stool antigen-based diagnostic kits (compared with the gold standard reference method) currently in clinical use,
according to recent reportsa

Test Gold standard method Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) Reference
Testmate Pylori antigen EIA
(Wakamoto Pharmaceutical
Co., Ltd., Tokyo, Japan)

Culture alone or histology and
RUT combined

99.6 100 127

Amplified IDEIA HpStAR
(Thermo Fisher Scientific,
Waltham, MA, USA)

Culture alone or histology and
RUT combined

93.6 100 100 87.3 96 128

Diagnostec H. pylori antigen
EIA kit (Reininghun
Diagnostics Biomedical, Inc,
Taiwan)

UBT 92.9 98.3 95.8 97.1 96.7 129

Diagnostec H. pylori antigen
rapid test kit (Reininghun
Diagnostics Biomedical, Inc,
Taiwan)

UBT 92.9 95.8 90.1 97.0 94.9 129

H. pylori Quik Chek test
(TechLab Inc., Blacksburg,
VA, USA)

At least two of histology,
culture, and RUT positive

91 100 98 97 130

H. pylori Chek test (TechLab
Inc., Blacksburg, VA, USA

At least two of histology,
culture, and RUT positive

92 91 76 97 130

Wondfo one-step H. pylori
feces test

RUT 65.1 70.2 62.2 72.7 68 131

Uni-Gold H. pylori antigen test
(Trinity Biotech, Ireland)

At least two of RUT, histology,
and UBT positive

83.2 89.3 87.6 85.4 132

RAPID Hp StAR (Oxoid Ltd.,
United Kingdom)

At least two of RUT, histology,
and UBT positive

95.0 84.7 85.0 94.9 132

ImmunoCard STAT! HpSA
(Meridian Diagnostics, USA)

At least two of RUT, histology,
and UBT positive

81.5 91.6 88.7 89.8 132

Genx H. pylori card test (Genx
Bioresearch GOSB
Teknopark A.S., Gebze,
Kocaeli, Turkey)

Histology and RUT 51.2 95.0 91.5 65.5 72.8 134

CerTest H. pylori blister test
(CerTest Biotec S.L.,
Zaragoza, Spain)

UBT 68.7 97.6 88.5 92.0 91.5 135

Quick Chaser H. pylori, QCP
(Misuho Medy, Tosu, Japan)

RUT and culture 92.3 100 136

Liaison H. pylori SA assay
(DiaSorin, Stillwater, MN,
USA)

At least two of histology,
culture, and RUT positive

90.5 97.6 92.8 98.6 139

aPPV, positive predictive value; NPV, negative predictive value.
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carbon isotope with a natural abundance of approximately 1% among all carbon iso-
topes (72, 89–91). The measurement of 13C-labeled carbon dioxide by conventional
methods is more expensive, and it requires skilled personnel. Therefore, other alterna-
tives with less expensive methods, such as infrared spectroscope and laser-assisted ratio
analyzer, have been developed to measure the 13C-labeled carbon dioxide activity. The
increase in the 13C-labeled carbon dioxide activity before and 30 min after consuming

TABLE 2 Performance of antibody detection kits (compared with the gold standard reference method) currently in clinical use, according to
recent reportsa

Test
Gold standard
method Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) Reference(s)

H. pylori IgG EIA test kit (Rapid Labs,
Ltd., Little Bentley, Essex, United
Kingdom)

RUT 90.5 39.6 52.1 85.2 61 131

E-plate Eiken H. pylori Antibody II
(Eiken Chemical Co., Ltd., Tokyo,
Japan)

UBT 97.4 76.3 91.5 91.8 91.6 145

H. pylori IgG Seiken (Denka Seiken
Co., Ltd., Tokyo, Japan)

UBT 99.4 74.6 91.1 97.8 92.5 145

GastroPanel (Biohit Oyj, Helsinki,
Finland)

Histology 74.7 95.6 91 86 160, 161

Unified GastroPanel (Biohit Oyj,
Helsinki, Finland)

Histology 93.8 88.9 93.8 88.9 165

URINELISA (Otsuka Pharmaceuticals
Co., Ltd., Tokyo, Japan)

UBT or SAT 86.5 85.8 167

Rapirun (Otsuka Pharmaceutical
Co., Ltd., Tokyo, Japan)

Culture alone or
histopathology
and RUT combined

86.2 90.8 80.6 93.7 89.4 171

gabControl H. pylori (gabmed
GmbH, Cologne, Germany)

UBT 91.4 76.7 65.3 94.9 174

Eiken H. pylori antibody (Eiken
Chemical Co., Ltd., Tokyo, Japan)

UBT 98.1 78.0 92.1 93.9 92.5 145

H. pylori Latex Seiken (Denka Seiken
Co., Ltd., Tokyo, Japan)

UBT 98.1 71.2 89.9 93.3 90.6 145

Pyloriset Dry (Orion Diagnostica,
Espoo, Finland)

95 82 181

RecomLine H. pylori IgG (Mikrogen
Diagnostik, Germany) with 6
antigens

Histology 98.3 95.5 146

RecomLine H. pylori IgG (Mikrogen
Diagnostik, Germany) with 4
antigens

Histology 96.1 20.9 69.7 73.7 191

aPPV, positive predictive value; NPV, negative predictive value.

TABLE 3 Performance of rapid urease tests (compared with the gold standard reference method) currently in clinical use, according to recent
reportsa

Test
Gold standard
method Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) Reference(s)

PyloriTek (Serim Research Corp.,
Elkhart, IN, USA)

Histology .96 .97 203

Pronto Dry (Medical Instruments
Corporation, Solothurn,
Switzerland)

Histology 100 96.1 96.7 100 204

CLO (Ballard Medical Products,
Draper, UT, USA)

Culture 94 88 89 93 205

Hp-Fast and Hp-One (GI Supply,
Mechanicsburg, PA, USA)

Histology 92.3 100 100 91.2 206

Endosc-Hp (Cambridge Life
Sciences, Ltd., United Kingdom)

CLO test 94.4 98.4 97.1 96.9 97.0 207

UFT 300 (Biohit Oyj, Helsinki,
Finland)

Histology and UBT 94.5 100 208, 209

aPPV, positive predictive value; NPV, negative predictive value.
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the urea-based meal indicates the urease activity exploited by live H. pylori in the stom-
ach (92). The differences in the 13C isotope/12C (in normal breath) ratio between the
value observed at 30 min and the baseline value are determined, which are then
expressed as delta over baseline (DOB, per mille).

The cutoff DOB value of 5.0% originally determined and recommended by standard
European protocol is the most widely used value to discriminate between positive and
negative H. pylori infection (93). However, several factors affect the results, and using
this DOB cutoff of 5.0%, the test showed a lower accuracy in different clinical settings
to determine positive infections. Therefore, several attempts were made to validate a
new cutoff value according to clinical settings. In a validation study, the diagnostic ac-
curacy was improved using DOB cutoffs of 7.0% for children less than 6 years old and
4.0% for children over 6 years old (94). In other studies, lower cutoff values, between
3.0 and 4.0%, enhanced the diagnostic accuracy without compromising the perform-
ance (95, 96). Therefore, no consensus has been established with respect to the precise
cutoff value for DOB; hence, it is difficult to determine the optimum cutoff value.
Precise cutoff values should be validated according to the populations targeted.

UBT and test duration. Besides patient characteristics, various other test characteris-
tics, such as the test duration and test meal, have been determined to influence the cutoff
value. For instance, several studies have validated the precise cutoff by shortening the test
duration. Malaty (97) et al. decreased the test duration to 20 min in their study, omitted
the test meal, and used 125 mg of [13C]urea. A cutoff DOB value of 2.4% showed 96%

TABLE 4 Performance of histopathological diagnostic methods (compared with the
respective gold standard reference method) currently in clinical use, according to recent
reportsa

Test
Gold standard
method

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%) Reference

IHC Histology 98.8 99.2 98.0 99.6 250
MTB IHC 99 96 95 99 258

Imprint cytology stained
with:

Toluidine blue Histology 57.1 97.9 80.0 94.0 259
Giemsa stain Histology 42.9 97.9 75.0 92.2 259

aPPV, positive predictive value; NPV, negative predictive value. Accuracy was not available for these tests.

TABLE 5 Performance of molecular methods (compared with the gold standard reference method) currently in clinical use for H. pylori
detection, according to recent reportsa

Test Gold standard method Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) Reference
Nested PCR UBT 93.8 95.9 299
Multiplex PCR CIM and CLO 100 59.6 73.8 100 81.1 300
BACTfish H. pylori Combi
test (Izinta Kft.,
Budapest, Hungary)

Histology 98 99.6 98.9 99.2 250

RIDA GENE H. pylori
(R-Biopharm AG,
Darmstadt, Germany)

Culture alone or
histopathology and
RUT combined

100 99 94 100 318

Amplidiag H.
pylori1ClariR
(Mobidiag, Espoo,
Finland)

Culture or TaqMan
RT-PCR

96.3 98.7 92.2 99.3 319

MutaREAL H pylori
(Inmundiagnostik,
Bensheim, Germany)

Culture 93.3 86.9 90.3 90.9 320

ViaSure H. pylori real-
time PCR detection
kit (CerTest Biotec
S.L., Zaragoza, Spain)

SAT 85.7 100 100 84.6 92 321

aPPV, positive predictive value; NPV, negative predictive value.

Laboratory Diagnosis of H. pylori Infection Clinical Microbiology Reviews

September 2022 Volume 35 Issue 3 10.1128/cmr.00258-21 9

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00258-21


sensitivity and 100% specificity (97). Ohara (98) et al. used a test duration of 20 min, omit-
ted the test meal, and used 100 mg of 13C-labeled urea. Sensitivity and specificity of 98.1%
and 97.9%, respectively, were observed when a cutoff DOB value of 2.5% was used, which
is widely accepted in Japan (98). Similarly, by shortening the test duration to 15 min, using
fresh milk as the test meal, and using 100 mg of [13C]urea, a DOB cutoff of 2.8% demon-
strated 99% sensitivity and 93% specificity (99).

UBT and test meal. Other studies have also attempted to validate the cutoff values
by altering the test meals. Leodolter (100) et al. used a test meal of 200 mL of 0.1 mol/
L citric acids with a test duration of 30 min as originally recommended. The optimum
DOB cutoff was determined to be 4.0% (100). With this result, it is evident that the
manufacturer’s recommended cutoff values are not applicable in every clinical setting.
The UBT values are significantly higher for females than for males. The values increase
significantly with increasing age, decrease with increasing BMI, increase in patients
with low socioeconomic status, and decrease with smoking habits (101, 102). Minor
adjustments in the [13C]UBT cutoff value to achieve better diagnostic accuracy can
have major public health benefits. The upward adjustment has the potential to
decrease the unnecessary antimicrobial exposure, leading to a decrease in microbial
resistance and antibiotic-associated mortality, whereas the downward adjustment has
the potential to increase the diagnosis of positive cases, leading to decreased gastric
cancer burden in high-prevalence and high-risk regions (103).

Although the UBT is highly sensitive and specific in detecting infection, it is not recom-
mended for patients consuming PPI because of high rates of false-negative results (104–
107). Therefore, it is recommended by current guidelines to discontinue PPI medications for
14 days before the UBT is performed (69, 74, 108–110); however, according to one study, a
withdrawal of 7 days was found to be sufficient (111). PPI medications inhibit acid secretion
and urease activity, which can consequently reduce the number of bacteria in the stomach,
especially in the antrum, thereby raising the possibility of false-negative UBT results (104,
112). In addition to PPI medications, other factors, such as antimicrobial medication, bleed-
ing ulcers, and corpus predominant gastritis, may give false-negative UBT results, whereas
the presence of other pathogens that also synthesize urease in the stomach, such as
Helicobacter heilmannii may give false-positive UBT results (113–117). Therefore, antimicro-
bial consumption should be stopped 4 weeks before conducting UBTs, and bleeding should
be resolved before the UBT is performed. According to previous studies, false-negative
results may be partially reversed if stomach acidification is complete (118, 119). Based on
these findings, a new acidification test meal was developed to overcome the effect of PPI
medications. This novel acidified test meal (Refex) contains a mixture of three organic acids,
i.e., citric acid, malic acid, and tartaric acid (120). These acids bind to many trace elements,
such as nickel, and increase urease activity by lowering the pH and mediating the activation
and opening of urea channels by H. pylori. In a study examining the effects of PPI with inges-
tion of the new test meal, three cutoff values of 3.0, 2.5, and 2.0 DOB were set for testing
results, and a PPI medication intake was discontinued for 1 day. Interestingly, with these
modifications, high sensitivity of 92.5% and specificity of 97.96% were achieved using cutoff
values of 2.5 and 2.0 DOB (120). This result indicates that the performance of the UBT with
the new test meal is safe for patients consuming PPI medication, and a comparable accuracy
can be achieved using a more precise cutoff value.

Because of its high performance with over 95% sensitivity and specificity, safety, and min-
imal or no radiation exposure, the [13C]UBT is the most preferred test for diagnosing H. pylori
infection in children and pregnant women (88, 121). Moreover, the collected breath samples
can be sent by post to commercial laboratories that have mass spectrometers for analysis
(122). However, the requirement for expensive equipment, lack of infrastructure, need for
skilled personnel, requirement of multiple office visits to complete testing, and high cost of
testing limit the widespread use of the [13C]UBT in clinical practice (82). Moreover, to obtain
the highest diagnostic accuracy, [13C]UBT has to be validated and adjusted in terms of cutoff
value, pretest meal, and urea dose.
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Stool Antigen Test

The detection of H. pylori-specific antigen from stool samples is a reliable noninva-
sive method (123–125). SATs detecting bacterial antigens can diagnose active infec-
tions and thus are prone to give fewer false-positive results than serological tests. SATs
are easy to perform and are recommended for diagnosing H. pylori infection in pediat-
ric patients (123–126). In addition, this test is recommended in cases for which the UBT
cannot be performed, such as for patients with asthma or achlorhydria and after gas-
trectomy. The currently available SATs are based on the enzyme-linked immunosor-
bent assay (ELISA), immunochromatographic assay, and chemiluminescence immuno-
assay (CLIA).

Enzyme immunoassay. The ELISA-based SAT utilizes mono- or polyclonal antibod-
ies against H. pylori antigens to detect H. pylori-specific antigens in stool samples (82).
ELISAs utilizing monoclonal antibodies captured on the surfaces of microplate wells
are widely used in epidemiological studies and assessment of eradication therapies.
The Testmate Pylori antigen enzyme immunoassay (EIA) (Wakamoto Pharmaceutical
Co., Ltd., Tokyo, Japan) (127) and amplified IDEIA HpStAR (Thermo Fisher Scientific,
Waltham, MA, USA) (128) are currently available monoclonal antibody-based ELISAs ca-
pable of providing a sensitivity over 93% and a specificity up to 100% (Table 1). The
Diagnostec H. pylori antigen EIA kit (Reininghun Diagnostics Biomedical, Inc., Taiwan)
utilizes polyclonal antibodies, is a highly sensitive test, and demonstrates better diag-
nostic performance. A study evaluated the diagnostic performance of this test com-
pared with the immunochromatography-based Diagnostec H. pylori antigen rapid test
kit (Reininghun Diagnostics Biomedical, Inc., Taiwan) in the Chinese population to
assess the updated age-standardized prevalence of H. pylori infection in symptomatic
and dyspeptic patients. The study found that the performance of the ELISA-based test
in the diagnosis of H. pylori infection designed for updated age-standardized preva-
lence was superior to the chromatography-based test. Here, the sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and accuracy of these
tests were 92.9% versus 92.9%, 98.3% versus 95.8%, 95.8% versus 90.1%, 97.1% versus
97.0%, and 96.7% versus 94.9%, respectively (129). Moreover, the newly introduced H.
pylori Quik Chek test (TechLab Inc., Blacksburg, VA, USA), a rapid membrane EIA (rapid
EIA), and the H. pylori Chek test, a microwell EIA (TechLab Inc., Blacksburg, VA, USA)
have demonstrated excellent performance for initial diagnosis recently examined in
patients recruited from diverse geographic regions, including USA, Germany, and
Bangladesh (130). The sensitivity, specificity, PPV, and NPV were 91%, 100%, 98%, and
97%, respectively, for H. pylori Quik Chek and 92%, 91%, 76%, and 97%, respectively,
for H. pylori Chek when positive results obtained with at least two of three tests (histol-
ogy, culture, and RUT) were used as references (130).

Immunochromatographic assay. In immunochromatographic assay methods for
SATs, H. pylori antibodies are immobilized in a test line on a nitrocellulose membrane,
and the antigens present in the stool samples migrate upward from the sample well
and form an antigen-antibody complex at the test line. The antigen-antibody complex
bound at the test line is detected based on the dye-antibody conjugate that produces
the colored band at the test line, thereby indicating positive results. In case of the ab-
sence of antigens in stool samples, no colored band would be observed, indicating
negative results (131). Currently available commercial immunochromatography-based
tests for stool antigens include the Wondfo one-step H. pylori feces test (Guangzhou
Wondfo Biotech Co., Ltd., China) (131), the Uni-Gold H. pylori antigen test (Trinity
Biotech, Ireland), RAPID Hp StAR (Oxoid Ltd., United Kingdom), ImmunoCard STAT!
HpSA (Meridian Diagnostics, USA) (132), the Testmate Rapid Pylori antigen test
(Wakamoto Pharmaceutical Co., Ltd., Tokyo, Japan) (127), Immunocard ST HpSA
(FujiRebio Co., Ltd., Tokyo, Japan) (133), the Genx H. pylori card test (Genx Bioresearch,
GOSB Teknopark A.S., Gebze, Kocaeli, Turkey) (134), and the Diagnostec H. pylori anti-
gen rapid test kit (Reininghun Diagnostics Biomedical, Inc., Taiwan) (129). These tests
demonstrate high accuracy for detecting H. pylori antigens in the stool (Table 1).
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The CerTest H. pylori blister test (CerTest Biotec S.L. Zaragoza, Spain) is a one-step
immunochromatographic assay that has been evaluated for diagnostic accuracy in
patients over 65 years old. The test demonstrates overall sensitivity, specificity, PPV,
NPV, and accuracy of 68.7%, 97.6%, 88.5%, 92.0%, and 91.5%, respectively (135). When
the sensitivity of the test was compared between patients with constipation and those
without constipation and patients with colorectal polyps and those without colorectal
polyps, the test showed significantly lower sensitivity in patients with constipation and
those without colorectal polyps (135). Recently, Kakiuchi et al. (136) evaluated the diag-
nostic performance of a novel stool antigen rapid kit, Quick Chaser H. pylori (QCP;
Misuho Medy, Tosu, Japan), that targets the detection of H. pylori-specific flagellar pro-
tein (i.e., flagellin). The newly developed QCP test was found to be a very promising
test, with a sensitivity of 92.3% when the RUT and bacterial culture were considered
the gold standard reference test (136). The QCP test showed a positive concordance
rate, negative concordance rate, and overall concordance rate of 100%, 92.9%, and
98.6%, respectively (136).

Chemiluminescence immunoassay. CLIA is another novel one-step sandwich assay
that utilizes monoclonal antibodies intended for the qualitative detection of H. pylori
antigen in stool samples. This assay consists of paramagnetic particles captured with
antibodies against H. pylori antigens. The enzymatic cleavage of the mouse monoclo-
nal antibody conjugated with luminol, which is a very common chemiluminescent sub-
strate, results in the production of flashes of visible light signals that are measured by
a photomultiplier as relative light units (RLUs). The number of RLUs is a measure of the
proportion of the concentration of H. pylori antigen in the stool sample (137). The
Liaison H. pylori SA assay (DiaSorin, Stillwater, MN, USA) is a recently introduced
method for detecting H. pylori antigen based on CLIA (137, 138). For adult patients, the
company has reported a sensitivity of 95.5%, specificity of 98.6%, positive agreement
of 100%, negative agreement of 98.2%, and an overall agreement of 98.8% compared
with the results of the histopathological evaluation, bacterial culture, and urease detec-
tion test used as the composite reference (137). However, the company has not eval-
uated the performance of this test in pediatric patients. The diagnostic performance of
this test has been also evaluated by several authors, and the sensitivity, specificity,
PPV, and NPV were 95.5%, 97.6%, 92.8%, and 98.6%, respectively, when evaluated in
adult patients in the United States (139) and 90.1%, 92.4%, 91.6%, and 90.1%, respec-
tively, when evaluated in adults with dyspeptic symptoms in Spain (140).

SATs are considered reliable tests that can achieve sensitivity and specificity up to
99% (127). However, the diagnostic accuracy of SATs is influenced by some gastrointes-
tinal factors, such as bleeding ulcers and treatments with PPIs, antibiotics, bismuth-
containing compounds, and N-acetylcysteine (NAC) (116). The intake of PPIs, antibiot-
ics, and bismuth leads to a decrease in the bacterial load in the stomach that may
result in false-negative results obtained with SATs, similar to those obtained with the
UBT (141). In addition to these factors, storage and handling of collected stool samples
may influence test results. If the testing for stool antigen is not possible within a short
period of time, the stool samples should be kept frozen to keep the antigens intact.
Therefore, the test results may be severely affected in a setting where there is a lack of
resources (92). Furthermore, the tests need to be validated locally to select a proper
cutoff value to achieve higher sensitivity and specificity, which may vary according to
different populations (92).

Antibody Detection Tests

H. pylori infection induces immune responses, and antibodies (IgM, IgA, and IgG)
are produced against immunogenic proteins (142). Similar to other infections, IgM can
be detected in the acute phase of infection, whereas IgA and IgG are detected in the
chronic phase of infection. Several antibody detection methods, such as enzyme im-
munoassay, immunochromatographic assay, latex agglutination immunoassay, immu-
noblotting assay, and multiplex immunoassay, are available for detecting these anti-
bodies from serum (serological methods), whole blood, saliva, and urine samples (143,

Laboratory Diagnosis of H. pylori Infection Clinical Microbiology Reviews

September 2022 Volume 35 Issue 3 10.1128/cmr.00258-21 12

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00258-21


144). Although IgA, IgG, and IgM are produced and can be detected by several tests,
only the detection of IgG is performed owing to its reliability in initial screening of
infections, which can achieve sensitivity and specificity up to 99% and 96%, respec-
tively (145, 146). High rates of false-positive results are attributed to IgA and IgM; there-
fore, the detection of these antibodies is not reliable to confirm the infection (147).
Moreover, IgG can be continuously found in the serum for a long duration even after
successful eradication of bacteria; hence, serological testing of IgG detection is not reli-
able to assess the success of eradication therapy (75, 148). These tests are considered
initial screening tests for excluding the necessity of diagnosis of H. pylori infection in
populations with low disease prevalence, and positive results should be confirmed by
other tests with higher specificity (68, 149–151).

Despite these contraindications, these tests do have several advantages. For instance,
if patients are subjected to treatment with colloidal bismuth, antibiotics, and PPIs, the
detection of IgG by these methods could be beneficial, as it does not require discontinu-
ing these medications because of the persistence of this antibody for a long duration
(69, 152, 153). Furthermore, in special clinical cases, such as in patients with gastrointesti-
nal bleeding, gastric carcinoma, gastric MALT lymphoma, and atrophic gastritis, antibody
detection tests could be the method of choice for diagnosis (154). The bacterial density
is significantly decreased under these conditions, and therefore, false-negative results
can be obtained with other tests. These tests are also widely used because they require
less expensive materials and they demonstrate high reproducibility and sensitivity for ini-
tial diagnosis. Currently, several antibody detection kits are commercially available (Table
2), and the tests are easy to perform; however, the performance of these kits depends
on several factors, such as age, sex, and ethnicity, and local validation of their good per-
formance is therefore required (149, 155). Compared with other noninvasive tests, such
as UBT and SAT, antibody detection tests for detecting IgG have lower diagnostic accu-
racy owing to continuous persistence of IgG for several months even after successful
eradication, and hence, the tests are unable to differentiate past infection from present
infection (75, 148). Furthermore, the performance of antibody detection tests is severely
affected if strains that were used for isolation of antigens bound on the serology kits are
different from strains circulating in a specific locality. Therefore, only locally validated
antibody detection tests with a reliable cutoff value for that region should be considered
in clinical settings (149, 156).

Enzyme immunoassay. The antibody detection test based on ELISA is an indirect
solid-phase enzyme immunoassay (EIA) that is based on the qualitative and quantita-
tive detection of IgG antibodies against H. pylori. In this method, the antigens are used
to coat and are immobilized on the inner surface of the microwell plate, and after the
addition of the samples to the well, the IgG antibody present in the sample binds with
these coating antigens, forming antigen-antibody complexes. These complexes are
subsequently treated with enzyme-conjugated anti-human IgG antibodies, and the
detection of the presence or absence of the antibody in the sample is performed by
the addition of a suitable substrate in the reaction well followed by the reading of the
results with an EIA plate reader at 450 nm (131). Currently, several ELISA-based tests,
such as the H. pylori IgG EIA test kit (Rapid Labs, Ltd., Little Bentley, Essex, United
Kingdom) (131), E-plate Eiken H. pylori Antibody II (Eiken Chemical Co., Ltd., Tokyo,
Japan) (EP), and H. pylori IgG Seiken (Denka Seiken Co., Ltd., Tokyo, Japan) (EIA) are
commercially available (145, 157). These tests are widely used for detecting H. pylori
infection owing to their sufficient diagnostic performance in diverse clinical settings.

A noninvasive serological biomarker assay, the GastroPanel test (Biohit Oyj, Helsinki,
Finland), which is based on ELISA and uses monoclonal antibodies, is capable of
detecting anti-H. pylori antibodies and three additional biomarkers, including pepsino-
gen I, pepsinogen II, and gastrin 17, that are measured in the same serum or plasma
samples (158). This test is considered a reliable method for the serological detection of
H. pylori infection and the examination of the physiology of gastric mucosa owing to
its high sensitivity and specificity (159). The pooled sensitivity and specificity of this
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method have been reported to be over 70% and 95%, respectively (160, 161). Because
of its high reliability for detecting H. pylori-associated atrophic gastritis, the
GastroPanel has been extensively used in large-scale gastroscopy-referral studies
(symptomatic patients), screening of infection (asymptomatic subjects), and longitudi-
nal (prospective) studies (159, 160, 162, 163).

The new-generation Unified GastroPanel capable of detecting the same four bio-
markers was introduced in 2018 and has been approved with clinical validation studies
(164, 165), and outstanding diagnostic performance has been observed, with increased
sensitivity and specificity. The best advantage of this new generation test is that the bio-
marker results can be classified into five categories morphologically equivalent in the
updated Sydney system classification of gastritis (normal mucosa, nonatrophic H. pylori
gastritis, atrophic gastritis in the corpus, atrophic gastritis in the antrum, and atrophic
gastritis in both the antrum and corpus) (166). The sensitivity, specificity, PPV, and NPV
of the new-generation (unified) GastroPanel test are 93.8%, 88.9%, 93.8%, and 88.9%,
respectively, when H. pylori is present in the antrum, whereas the values are 95.3%,
60.7%, 65.1%, and 94.4%, respectively, when H. pylori is present in the corpus (165).

Similarly, URINELISA (Otsuka Pharmaceuticals Co. Ltd., Tokyo, Japan) is an ELISA
method that can detect anti-H. pylori IgG from urine samples (167). The sensitivity and
specificity of URINELISA have been found to be 86.5% and 85.8%, respectively (167).
ELISA methods for detecting anti-H. pylori IgG are considered the third best noninva-
sive methods next to UBT and SAT for the screening of H. pylori infection (92).
Moreover, a better diagnostic accuracy could be achieved with ELISA methods using
antigens from local strains than with commercial tests that incorporate antigens from
nonlocal strains. To enhance the diagnostic accuracy of ELISA-based methods, various
antigen preparations have been utilized for coating ELISA wells, including crude anti-
gens such as whole-cell extracts and sonicated cell extracts, glycine extracts, heat-sta-
ble antigens, and recombinant antigens (168, 169). The utilization of antigen pools
prepared from multiple strains can enhance the diagnostic performance of serology-
based tests.

Immunochromatographic assay. The immunochromatographic method of anti-H.
pylori IgG antibody detection is widely used for urine samples (170). The test assay com-
prises a test stick where H. pylori antigen and dried anti-human IgG antibody are immo-
bilized on the nitrocellulose membrane. To detect IgG in the urine, the test stick is
dipped in the mixture of urine and a diluent. The mixture diffuses through the mem-
brane, and the anti-H. pylori IgG, if present in the urine, forms a complex with anti-
human IgG, thereby demonstrating a red band (171). Rapirun (Otsuka Pharmaceutical
Co. Ltd., Tokyo, Japan) is a rapid urine test that uses an immunochromatography-based
assay for the qualitative detection of H. pylori IgG in urine samples. The Rapirun kit is a
point-of-care testing method that can provide rapid results. Moreover, it has the added
advantage over serum ELISA of being able to be performed at a physician’s office, and a
rapid result with high performance can be obtained (171). The test demonstrated com-
parable results with a sensitivity, specificity, and accuracy of 83.3%, 94.7%, and 93.2%,
respectively, in Indonesia and 84.7%, 89.9%, and 87.0%, respectively, in Vietnam (172,
173). Recently, the immunochromatographic assay-based rapid whole-blood immunoas-
say gabControl H. pylori (gabmed GmbH, Cologne, Germany) was introduced for the
qualitative detection of H. pylori IgG antibodies in whole blood, serum, or plasma (174).
The performance evaluation of gabControl H. pylori demonstrated a sensitivity, specific-
ity, PPV, and NPV of 91.4%, 76.7%, 65.3%, and 94.9%, respectively, when the UBT was
considered the noninvasive gold standard reference method (174).

The current infection marker (CIM) is an H. pylori-specific novel recombinant protein
that is identified from the cDNA library. The CIM test involves an indirect immunochro-
matographic assay that detects antibodies against the CIM present in blood samples
(serum, plasma, or whole blood). Currently, the Assure H. pylori rapid test kit (MP
Biomedicals Asia Pacific, Co. Ltd., Singapore) is used to diagnose H. pylori infection
(175). The test is noninvasive and easy to perform. Moreover, this test differentiates
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past infection from present infection (176). However, it needs a duration of more than
6 months after the eradication therapy to accurately differentiate past and present
infections (177).

Latex agglutination immunoassay. The method of antibody detection using the la-
tex agglutination immunoassay requires the mixing of specimens with a small amount
of reagent. Currently, two latex agglutination assay-based kits, i.e., the Eiken H. pylori
antibody (Eiken Chemical Co., Ltd., Tokyo, Japan) (LZ) test and H. pylori latex Seiken
(Denka Seiken Co., Ltd., Tokyo, Japan) (LIA) test are being widely used for diagnosing
H. pylori infection (145, 178). These latex agglutination-based tests are capable of
detecting IgA and IgM in addition to IgG (145). In these tests, the antigens derived
from the Japanese strains are bound to the surface of latex particles that react with
antibodies present in the test samples, thereby inducing agglutination of the latex par-
ticles (145, 178). The positive agglutination reaction is perceived with a change in tur-
bidity that is measured at a given wavelength (178). Pyloriset Dry (Orion Diagnostica,
Espoo, Finland) is another latex agglutination-based kit that has been examined in
adults in a number of studies, with a sensitivity in the range of 87 to 93.3% and speci-
ficity in the range of 65 to 95.6% (179–181). Although Pyloriset Dry has demonstrated
excellent sensitivity in detecting H. pylori antibodies in adults, its detection sensitivity
is poor among children, with up to 36% of sensitivity observed (182). As latex immuno-
assay-based testing methods can provide comparable and rapid results (usually taking
only 10 min) and are easier to perform with a general automatic analyzer, whereas
ELISA methods require a spectrometer and longer times to obtain results, latex immu-
noassay methods are being widely used (183).

Immuno-dot blot assay. The method based on the immuno-dot blot assay can be
used for detecting antibodies in serum, urine, stool, and saliva samples that demon-
strate antibodies against some specific proteins such as CagA and VacA (184, 185). This
test, which utilizes monoclonal antibodies specific for H. pylori antigens, leads to the
rapid and highly specific identification of H. pylori infection. Furthermore, the dot blot
assay is regarded as a more specific test capable of identifying strains on biotype level,
thereby eliminating the need for biochemical tests that are used for the typing of bac-
terial isolates. The diagnostic performance (sensitivity and specificity) of dot blot assay
methods is comparable to that of serum ELISA (184, 186, 187).

Multiplex immunoassay. The application of various immunodominant antigens of
H. pylori can enhance the diagnostic yield of antibody detection tests such as multiplex
immunoblotting and ELISA (188–190). Several immunodominant proteins, such as
UreA, UreB, catalase, GroEL, NapA, CagA, CagM, CagD, HP0231, VacA, HpaA, Cad, HyuA,
Omp, HcpC, HP0305, gGT, Tip-a, HP0175, and FliD, are currently being used in combi-
nation (189–192). In 2009, a multiplex ELISA incorporating 15 recombinant glutathione
S-transferase (GST) H. pylori fusion proteins, namely, UreA, catalase, GroEL, NapA, CagA,
CagM, CagD, HP0231, VacA, HpaA, Cad, HyuA, Omp, HcpC, and HP0305, was intro-
duced for diagnosing H. pylori infection (190). A novel multiplex immunoblotting
method, RecomLine H. pylori IgG (Mikrogen Diagnostik, Germany), utilizing six highly
immunogenic virulence factors that include CagA, VacA, GroEL, gGT, HcpC, and UreA
was introduced as a serological method for diagnosing H. pylori infection (193). The
diagnostic performance of this test was determined clinically in a German cohort study,
which showed a sensitivity and specificity of 97.6% and 96.2%, respectively, when the
histological analysis was considered the gold standard reference test (146). Moreover,
this method could distinguish between past and current infections. This test can also
be used to identify specific H. pylori virulence factors (189, 194) and gastrointestinal
diseases, such as atrophic gastritis and gastric cancer (146, 195). A recent multiplex im-
munoblotting method that incorporates four immunodominant proteins, i.e., UreB,
CagA, Tip-a, and HP0175, is a simple and cost-effective method to detect current H.
pylori infection (191). The performance of this method was determined, and the
reported sensitivity, specificity, PPV, and NPV were 96.1%, 20.9%, 69.7%, and 73.7%,
respectively, to discriminate current infection from past infection. The method
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detected atrophic gastritis with a sensitivity, specificity, PPV, and NPV of 96.4%, 21.6%,
36.8%, and 92.6%, respectively (191).

Rapid Urease Test

The RUT is a simple and reliable method for detecting H. pylori infection, which is
based on the detection of the activity of bacterial enzyme urease present in biopsy
specimens (196). The biopsy tissues containing the urease produced by H. pylori are
placed in a medium containing urea, which is hydrolyzed to carbon dioxide and ammo-
nia. The produced ammonia increases the overall pH to an alkaline condition, which is
detected by a pH indicator, manifesting a color change in the medium (197). The RUT is
the most commonly used invasive method for detecting H. pylori infection and requires
minutes to hours to provide results, enabling immediate treatment. Furthermore, the bi-
opsy specimens used for the RUT can be reused for bacterial evaluation by molecular
testing (198). The diagnostic performance of the test depends on the bacterial numbers
(load) in the biopsy samples, and it may give false-negative results if the biopsy speci-
mens contain a low concentration of the bacteria; therefore, the biopsy specimens
should be collected from a site where the bacteria are present in sufficient numbers
(199, 200). Though the diagnostic performance of the RUT is high and can be enhanced
if biopsy specimens are collected from multiple sites (201, 202), it increases the risk of
mucosal damage and bleeding. In clinical practice, the RUT is recommended as the first-
line diagnostic test when endoscopy is performed for biopsy specimen collection. For
enhanced accuracy of RUTs, two biopsy specimens (one each from the antrum and the
corpus) are collected (72).

Several commercial RUT kits, including paper-based tests, gel-based tests, and liq-
uid-based tests, are available (Table 3). Paper-based tests such as PyloriTek (Serim
Research Corp., Elkhart, IN, USA) give results within 15 min with a sensitivity and speci-
ficity of over 96% and 97%, respectively (203), and Pronto Dry (Medical Instruments
Corporation, Solothurn, Switzerland) can provide accurate results within 20 min (204).
Gel-based tests such as the Campylobacter-like organism (CLO) test (Ballard Medical
Products, Draper, UT, USA) can give positive results after 30 min with a sensitivity, spec-
ificity, PPV, and NPV of 94%, 88%, 89%, and 93%, respectively (205), and the Hp-Fast
and Hp-One tests (GI Supply, Mechanicsburg, PA, USA) can provide results within 24 h
and 1 h, respectively, with sensitivity and specificity over 90% (206). Liquid-based tests,
such as the Endosc-Hp test (Cambridge Life Sciences Ltd., United Kingdom), can pro-
vide quick results within 30 min with a sensitivity of 94.4% and specificity of 98.4%
(207). A new RUT kit with improved utility and speed, i.e., the ultrafast UFT300 test
(Biohit Oyj, Helsinki, Finland), can read results in 5 min with a sensitivity of 94.5% and
specificity of 100% (208, 209). The fast and accurate results of the UFT300 can simplify
clinical management further, allowing treatment to be prescribed in the endoscopy
unit before patients leave the unit (209). In a study comparing UFT300 with the RUT,
the results of the RUT and UFT300 with respect to PPI intake were accurate in 93% and
97% of patients, respectively (210).

Recently, a new method for sample collection known as the sweeping method was
shown to provide enhanced results in the RUT (CLO test) (211). In the sweeping
method, an absorbent swab held with forceps is used to collect specimens by swab-
bing the mucosa of the great curvature of the antrum and the corpus using a sweeping
motion, and the specimens collected with the swabs are used to perform the CLO test.
In the study, the sensitivity of the sweeping method was higher than that of the con-
ventional method (0.941 versus 0.685); however, the specificity was lower than that of
the conventional method (0.826 versus 0.859). The overall accuracy of the sweeping
method for detecting H. pylori infection was 0.903 (95% confidence interval [CI], 0.862
to 0.935), versus 0.742 (95% CI, 0.686 to 0.792) for the conventional method (211). The
biopsy specimens collected using forceps typically contain both mucosal and submu-
cosal tissues and a small amount of the mucus that lies on the mucosa. As H. pylori can
survive and reside in the mucus layer owing to the characteristics of the mucus layer
and the helical shape of bacteria (17), the sweeping method can acquire more H. pylori
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organisms, as it involves the collection of the gastric mucus from a larger gastric sur-
face area than the conventional method of obtaining biopsy specimens. The sweeping
method of specimen collection is safe, without a risk of mucosal damage and bleeding;
however, it does not provide histological information, which can be derived from bi-
opsy specimens.

Since H. pylori urease is absent in a healthy stomach, the RUT rarely gives false-posi-
tive results (83). False-positive results are unusual; however, such results may be
obtained with infections caused by other urease-producing gastric non-H. pylori helico-
bacters, such as H. heilmannii (212), and other urease-producing bacterial pathogens,
such as Proteus mirabilis, Citrobacter freundii, Klebsiella pneumoniae, Enterobacter cloa-
cae, Staphylococcus aureus, Staphylococcus capitis subsp. urealyticus (117, 213). Some of
these pathogens, including C. freundii, K. pneumoniae, E. cloacae, and S. aureus, are
commensal oropharyngeal flora; however, they are not sufficient to affect test results,
as the quantity of urease produced in the oral cavity is not sufficient. Therefore, biopsy
specimen-based tests are most accurate for assessing the quantity of bacterial load in
the stomach (214). False-negative results are obtained in cases involving the use of
antibiotics, PPIs, bismuth-containing compounds, gastric atrophy, intestinal metaplasia,
and peptic ulcer bleeding where the bacterial number is reduced (82, 197, 199, 201,
215–218). In cases where using the RUT is unavoidable, antibiotics or bismuth-contain-
ing compounds should be discontinued for 4 weeks and PPI therapy for 2 weeks
before collecting biopsy specimens (104, 219, 220).

Bacterial Culture

The indication for bacterial culture from gastric biopsy specimens is usually re-
stricted to phenotypic drug susceptibility testing to detect strains that are resistant to
antibiotics in the case of failure of first-line antibiotic treatment (221–223). However,
recent reports indicate that antimicrobial susceptibility testing (AST)-guided treatment
improves the bacterial eradication rates (224, 225). Therefore, in the current scenario, it
is wise to perform bacterial culture and AST prior to starting the antimicrobial therapy
to improve its efficacy. Furthermore, bacterial culture allows the isolation of H. pylori in
pure form for its identification and further microbiological studies, such as determina-
tion of biological and virulence properties (226). Bacterial culture is not included in rou-
tine testing for H. pylori infection because the method requires an invasive process (i.e.,
endoscopy) of biopsy specimen collection, and several molecular methods are now
available that can be performed with specimens collected noninvasively (86, 227).
Moreover, the culture and isolation of bacterial strains are time-consuming, requiring
skilled personnel and significant resources that render the method expensive.
However, bacterial culture derived from a gastric biopsy specimen is one of the most
reliable methods, providing specificity up to 100%, although a lower sensitivity (around
90%) compared to that observed with histology and the RUT is observed when per-
formed under optimal conditions (82, 228–230).

H. pylori is a fastidious pathogen that is difficult to grow under in vitro conditions. It
requires rapid transport in a special transport medium (to keep the bacterium alive
during transportation) and a growth medium to support the multiplication of the bac-
teria present in the collected samples (231). Transport media such as Portagerm pylori,
Stuart’s transport medium, urea-containing saline, and normal saline keep the bacteria
(present in samples) alive for up to 24 h at 48C. The H. pylori isolates can be kept frozen
at 280°C in brucella broth containing 10% dimethyl sulfoxide and 10% horse serum to
keep the pure isolates alive (231–234). Semisolid GESA transport medium can be used
to keep the bacterium alive for up to 10 days at 4°C (235). The growth media that sup-
port the growth of H. pylori include Pylori agar, Skirrow agar, Wang media, Wilkins-
Chalgren agar, Columbia blood agar, brucella agar, brain heart infusion agar, and
Trypticase soy agar supplemented with sheep blood (86, 232, 233). Antibiotics can be
included in the culture medium to make it selective for H. pylori, thereby preventing
growth of or contamination with other bacteria (236). However, it should be noted
that antibiotics in the culture media can delay the growth of some strains or can
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completely inhibit the growth in such media. Therefore, the use of a nonselective and
selective culture medium is likely to increase the sensitivity of the culture (237). Several
factors have been found to influence the growth of bacteria, such as the skills of micro-
biologists, bacterial load in biopsy samples, quality of specimens, presence of microbial
normal flora in specimens, bacterial load in the gastric biopsy specimen, degree of gas-
tritis (reduction of the bacterial load with advancing gastritis), alcohol consumption,
bleeding ulcers, use of antibiotics, H2 receptor antagonists, PPIs, quality and composi-
tion of transport media, transport duration, air exposure, and transport temperature
(229, 232, 238–240).

In addition to gastric biopsy samples collected invasively, several attempts have
been made to successfully recover H. pylori from other samples obtained by noninva-
sive methods, including testing of gastric juice, saliva, and stool and the string test.
However, because of the very low sensitivity of the recovery of H. pylori from these
specimens, the culture method utilizing these specimens is not recommended either
in routine diagnostics or in phenotypic drug susceptibility testing (116, 197, 238, 241).
The tissues left over after RUT have been also used for the culture and recovery of bac-
teria (242–244). The tissue left over after RUT interpretation is discarded. The reuse of
this tissue reduces the number of biopsy specimens collected during endoscopy,
which can be cost-saving in practice (245, 246). Bacterial culture has demonstrated a
good recovery of H. pylori from biopsy specimens left over after RUT if culture process-
ing is performed within 4 h of interpretation of RUT results (242–244).

Histopathological Examinations

Histological examination is usually considered a gold standard method for diagnos-
ing H. pylori infection that enables the direct detection of causative agents. Histology
also allows the evaluation of the degree of pathological lesions such as gastritis, gastric
atrophy, intestinal metaplasia, and cancer. A histological examination can be con-
ducted by applying several staining techniques such as hematoxylin and eosin (HE),
Giemsa, Warthin-Starry, H. pylori silver, toluidine blue, acridine orange, McMullen,
Genta, Dieterle, Romanowski, and immunohistochemical (IHC) staining to evaluate
pathological lesions and detect the presence of H. pylori (92, 143, 152, 228, 247–249).
Although IHC staining demonstrates the best sensitivity and specificity, it is not recom-
mended as the first choice for routine clinical practice owing to its high cost and time-
consuming nature (228). HE and Giemsa staining methods are the first choice in rou-
tine clinical practice and are the recommended methods for assessing the level of
inflammation and the detection of H. pylori, respectively (92, 143, 228). In cases of
unclear results, other methods, such as toluidine blue, acridine orange, Genta,
Romanowski, or McMullen staining, can be performed to verify results (152, 249). The
Giemsa staining method has several drawbacks, including higher cost, time-consuming
nature, and interobserver variability, and its performance is also strongly affected by
the presence of inflammatory activity (228, 250). The recently developed modified
Giemsa staining method has demonstrated improvements with respect to time con-
sumption, and it requires fewer organic chemicals such as methanol and acetic acid to
be used in the washing step while providing the same accuracy as that observed with
traditional Giemsa staining (251). Moreover, the diagnostic performance of modified
Giemsa is better than that of the RUT.

The IHC staining method that utilizes anti-H. pylori antibodies is now considered a
gold standard method for detecting H. pylori in tissues and provides a sensitivity and
specificity of approximately 100% (152, 250, 252). When the standard HE staining
method is used in biopsy samples, H. pylori can be often detected in most cases (249,
253–255). Therefore, further staining by Giemsa or IHC may be omitted unless chronic
active gastritis is noted without H. pylori identification by standard staining methods
owing to low bacterial load or atypical localization of the pathogen, which necessitates
histological evaluation by a pathologist (256, 257). Modified toluidine blue (MTB) can
be used in histological preparations to detect H. pylori, which demonstrates better per-
formance than the HE staining method (258, 259). MTB staining is capable of
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visualizing the bacteria even in specimens with a low density of bacteria when col-
lected posteradication, in small biopsy specimens with few glands, and in cases of
abundant mucus debris on the surface of pits. MTB staining is also simple, needs less
time (provides results within 20 min), and highlights the neutrophil infiltration highly
associated with the presence of H. pylori in the tissue. The sensitivity, specificity, PPV,
and NPV of MTB staining were 99%, 96%, 95%, and 99% when IHC was considered the
gold standard (258).

Imprint cytology, although rarely used in H. pylori diagnosis, is a method for obtaining
imprints from biopsy specimen by placing the specimens on clean glass slides, which can
then be stained by toluidine blue or Giemsa staining methods (259). Imprint cytology ena-
bles microbiologists to detect H. pylori is tissue using simple staining methods, thereby
facilitating an early diagnosis. Toluidine blue and Giemsa staining can be performed on
imprints, which demonstrate the unique morphology of curved or spiral rods of H. pylori
that are strongly stained in the gastric mucosa (259). The imprint cytology method with to-
luidine blue demonstrates 100% agreement if the tissue contains a high density of H. pylori
(259); however, the agreement is poor when the tissue contains a low density of H. pylori
(260). A study reported a sensitivity and specificity of 83% and 100%, respectively, for diag-
nosing H. pylori (261), and the diagnostic accuracy can be improved to 100% if imprint cy-
tology is combined with histology (260, 262, 263). Other studies have also demonstrated
high sensitivity and specificity of imprint cytology (263, 264). Considering histology the
gold standard method for diagnosing H. pylori, the sensitivity, specificity, PPV, and NPV of
imprint cytology combined with toluidine blue were 57.1%, 97.9%, 80.0%, and 94.0%,
respectively, whereas the values were 42.9%, 97.9%, 75.0%, and 92.2%, respectively, when
it was combined with Giemsa staining (259), as shown in Table 4. This method offers a
rapid, cost-effective, and simple method of H. pylori diagnosis in clinical routine practice;
however, this method may show false-negative results if the specimen contains low bacte-
rial density, which results in poor transfer of bacteria from specimens during imprint smear
preparation.

Although histology is regarded as a gold standard method with several merits, the
results of histology-based methods are affected by several factors, such as the site of
specimen collection, size and number of biopsy specimens, staining methods, PPI and
antibiotic treatment, experience of pathologists, and peptic ulcer bleeding (69, 72, 86,
92). Furthermore, the correct orientation of the biopsy specimens used for histological
evaluation improves the accurate assessment of gastric atrophy (265). The treatment
of gastritis and consumption of PPI have negative effects, and they affect the diagnos-
tic accuracy of HE and Giemsa staining methods in clinical practice to a greater degree
than the IHC method, which demonstrates high sensitivity and high diagnostic reliabil-
ity (152, 228, 248). Therefore, it is recommended to discontinue PPI consumption for
2 weeks and antibiotic consumption for 4 weeks before performing histological investi-
gations (69, 75, 82). The treatment of atrophic gastritis with acid-suppressing agents
such as PPIs can induce migration of the bacteria from the gastric antrum to the proxi-
mal stomach. Therefore, the Sydney system protocol of multiple specimen (a minimum
of 5) collection, including one each from the lesser and greater curvature of the
antrum, the lesser curvature of the corpus, the middle of the greater curvature, and
the incisura angularis, is recommended by the AGA to increase the maximum possibil-
ity of detecting H. pylori (162, 256). Other reports have recommended the collection of
a reduced number of biopsy specimens, including four biopsy specimens (two from
the antrum, including the greater and lesser curvature, and two from the corpus,
including the greater and lesser curvature) (211, 266), three biopsy specimens (the
greater curvature of the antrum and the corpus and the incisura) (256), and two biopsy
specimens (from the antrum and the corpus) (82, 267) for maximum diagnostic yield;
however, the results have not proven to be equivalent to the system utilizing five bi-
opsy specimens.

Molecular Methods

In the last few years, the use of molecular methods in the detection of infection has

Laboratory Diagnosis of H. pylori Infection Clinical Microbiology Reviews

September 2022 Volume 35 Issue 3 10.1128/cmr.00258-21 19

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00258-21


dramatically changed the landscape of clinical management of several infectious dis-
eases (268). Molecular methods are useful for broad-spectrum infection detection, eval-
uation of emerging infections, epidemiological studies, genotyping, and assessment of
antibiotic resistance trends (269, 270). However, a notable disadvantage of such meth-
ods is that false-positive results may be observed as a consequence of residual genetic
elements following antimicrobial therapy or the presence of other flora that produce
urease or mimic genetic information (271). PCR is one of the best molecular methods
with a wide range of clinical applications (269, 270). PCR-based detection of H. pylori
infection could be classified as invasive when it involves specimens collected inva-
sively, such as gastric juice and gastric biopsy specimen, or as noninvasive when it
involves specimens collected noninvasively, such as saliva and stool specimens (269,
270, 272, 273). Being highly sensitive, PCR-based methods can help detect H. pylori
infection in patients with peptic ulcer bleeding, gastric cancer, or gastric MALT lym-
phoma for whom the diagnosis of H. pylori is important but difficult to obtain by other
nonmolecular methods; these methods have a sensitivity and specificity close to 100%
(274, 275). Moreover, previous studies have found that PCR-based methods can detect
low-density infection in a considerable number of patients with dyspepsia compared
with nonmolecular conventional methods (276, 277). PCR has been found to detect
active infection in a proportion of healthy individuals who were diagnosed as negative
according to conventional nonmolecular methods (278, 279). Furthermore, a recent
study showed that 49% of patients with chronic mucosal inflammation who tested H.
pylori negative according to histological methods were found to be positive for the
infection by PCR-based methods (280). Currently, there are several molecular-method-
based commercial kits that are easy to perform and provide results with high accuracy
(Table 5). Molecular methods for H. pylori detection include conventional PCR, nested
PCR, multiplex PCR, fluorescence in situ hybridization (FISH), real-time PCR (RT-PCR),
and digital PCR.

Conventional PCR. In conventional PCR, several gene candidates such as vacA, cagA,
ureA, glmM, hsp60, 16S rRNA, 23S rRNA, ureC, and flaA are amplified using specifically
designed primers (143, 273, 281–283). However, the amplification of the 23S rRNA gene
demonstrates the highest performance with respect to the detection of H. pylori infection
(283). Conventional PCR is usually performed with bacterial isolates recovered from biopsy
specimens. However, other specimens, such as gastric biopsy specimen or gastric juice,
can be also used for amplifying specific genes. In a study performed with gastric juice
specimens, PCR involving amplification of ureA and cagA demonstrated sensitivity of
92.7%, in contrast to culture, which showed a sensitivity of 70.2%, and the areas under the
curve (AUC) of the gastric juice PCR and bacterial culture were 96.7% and 91.3%, respec-
tively (284). The results indicate that gastric juice PCR is a better diagnostic method than
the culture method, with results having high reliability and stability even in patients with
more rounds of treatment (284, 285). However, caution should be exercised when ureA-
based PCR is used, in case false-positive results arise from the presence of other urease-
producing bacteria (286). The detection of H. pylori from saliva by PCR amplification of 16S
rRNA genes has demonstrated a reliable method with sensitivity and specificity of 80.0%
and 77.7%, respectively (287). However, the positivity rate of H. pylori from saliva speci-
mens (18.0%) remains lower than that from stool specimens (50.4%) (288).

Nested PCR. Several modifications have been added to conventional PCR to achieve
increased sensitivity and specificity for the detection of H. pylori infection (285, 289–
291). However, these modified molecular methods are very expensive, require a high
level of technical skill, and demonstrate an increased risk of false-negative results
owing to technical and human errors (289, 292, 293). One of these modifications is
nested PCR, which involves two rounds of PCR. In the first round of PCR, a larger DNA
region is targeted, whereas in the second round of PCR, a smaller subregion of the
product from the first round that serves as the template is targeted (136, 294, 295).
Nested PCR has been successfully applied to identify resistant mutations in 23S rRNA
in stool specimens without any false-positive results (296). Compared to conventional
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PCR, nested PCR is more sensitive because it can amplify target DNA with severalfold-
lower concentrations than those required for conventional PCR (295, 297, 298). Nested
PCR can identify H. pylori from controversial specimens, such as those derived from
patients with bleeding or those consuming PPIs, and can be performed in laboratories
with basic equipment. In a previous study, the sensitivity and specificity of nested PCR
in the amplification of target genes from gastric biopsy specimens were found to be
93.8% and 95.9%, respectively, compared with results obtained using [13C]UBT, which
was used as the gold standard method (299). Nested PCR was found to be at least 10-
fold more effective than conventional PCR. However, false-positive results due to the
contamination are also possible with this method (295, 299).

Multiplex PCR. Multiplex PCR is the modification of conventional PCR where multiple
genes can be amplified simultaneously in the same PCR. Multiplex PCR is used to simulta-
neously detect positive infection and genotypes, such as cagA and vacA genotypes (s1/s2
and m1/m2 fragments) (300, 301). The presence of H. pylori is considered positive by multi-
plex PCR if at least one of the specific gene products, including cagA, vacA s1, vacA s2,
vacA m1, or vacA m2, is detected in the specimens in the agarose gel (301). Multiplex PCR
studies targeting three genes for amplification, such as a conserved region flanked by ge-
nus-specific primer-binding sites in Helicobacter 16S rRNA and species-specific sequences
(ureA and hpaA), result in a clear distinction of H. pylori from Campylobacter and other bac-
terial genera (302–304). Multiplex PCR is more accurate and demonstrates a higher H.
pylori detection rate (305). The sensitivity, specificity, PPV, NPV, and accuracy of multiplex
PCR were 100%, 59.57%, 73.79%, 100%, and 81.09%, respectively, when CIM and CLO tests
were considered the gold standard reference methods (300). Multiplex PCR demonstrates
excellent performance for the detection of H. pylori from stool specimens and can identify
a small amount of H. pylori nucleic acid (306).

Fluorescence in situ hybridization. FISH is a highly sensitive and specific molecular
cytogenetic technique, in which fluorescent-labeled oligonucleotide probes bind to a spe-
cific complementary target sequence of DNA or RNA, enabling its detection and quantifica-
tion when exposed to light of specific wavelengths (250, 307). FISH can detect infection
with coccoid forms of H. pylori (308). Along with the detection of H. pylori infection, FISH
has the advantage of being able to determine susceptibility or resistance to clarithromycin
in bacteria (116, 308, 309). Currently, several H. pylori FISH commercial kits, such as the
BACTfish H. pylori Combi test (Izinta Kft., Budapest, Hungary) and Probe4Pylori (Biomode
SA, Caldas das Taipas, Portugal), are available. BACTfish H. pylori Combi is highly sensitive
and maintains specificity as shown in Table 5 (250). Being highly accurate, the BACTfish
H. pylori Combi test has the potential to be the gold standard test in the evaluation of
H. pylori infection.

Real-time PCR. RT-PCR is gaining popularity and is more widely used in clinical lab-
oratories for diagnosing H. pylori infections because of its short working time, high sen-
sitivity and accuracy, and low risk of cross-contamination. RT-PCR can be conducted
with various specimens, such as fresh or frozen biopsy specimens, paraffin-embedded
biopsy specimens, and stool specimens. The most commonly targeted genes in RT-PCR
involve small segments of 16S rRNA genes, ureA, and 23S rRNA genes that are well pre-
served in embedded tissues (310–312). RT-PCR is a highly sensitive and specific
method to detect H. pylori from fresh or frozen biopsy specimens derived from patients
with nonbleeding peptic ulcers (275, 313). It also shows better results than histology
with fresh or frozen gastric samples collected via biopsies of patients with peptic ulcer
bleeding (314). Freshly collected or frozen biopsy specimens are most commonly used
to extract nucleic acids. Since viable bacteria are not required in the RT-PCR method,
which is based on DNA detection, it is a useful method when the patient has already
started antimicrobial therapy (315). RT-PCR can detect infection in a significant per-
centage of histologically negative biopsy specimens, and it demonstrates a 5%
increase in the positivity rate compared with bacterial culture methods (316, 317).

There are several commercially available RT-PCR kits, such as RIDA GENE H. pylori (R-
Biopharm AG, Darmstadt, Germany), with sensitivity, specificity, PPV, and NPV of 100%,
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99.0%, 94.0%, and 100%, respectively, when culture alone or histology together with
the RUT is considered the gold standard reference method (318). Amplidiag H.
pylori1ClariR (Mobidiag, Espoo, Finland) can simultaneously detect H. pylori infections
and mutations conferring clarithromycin susceptibility. It also demonstrates high per-
formance, with sensitivity, specificity, PPV, and NPV of 96.3%, 98.7%, 92.2%, and 99.3%,
respectively (319). MutaREAL H. pylori (Inmundiagnostik, Bensheim, Germany), when
performed with biopsy specimens collected from children, demonstrates sensitivity,
specificity, PPV, and NPV of 93.3%, 86.9%, 90.3%, and 90.9%, respectively (320). The
ViaSure H. pylori real-time PCR detection kit (CerTest Biotec S.L. Zaragoza, Spain) has
exhibited better performance when performed in patients above 18 years of age, with
sensitivity, specificity, PPV, NPV, and accuracy of 85.7%, 100%, 100%, 84.6%, and 92.0%,
respectively (321). Recently, Leonardi et al. developed and evaluated the highly sensi-
tive and specific (sensitivity, 94.12%, and specificity, 93.75%) RT-PCR based assay for
the detection of H. pylori specific ureC and cagA, respectively, to assess their presence
in stool specimens coinfected with protozoal or helminthic parasites (322).

Detection of H. pylori by 23S rRNA RT-PCR provides 100% concordance results com-
pared with reference methods of bacterial culture, histopathology, or RUT (323, 324).
In clinical or research settings, formalin-fixed and paraffin-embedded tissues are the
most widely available specimens that provide highly efficient and specific results for
detecting H. pylori (325, 326). RT-PCR is capable of detecting H. pylori infection when
paraffin-embedded tissues collected from patients with peptic ulcer bleeding are
assessed and therefore can be used to identify occult infection in patients who test
negative according to histopathological analyses (323). A sufficient amount of genomic
DNA can be obtained from 7 to 8 sections of tissues with 10-mm thickness (243). The
DNA extracted after deparaffinization and rehydration of paraffin-embedded sections
provides a well-preserved template for RT-PCR. In a study of paraffin-embedded tis-
sues, the sensitivity of RT-PCR in the detection of H. pylori infection was 95.6%, com-
pared with histological results, which showed a sensitivity of only 69.9% (327).

Stool specimens provide a noninvasive method ideal for patients who do not meet
the criteria for invasive specimen collection. However, PCR-based tests with stool speci-
mens can be challenging because of the small amount of target DNA, presence of in-
hibitory substances, and presence of other Helicobacter species with homologous
sequences (238, 328). The results of RT-PCR performed with stool specimens depend
on several factors, such as the quality and amount of genomic DNA recovered, target
sequences, differences in sensitivity and specificity of primers used, and nature of
amplification protocols (329). Therefore, a promising PCR method uses a customized
extraction kit employing a method to remove inhibitors present and maximize the
genomic DNA extraction from stool specimens. Furthermore, an ideal PCR method for
stool specimens should possess advantages of H. pylori detection and genotypic clari-
thromycin resistance screening, stability of stored specimen, detection of heteroresist-
ance when more than one H. pylori strain is present in the stool specimen, a high
degree of standardization, and good reproducibility (330). The number of bacteria
present in clinical specimens can influence the results of PCR-based tests. The mini-
mum number of H. pylori CFU/mL should be 1.5 � 10 in pure bacterial suspension,
1.5 � 103 in stool and mixed specimens, and 100 in gastric biopsy specimen to obtain
clear positive results using PCR-based methods (286, 331).

Digital PCR. Digital PCR (dPCR) is the latest commercially available refinement of
PCR technology with increased sensitivity compared with conventional PCR and a sen-
sitivity comparable to that of RT-PCR, while the specificity of the method is maintained
(332–334). dPCR is useful in detecting infectious agents in various specimen types, and
it is also useful in detecting H. pylori infection and its genotyping of resistance genes
(335–337). Droplet digital PCR (ddPCR) is a method for performing dPCR that is based
on the generation of water-oil emulsion droplets. In this method, the PCR solution of a
sample is fractioned into thousands of droplets (10,000 to 100,000) and then subjected
to complete PCR. The amplification of the template strand is observed in each
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individual droplet, and the droplets showing positive amplification are counted using
a fluorescence detector. The fractioning of a small amount of PCR solution into thou-
sands of parts within droplets results in absolute quantification of target sequences,
thereby enhancing the sensitivity of this method compared with other PCR. ddPCR can
detect occult H. pylori infection, especially in patients with very low density of bacteria,
as is found in conditions such as peptic ulcer bleeding, gastric MALT lymphoma, or
atrophic gastritis, when the standard test results are suboptimal. In a previous study,
Raderer et al. reported six patients having H. pylori infection with gastric MALT lym-
phoma who were negative according to several H. pylori conventional tests (338).
Similarly, Güell et al. reported that 79% of patients with peptic ulcer bleeding reported
to be H. pylori negative had an active infection and were found to be positive only
when retested a few weeks after the bleeding episode (339).

PREFERENCES FOR DIAGNOSTIC METHODS ACCORDING TO CLINICAL
CONDITIONS AND AGE

Preferences for appropriate diagnostic tests for H. pylori infection depend on many fac-
tors, such as the prevalence of infection, age-related gastric cancer incidence, patient’s
choice, accuracy of the test, availability, and cost-effectiveness (Fig. 2). Noninvasive tests are
preferred mostly in areas where the incidence of gastric cancer is low, whereas endoscopy-
based diagnostic tests are recommended for patients who are highly likely to develop gas-
tric cancer, such as those belonging to a geographic region with a high incidence of gastric
cancer, patients over 50 years of age, and patients having a family history of gastric cancer
(78). According to the Maastricht V/Florence consensus report, noninvasive tests, such as
locally validated serological tests, should be recommended over endoscopy-based tests for
the diagnosis of H. pylori infection in patients with dyspepsia (72). The guidelines of the

FIG 2 Preferences regarding diagnostic methods. Age and clinical conditions (if any) should be considered
when diagnostic methods are being selected. For children more than 10 years old, noninvasive tests, such as
the urea breath test (UBT), monoclonal antibody (MAb) ELISA-based stool antigen test (SAT), serological tests,
and antibody detection performed with urine specimens, are considered. For children less than 10 years old,
due to immature immune response, antibody detection methods (serology and antibody detection in urine)
are not considered; in such cases, the UBT or the monoclonal antibody ELISA-based SAT is the most
appropriate test. The UBT and serology are considered for patients with upper gastrointestinal bleeding (UGIB),
whereas for patients with partial gastrectomy, monoclonal antibody ELISA-based SAT is recommended. In
patients with high risk of developing gastric cancers (*, those having active or history of PUD, low-grade gastric
MALT lymphoma, history of endoscopic resection of early gastric cancer, or age over 60 years and those
belonging to a family with a history of gastric cancer or a population at high risk for gastric cancer),
endoscopy-based detection methods are recommended. Molecular methods, such as RT-PCR, can be conducted
on specimens such as biopsy specimens, gastric juice, and stool.
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Japanese Society for Helicobacter Research suggest the use of at least one of several inva-
sive and noninvasive tests available for the diagnosis of H. pylori infection; however, multi-
ple diagnostic tests can be used to obtain increased diagnostic accuracy (108).
Furthermore, the ACG and the Canadian Association of Gastroenterology (CAG), taking into
account the probability of adverse effects attributed to endoscopy, suggest the use of
upper gastrointestinal endoscopy-based diagnosis for patients with dyspepsia and for those
who have active or a history of PUD, low-grade gastric MALT lymphoma, a history of endo-
scopic resection of early gastric cancer, an age over 60 years, or a high risk of developing
gastric cancer, such as a patient belonging to a family with a history of gastric cancer or to
a geographic region with a high incidence of gastric cancer (68, 109).

In patients with upper gastrointestinal bleeding (UGIB), although invasive tests such
as the RUT, histology, and bacterial culture demonstrate high specificity, the sensitivity
is low. Therefore, in patients with UGIB, the performance of endoscopy-based tests can
be delayed until the bleeding stops. Among noninvasive tests, the UBT is considered a
reliable test, and SAT provides less accurate results in these patients. Although the
serological test is not influenced by UGIB, it is not recommended as the diagnostic test
for H. pylori infection owing to its inability to discriminate between present and past
infection (340). For patients with UGIB for whom endoscopy is unavoidable, the histol-
ogy test, which is less likely to be influenced by the presence of blood, may be pre-
ferred over other invasive tests (341). In patients with partial gastrectomy, the best
results are obtained with histology, followed by intermediate results obtained with the
RUT and poor results obtained with the UBT (342). Among noninvasive tests, the SAT
may be considered a reliable test to detect H. pylori infection in patients with distal
gastrectomy owing to its high performance in these patients (343).

Although histology-based tests provide accurate diagnostic results for H. pylori infec-
tion and comprehensive assessment of the gastric mucosa, the test is not generally per-
formed for children or is less recommended because of its invasiveness (344). According
to the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition
(ESPGHAN) and North American Society for Pediatric Gastroenterology, Hepatology, and
Nutrition (NASPGHAN) guidelines, the diagnosis of H. pylori infection in children using en-
doscopy-based tests (such as RUT, culture, and histology) is performed when the patient
has first-degree relatives with gastric cancer and refractory iron deficiency anemia without
a well-known reason (110). The patient is considered positive if the results of both RUT
and histology are positive or only the culture is positive. In case of inconsistent results, a
noninvasive test, such as the SAT or the UBT, is considered. Noninvasive tests such as the
UBT that show high sensitivity and specificity for the diagnosis of H. pylori infection could
be methods of choice for children with dyspepsia (88, 345, 346). However, studies have
also found a reduced accuracy of this method in children less than 6 years old (347, 348).
Since the age of patients is a major factor influencing the optimal threshold value of the
[13C]UBT, this test could be a valuable diagnostic test even for children less than 6 years
old if used after its local validation for the optimal threshold value (88, 94). Although the
[14C]UBT has been proposed because of its cost-effectiveness, it is not recommended for
children and pregnant women due to exposure of patients to radiation (349).

The SAT is another noninvasive method preferred for the detection of H. pylori
infection in children (350); however, its performance is compromised with low bacterial
load in the stool and in the case of peptic ulcer bleeding (351). Other studies have
observed good accuracy with the ELISA-based SAT using monoclonal antibodies,
which may be considered an efficient noninvasive test for diagnosing H. pylori infec-
tion in children (330, 352–354). Moreover, the monoclonal antibody ELISA-based SAT is
convenient and can be used in children of different age groups and in patients with
prior use of PPIs (126, 329, 355, 356). Studies have also shown that the monoclonal
antibody ELISA-based SAT can be used for children aged below 3 years with a reliable
performance (354, 357). H. pylori antibody-based tests are not useful for the detection
of H. pylori infection in children younger than 10 years because of their immature
immune response (358, 359). A poor sensitivity (54.5%) of the ELISA in the detection of
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H. pylori antibody has been observed in children younger than 10 years, whereas
higher sensitivity (up to 100%) and specificity (93.8%) have been observed in those
10 years old or above (360). Thus, among noninvasive tests, the H. pylori antibody-
based serology or urine-based ELISA is unacceptable for young children (361, 362).
Since molecular tests (PCR) can be performed with various specimens such as gastric
biopsy specimen, gastric juice, and stool (325, 363), such tests are acceptable and dem-
onstrate appropriate sensitivity in the diagnosis of H. pylori infection in children.
Furthermore, PCR can detect a very small amount of DNA in case of infection with low
bacterial load and demonstrates acceptable sensitivity in the case of patients receiving
PPI medications (325, 364–366).

MASS SCREENING FOR H. PYLORI INFECTION

In 2014, the International Agency for Research on Cancer (IARC), a working expert
group of WHO recommended the implementation of population-based screening of H.
pylori infection and treatment in order to control gastric cancer (367). However, mass
screening is not a usual activity in many countries due to the lack of resources; it is
implemented mostly in developed countries, where the prevalence of H. pylori infec-
tion and the incidence of gastric cancer are relatively low (58). Biopsy specimens col-
lected for endoscopy-based diagnostic tests are highly accurate for diagnosing H.
pylori infection; however, these methods are not recommended for screening because
of their invasiveness, expensiveness, and unavailability (368). In this context, noninva-
sive diagnostic methods are preferred and recommended for mass screening for H.
pylori infection (Fig. 3).

Among noninvasive methods, locally validated [13C]UBT, H. pylori SAT, and serologi-
cal testing are currently available and are the most sensitive and cost-effective mass
screening methods for the detection of H. pylori infection in the community (78). In the
Cochrane review of hospital-based studies, the indirect comparison demonstrated that

FIG 3 Mass screening for H. pylori infection. Noninvasive tests, including the urea breath test (UBT), the stool
antigen test (SAT), serology, or antibody detection from urine samples, are preferred methods for mass
screening for Helicobacter pylori infection among communities. The positive serology results should be further
confirmed by other specific methods (such as RT-PCR) on gastric biopsy or stool specimens. Patients who test
positive are subjected to clarithromycin susceptibility-guided eradication therapy (when clarithromycin
resistance is over 15% in that population) or clarithromycin-based empirical therapy (when clarithromycin
resistance is below 15% in that population). After the completion of eradication therapy, patients are subjected
to the assessment of successful eradication with either the UBT or SAT. In case of the failure of eradication
therapy, a biopsy specimen-based bacterial culture is suggested to evaluate the antibiotic resistance by
phenotypic (antimicrobial susceptibility testing [AST]) or genotypic (evaluation of the mutations conferring the
resistance) methods, which allow selection of AST-guided therapy.
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the [13C]UBT was the most accurate among these three tests (87). Because of its high
accuracy, the UBT is currently recommended as the best approach for screening H.
pylori infection (72). However, this test also has several drawbacks, including its high
cost, need for mass-spectrometric analysis, which may not be available at remote or
resource-limited centers, and false-positive and false-negative results, as described
above (82, 115, 117). The SAT is also a preferred method for epidemiological study and
screening tests and is currently adopted because it is noninvasive, cost-effective, easy
to perform, and more suitable (129, 369). In Japan, the screening for H. pylori infection
by SAT among children has increased in recent years to develop a preventive strategy
for gastric cancer (370–372). However, a previous study found a low accuracy of the
SAT compared with that of a serological test in patients with severe atrophic gastritis,
and so this approach needs to be evaluated for screening H. pylori-associated diseases
such as gastric cancer (373). However, other studies found no significant differences in
the results when using polyclonal antibody ELISA-based SAT conducted in patients
with atrophic gastritis and/or intestinal metaplasia (374).

H. pylori antibody-based serological tests are also frequently used for the screening
of H. pylori infection for epidemiological purposes because of their rapid results and
cost-effectiveness as well as wide acceptance by patients. The latex agglutination-
based LZ and ELISA-based E-plate serological methods were used to screen for infec-
tions in junior high school students in Japan (178). The serological test is more useful
in screening for H. pylori infection in children. The serology-positive cases should be
confirmed by other more specific tests before commencing eradication therapy or con-
firmed by RT-PCR methods, if available, on gastric biopsy or stool specimens, as this
method provides the simultaneous detection of clarithromycin susceptibility results
and thus treatment guidance (375). Recently, a urine-based immunochromatographic
method that detects antibodies in urine was used for the primary screening of H. pylori
infection in Japanese school children (376, 377).

The cost-effectiveness of the test is one of several factors that determine which test
is suitable for screening purposes. Among the three most commonly preferred screen-
ing methods, i.e., [13C]UBT, SAT, and serological testing, the UBT is a highly accurate
but expensive test, followed by the SAT, which is less expensive than the UBT. The
serological test is the least expensive. Several factors should be considered to make
mass screening tests cost-effective, including the prevalence of H. pylori infection,
patient adherence, purchase and running costs of the test, incidence rate of gastric
cancer, cost of gastric cancer treatment, additional benefits of testing, and estimated
cancer reduction (378, 379). Despite the cost-effectiveness and acceptability of the SAT
for mass screening, the delayed delivery of stool specimens might lead to a deteriora-
tion of antigens in the samples, thereby leading to false-negative results.

ASSESSMENT OF SUCCESSFUL BACTERIAL ERADICATION

In the last few years, the effectiveness of antimicrobial treatments has been declining
owing to growing antimicrobial resistance. Therefore, posttreatment assessment of the
antimicrobial activity for H. pylori infection is of utmost importance (Fig. 3). The assessment
for antimicrobial treatment activity is especially important because treatment failure can
be attributed to antimicrobial resistance, and refractory cases may pose an increased risk
for severe complications, such as PUD and gastric cancer (74, 75). In this context, currently,
all consensus reports, such as the Kyoto global consensus report (74), Maastricht V/
Florence consensus report (72), Japanese Society for Helicobacter Research report (108),
ACG/CAG report (109), ESPGHAN/NASPGHAN report (110), and Taipei global consensus
report (78), recommend assessment for successful eradication by either the UBT or SAT
(75, 82). The UBT shows excellent performance in the assessment of H. pylori infection
before and after antimicrobial treatment. Monoclonal antibody ELISA-based SAT is also a
reliable test that is widely recommended by various guidelines to assess the efficacy of the
eradication treatment; however, testing for successful eradication should be conducted at
least 4 weeks after completing therapy (69, 108). Study reports have found sensitivity in

Laboratory Diagnosis of H. pylori Infection Clinical Microbiology Reviews

September 2022 Volume 35 Issue 3 10.1128/cmr.00258-21 26

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00258-21


the range of 91.6% to 100% and specificity in the range of 93.6% to 98.4% for monoclonal
antibody ELISA-based SAT, which is used to confirm successful eradication after antimicro-
bial treatment (380–382).

No recommendations have been made indicating preferences or selection of a par-
ticular test; however, some considerations are required in order to select the best
method depending on the prevalence of H. pylori infection. For instance, in geographic
regions where the prevalence of H. pylori infection is above 30%, SAT may prove to be
the best method for diagnosis (383), whereas for a region with lower prevalence, the
confirmation of successful eradication would be appropriate with UBT (383, 384). As
antimicrobials, bismuth-containing compounds, and PPIs affect the performance of
both noninvasive tests, it is wise to perform testing for successful eradication at least 4
to 6 weeks after completing therapy. The sensitivity of polyclonal antibody-based SAT
is poorer than that of monoclonal antibody-based SAT in the diagnosis of H. pylori
infection and assessment of successful eradication (149, 385, 386). Once the assess-
ment indicates failure of the eradication therapy, an endoscopic biopsy is performed
for bacterial culture and phenotypic susceptibility testing to guide further antimicro-
bial therapy. However, the bacterial culture method is slow, does not always succeed,
and is not widely available (68, 72).

Serological tests are not considered for the assessment of successful eradication
because of the inability to distinguish between present and past infections. Anti-H. pylori
IgG is found in the blood for a long duration even after successful bacterial eradication
(69, 387). Therefore, serological tests are not useful for confirming effective eradication
treatment; however, they are useful for epidemiological surveys (388). Since molecular
methods are highly sensitive for the detection of H. pylori infections, these tests are not
considered appropriate for assessing successful bacterial eradication, since they are capa-
ble of detecting genetic material remaining from killed bacteria (389).

MAGIC BULLET CONCEPT AND ANTIMICROBIAL RESISTANCE

Paul Ehrlich’s “magic-bullet” concept of killing specific microbes, which uses the
analogy of a bullet fired from a gun, by hitting a specific target without harming the
body itself was a brilliant idea that led him to discover the antimicrobial properties of
several compounds (390). In 1929, Alexander Fleming discovered the antimicrobial
compound penicillin, a b-lactam antibiotic (391). This discovery proved to be a mile-
stone in the field of antimicrobial therapy, and soon after this, many other antimicro-
bial compounds were used to treat human infections. After the introduction of antimi-
crobials for treatment, it was believed that the evolution of resistance was unlikely to
occur. Previously, it was assumed that the frequency of mutations resulting in bacterial
resistance is negligible (392). However, owing to the emerging circumstances, magic
bullets (antimicrobials) are losing their magic (antibacterial activity), and more contra-
dicting and disappointing outcomes have been seen over time. The emergence of anti-
microbial resistance in H. pylori owing to the widespread use of antimicrobials is an im-
portant concern in the community following mass screening and eradication in
asymptomatic individuals. In bacteria, magic bullets can lose their magic through sev-
eral mechanisms, such as modification of antibiotic targets, enzymatic degradation of
antimicrobial agents, multidrug efflux systems, changes in the bacterial cell wall per-
meability, acquisition of alternative metabolic pathways, overproduction of target pro-
teins, and biofilm formation. However, several mechanisms have not been reported or
studied in detail in H. pylori. Therefore, we discuss the commonly observed mecha-
nisms that are becoming a bottleneck for eradication therapy.

Modification of Antibiotic Targets

Modifications in molecules commonly targeted by antibiotics are the most common
mechanism underlying antibiotic resistance in H. pylori. Spontaneous mutations in anti-
biotic target genes that neutralize the activity of antibiotics pose a major problem for
the eradication of H. pylori infections.
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Amoxicillin resistance. Amoxicillin, a derivative of ampicillin and a b-lactam antibi-
otic, was discovered in 1958 and first used in medicine in 1972 (393, 394). The World
Health Organization has placed this antibiotic on the list of the most effective and safe
medicines for the treatment of human infections (395). b-Lactam antibiotics are
among the most effective bactericidal antibiotics used to treat infections caused by
Gram-positive and Gram-negative bacteria. It is a drug of choice because it is better
absorbed following oral administration than other b-lactam antibiotics (396).

Penicillin-binding proteins (PBPs) are bacterial peptidoglycan-synthesizing enzymes
with transpeptidase activity associated with the C-terminal region (397). In H. pylori, nine
different types of PBPs, three with high molecular weight and six with low molecular
weight, have been identified (398). However, only three PBPs (PBP1, PBP2, and PBP3) are
involved in amoxicillin resistance (399, 400). During the synthesis of the cell wall (peptido-
glycan layer), PBPs catalyze the synthesis of cross-linking bridges between the linear pepti-
doglycan polymer chains and ultimately the synthesis of the peptidoglycan layer (Fig. 4A).
Beta-lactam antibiotics (for example, amoxicillin) inhibit the synthesis of cell walls by bind-
ing PBPs and halting their transpeptidase activity (Fig. 4A) (401).

To exert bactericidal effects, amoxicillin needs to bind penicillin-binding motifs,
highly conserved amino acid sequences which comprise STGK338–341, SAIK368–371,
SKN402–404, SLN433–435, KTG555–557, and SNN559–561 (402). The inability of antibiotics to bind
penicillin-binding motifs due to amino acid variations caused by mutational changes
in or around these regions renders the bacteria resistant to penicillin (Fig. 5A). The
amino acid variations in and around the penicillin-binding motif sequences of PBP1

FIG 4 Mechanism of antimicrobial activity in H. pylori. (A) During bacterial multiplication, the bacterial cell wall
component (i.e., the multisheet peptidoglycan layer) is synthesized by penicillin-binding proteins (PBPs), which act as
transpeptidases, causing the cross-linking of the peptidoglycan polymer chains. Beta-lactams (e.g., amoxicillin) binding
with PBPs via penicillin binding motifs inhibit their action, preventing the synthesis of peptidoglycan layer and leading
to bacterial cell lysis and cell death. (B) The bacterial ribosomes translate the mRNA to proteins. However, the
macrolides (e.g., clarithromycin) and tetracyclines bind with 50S and 30S ribosomal subunits, respectively, inhibiting
protein synthesis and causing bacterial cell death. (C) In the case of nitroimidazole (e.g., metronidazole), a prodrug is
activated to its active form by reductases such as RdxA, FrxA, and FrxB. The activated metronidazole damages
helicoidal DNA, causing bacterial cell death. (D) DNA replication and transcription of gene initiates with the formation
of a replication fork, which creates supercoiled DNA with high tension in DNA strands. DNA gyrases (A and B) cause
the unwinding of supercoiled DNA which is important for the normal DNA replication and transcription by RNA
polymerases. Fluoroquinolones (e.g., levofloxacin) bind with DNA gyrases (A and B), whereas the rifamycins (e.g.,
rifabutin) bind with RNA polymerases and inhibit their respective functions, leading to bacterial cell death.
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due to point mutations prevent the binding of amoxicillin to PBP1, which is a major
mechanism underlying amoxicillin resistance in H. pylori (399, 400). The substitutions
I259T in PBP1, T498S in PBP2, and D2N, A50S, F490Y, and A541T in PBP3 were found in
strains showing remarkably high MICs (256 mg/mL). The substitution N564Y in PBP1
moderately increased the MIC (2.0 mg/mL). Substitutions such as N107R, A201V, V250I,
and S543T in PBP1 and V374I in PBP3 moderately increase the MIC (0.25mg/mL), induc-
ing amoxicillin resistance (399, 402). The substitutions V469M, F473L, S543R, N562Y,
T556S, A369T, V374, L423F, T593T, V45I, S414R, V414R, D465K, V471M, and N564Y in
PBP1, A296V, S494H, A541M, and E572G in PBP2, and A499V and E536K in PBP3 affect
the susceptibility of H. pylori to amoxicillin (400, 402–404). Furthermore, mutations in
the multidrug efflux protein-encoding gene hefC, the porin protein-encoding gene
hopC, and the putative outer membrane protein-encoding gene hofH that probably al-
ter the porin channels, preventing the entry of amoxicillin into the bacterial cells, have
also been suggested to increase the MICs (405).

Clarithromycin resistance. Clarithromycin is a bacteriostatic antibiotic belonging to
the group of macrolides that inhibits the growth of bacteria by restricting protein syn-
thesis. Macrolides bind to the 50S ribosomal subunit (via 23S rRNA) and prevent pro-
tein synthesis (Fig. 4B). The peptidyl-transferase region in the domain V of 23S rRNA is
responsible for the binding of antibiotics; therefore, point mutations in this region
result in the inhibition of binding of macrolide antibiotics and ribosomal subunits,
leading to bacterial resistance to macrolides (Fig. 5B) (406, 407). In H. pylori, two 23S

FIG 5 Antimicrobial resistance in H. pylori. (A) Mutations leading to amino acid alterations in or around the penicillin
binding motifs cause the inability of b-lactams (e.g., amoxicillin) to bind with altered PBPs. Therefore, in the presence
of beta-lactams, cell wall synthesis continues, leading to bacterial resistance to beta-lactams. (B) Point mutations in
the specific regions of domain V of 23S rRNA lead to the inhibition of binding of macrolides (e.g., clarithromycin) to
the 50S ribosomal subunit. Therefore, even in the presence of macrolides, the synthesis of protein continues,
constituting bacterial resistance to macrolides. Similarly, mutations in 16S rRNA prevent the binding of the
tetracyclines to the 30S ribosomal subunit. In this way, bacterial protein synthesis continues in the presence of
tetracyclines, indicating bacterial resistance to tetracyclines. (C) Due to the mutational change in the nitroreductases
(RdxA, FrxA, and FrxB) the nitroreduction activity is inhibited and the nitroimidazole (e.g., metronidazole) prodrug is
not activated to its functional form. Therefore, the bacterial cells become unsusceptible to the nitroimidazole
antibiotics. (D) Mutations in DNA gyrases (specifically in the QRDR) prevent the binding of fluoroquinolones (e.g.,
levofloxacin) to the target sites. Therefore, bacterial DNA replication continues in the presence of fluoroquinolones,
leading to bacterial resistance to fluoroquinolones. Similarly, mutations in rpoB leading to alterations in RNA
polymerases prevent the action of rifamycins (e.g., rifabutin), resulting in bacterial resistance to rifamycins.
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rRNA genes have been found, and mutations in any of these genes confer clarithromy-
cin resistance (408). Major mutations implicated in clarithromycin resistance are
A2143G, A2142G, and A2142C, as shown in several studies (409–411). These common
mutations which are also referred to as A2147G, A2146G, and A2146C, respectively, in
some studies confer resistance in 80–90%, 16–17%, and 2–4% of clinical isolates,
respectively. However, clarithromycin resistance is primarily mediated by A2143G, fol-
lowed by A2142G point mutations. Molecular pathways associated with these muta-
tions are the most frequently studied mechanisms (399, 407, 409, 412, 413, 414).
Several other mutations, such as G1939A, A2115G, G2141A, A2144G, A2144T, C2147G,
T2182C, G2224A, T2215C, T1958G, A1957G, G1964T, and A1968T, have been reported
in diverse geographical regions and are associated with the clarithromycin resistance
phenotype (408, 415–417).

Metronidazole resistance. The antimicrobial activity of azomycin, a nitroimidazole
derived from an extract of Streptomyces spp., against Trichomonas vaginalis (a causative
agent of vaginal itching) was examined at the Rhone-Poulenc laboratory in France.
Metronidazole, a synthetic derivative of nitroimidazole, was used to treat chronic infec-
tions caused by Trichomonas spp. in 1959 (418). The antibacterial activity of metronida-
zole was discovered accidentally when a patient with trichomonas vaginitis and bacte-
rial gingivitis was cured with metronidazole in 1962 (419). Metronidazole, a prodrug
that contains a nitro-group in its imidazole ring, is activated by the reduction of its
nitro-group, which leads to the production of helicoidal DNA-damaging compounds
such as nitroso- and hydroxylamine (Fig. 4C). Oxygen-insensitive NADPH nitro-reduc-
tase (RdxA), NADPH-flavin-oxidoreductase (FrxA), and ferredoxin-like enzymes (FrxB)
perform the reducing activity of the nitro-group of nitroimidazole, converting it to the
active form, in H. pylori (420). Metronidazole resistance is attributed to mutations in
RdxA and FrxA, which reduce the potency of their reductase activity, leading to insuffi-
cient activation of metronidazole, and mutations in rdxA are involved in the primary
underlying mechanism (Fig. 5C) (399, 403, 421, 422). Mutations such as frameshifts,
missense mutations, and premature termination in rdxA and frxA have been reported
in metronidazole-resistant H. pylori (423, 424). Substitutions in rdxA, such as R16H,
H99R, V57A, N14T, W209Q, L210N, V175I, S91P, R16C, R16P, H25R, H53R, H53A, D59N,
L62V, A68T, A68V, A68S, A68N, G98S, G163V, G163D, V204I, and A206T have been
detected, which confer metronidazole resistance to H. pylori isolates derived from
diverse geographical regions (399, 403, 421). Although the high prevalence of metroni-
dazole resistance is conferred by mutational sequence variation in rdxA and frxA, pre-
mature termination inducing inactivation of these enzymes has also been recently
reported in clinical isolates (399, 403, 421). Premature inactivation attributed to the
stop codon in the frxA sequence, together with the intact rdxA gene in some metroni-
dazole-susceptible strains, suggests that inactivation of rdxA is more important for con-
ferring metronidazole resistance (421). Furthermore, while searching for novel genetic
mutations associated with metronidazole resistance using a next-generation sequenc-
ing approach, we detected a single nucleotide polymorphism, in addition to the inser-
tion-deletion in rdxA in metronidazole-resistant strains, suggesting that mutations in
frxA confer metronidazole resistance only in the presence of mutations in rdxA (425).

A novel mechanism attributed to a mutation in the ferric-uptake regulator (Fur) has
also been linked with metronidazole resistance. Superoxide dismutase, which is impor-
tant for protection against superoxide stress, is regulated by Fur, and a fur mutant
expressing elevated levels of superoxide dismutase demonstrates metronidazole resist-
ance (426, 427). The rpsU gene encoding 30S ribosomal protein S1, which is involved in
protein synthesis, contributes to metronidazole resistance (425). However, the mecha-
nism by which rpsU mediates metronidazole resistance is unknown. Recently, Hanafi
et al. (428), who induced resistance in metronidazole-sensitive strains by exposing the
strains to metronidazole and compared the protein expression in metronidazole-sensi-
tive and -resistant strains, reported the enhanced expression of aminoacyl-tRNA synthe-
tases, such as ProS, IleS, and CysS, which are involved in the synthesis of aminoacyl-tRNAs,
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ribosomal proteins such as RpsS, RplF, and RpsI, and elongation factor P (EFP) in metroni-
dazole-resistant strains. Bacterial cells with enhanced protein expression are better at
countering the action of metronidazole to maintain the energy balance and fitness that
may represent alternate mechanisms for metronidazole resistance in the absence of muta-
tions in rdxA and frxA (428).

Levofloxacin resistance. Levofloxacin is a fluoroquinolone antibiotic with potent
and broad-spectrum activity against Gram-positive and Gram-negative bacterial patho-
gens. It targets the bacterial DNA gyrase and topoisomerase IV, resulting in impair-
ments in DNA replication (Fig. 4D) (429, 430). The targeting and impairment of either
DNA gyrase or topoisomerase IV depend on the type of bacterial pathogen. Typically,
DNA gyrase is targeted in Gram-negative organisms, whereas topoisomerase IV is tar-
geted in Gram-positive organisms (431). In bacteria, double-stranded DNA exists in the
supercoiling state, which enables large DNA to be packed in bacterial cells (432).
During DNA replication, the formation of replication forks, which results in overtwist-
ing, introduces stress in double-stranded DNA. Such DNA strands are unwound by to-
poisomerases II (DNA gyrases), which can introduce negative supercoils to overtwisted
DNA, inducing a relaxed state, which is of utmost importance for DNA replication
(433). DNA gyrase is a tetramer consisting of two (A) and two (B) subunits, encoded by
gyrA and gyrB (434). The topoisomerase IV-encoding gene has not been reported in H.
pylori, which is a major antibiotic target in Gram-positive organisms. Hence, the most
common mechanism of high-level levofloxacin resistance in H. pylori is point mutations
in DNA gyrase (gyrA and gyrB) (403).

The region in the short sequence of DNA gyrase where point mutations originate,
leading to levofloxacin resistance, is known as the quinolone-resistance-determining
region (QRDR), which prevents the binding of levofloxacin to DNA gyrase and ulti-
mately confers quinolone (or fluoroquinolone) resistance to bacteria (Fig. 5D) (435,
436). Point mutations in QRDR sequence of gyrA at amino acid 87 and 91, such as N87I,
N87K, N87T, N87Y, D91Y, D91N, D91G, and D91H, are the most common mutations
reported that lead to resistance to fluoroquinolones in H. pylori (399, 421, 436–438).
Other less common mutations reported are D34N, D34Y, A129T, R140K, D161N, D192N,
S63P, A88P, D99V, R130K, V172I, and P188S (437, 438). The S63P and R130K substitu-
tions have been associated with high MICs (438). The gyrB mutation is not considered
a common mechanism; however, a novel mutation at position 463 leading to fluoro-
quinolone resistance was suggested by Rimbara et al. (439). Other mutations in gyrB,
such as S479T, R484K, and E483K, have also recently been reported in levofloxacin-re-
sistant isolates (437, 438). Mutations at 479 and 484 in gyrB are associated with the
most common mutations at 87 and 91 in gyrA; therefore, it is difficult to determine
whether the mutations at 479 and 483 in gyrB are responsible for levofloxacin resist-
ance (437). Novel mutations in gyrA (D91A) and gyrB (E381G) have also been reported
in levofloxacin-resistant strains; however, their role in mediating resistance needs to be
evaluated (440).

Tetracycline resistance. Tetracycline is a broad-spectrum tetracycline antibiotic
(441) that exhibits bacteriostatic activity against a wide range of Gram-positive and
Gram-negative bacteria. Tetracyclines (such as tetracycline and minocycline) exhibit
antibacterial activity by binding with high-affinity specific pockets involving 16S rRNA
on the 30S ribosomal subunit of bacteria and inhibiting protein synthesis by prevent-
ing the attachment of aminoacyl-tRNA to the ribosomal acceptor site (Fig. 4B) (442).
Tetracycline resistance is not frequently observed in H. pylori, as has been found in
other bacteria. A recent meta-analysis reported tetracycline resistance in 10 to 14% of
H. pylori isolates worldwide (443). Therefore, the molecular mechanisms leading to tet-
racycline resistance in H. pylori have not been fully explored. However, mutations in
the 16S rRNA at positions 965 to 967 (AGA codon) are responsible for tetracycline re-
sistance (Fig. 5B) (444, 445). One study demonstrated that tetracycline-resistant H.
pylori strains carried single nucleotide substitutions, such as A965C, A965G, A965T,
A967C, or A967T, with slightly increased MICs (446). Nonaka et al. suggested that
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guanine (G) at position 966 plays an important role as the primary site of tetracycline
binding, and its substitution with other nucleotides results in a high MIC (447). Single
and double mutations are associated with low and intermediate MICs, whereas simul-
taneous triple mutations are associated with high MICs (447). In recent studies, muta-
tions in the 16S rRNA gene at position 926 to 928, such as A926G, TCT926-928AAG,
T926A/C927A, T926A/T928G, T926C/C927A, T926C/T928G, and C927A/T928G, which
are putative drug-binding sites, were found in tetracycline-resistant strains (411, 421).

Rifabutin resistance. Rifabutin is structurally similar to other rifamycins, such as
rifampicin (448). Rifamycins bind to the bacterial DNA-dependent RNA-polymerase
enzyme and inhibit its function. Rifabutin binds to the catalytic center of the enzyme,
which is a b-subunit encoded by rpoB. Therefore, rifabutin inhibits prokaryotic RNA
synthesis (Fig. 4D) (449). A mutation in the rpoB gene encoding the target site for rifa-
butin, the b-subunit of DNA-dependent RNA-polymerase, confers resistance against
rifabutin (Fig. 5D) (448). Although there is a very low rate of resistance, mutations in
codon 149, codons 525 to 545, and codon 586 in the rpoB gene have been reported in
rifabutin-resistant strains (411, 450). The point mutation with the substitution D530N is
a common mechanism conferring rifabutin resistance (451), whereas other mutations,
such as D530N, D530G, D530Y, D530V, D530E, H540N, and S545L, have been reported
to have increased MICs (452). A link between the past consumption of rifampicin for
the treatment of pulmonary tuberculosis and increased rifabutin MICs has been found,
suggesting a cross-resistance between the two antibiotics (448, 453); thus, rifabutin
should be recommended based on the history of rifampicin use.

Furazolidone resistance. Furazolidone is a nitrofuran antibiotic that is structurally
similar to metronidazole (454). Furazolidone acts by inhibiting the enzyme monoamine
oxidase and lowering bacterial oxidation. Its secondary derivative damages the RNA.
Although the mechanism of furazolidone resistance is not clear, it is supposed that
mutations in porD and oorD genes, which encode the d -subunits of reductases such as
pyruvate-flavodoxin oxidoreductase and 2-oxoglutarate reductase, respectively, are re-
sponsible for furazolidone resistance in H. pylori (455, 456). The mutations G353A,
A356G, and C357T were reported in porD and other mutations, such as A041G, A122G,
and C349A/G, were reported in oorD in furazolidone resistance isolates, suggesting
that these mutations in six different positions of the two genes may be associated with
furazolidone resistance in H. pylori (456).

Enzymatic Degradation of Antimicrobial Agents

In addition to target site alteration, the inactivation or destruction of antibiotics by
antibiotic-destroying enzymes is another common mechanism of antibiotic resistance.
Although this mechanism is uncommon in H. pylori, the involvement of antibiotic-
degrading enzymes in mediating resistance has been reported. Beta-lactamases are
enzymes that can destroy beta-lactam antibiotics and are the most common mecha-
nism of beta-lactam antibiotic resistance in Gram-negative bacteria; however, such re-
sistance is typically uncommon in H. pylori (457). The use of a beta-lactamase inhibitor
together with amoxicillin was found to enhance the eradication rate, suggesting enzy-
matic degradation of amoxicillin (458). Tseng et al. first reported the role of beta-lacta-
mase in conferring high levels of amoxicillin resistance (MIC $ 256 mg/L) in H. pylori
(459). Sequence analysis of the b-lactamase PCR product was identical to that of
blaTEM-1. Furthermore, dot blot hybridization confirmed the presence of the blaTEM-1

b-lactamase in H. pylori.

Upregulation of the Multidrug Efflux Pump System

Bacterial efflux proteins are plasma (cytoplasmic) membrane proteins that recog-
nize noxious agents, including antibiotics, entering bacterial cells and pump them out-
side the bacterial cell before they reach their targets (460). Of the five families of multi-
drug efflux pumps, the resistance nodulation-cell-division (RND) family consists of
three membrane fusion proteins (AcrA), an inner membrane protein (AcrB), and an
outer membrane protein (TolC) and is one of the efflux pumps originally discovered in
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Gram-negative bacteria (461, 462). Four RND families of efflux pumps have been recog-
nized in H. pylori: HP0605 to HP0607 (HefABC), HP0969 to HP0971 (HefDEF), HP1327 to
HP1329 (HefGHI), and HP1487 to HP1489, which are involved in multidrug resistance in
H. pylori (463–465). Mehrabadi et al. (466) reported the involvement of TolC homologs
in metronidazole resistance and found that HP0605 and HP0971 could be expressed in
the absence of metronidazole. However, overexpression was found in the presence of
high-level metronidazole, whereas HP1327 and HP1489 were not expressed under
common conditions (466). Hirata et al. also reported the role of efflux pump proteins in
the development of clarithromycin resistance in H. pylori (467). A recent study demon-
strating the use of the efflux protein inhibitor Phe-Arg-naphthylamide (PAbN) showed
reversal of antibacterial potency from 8- to 128-fold against multidrug-resistant strains
(468). Recently, the roles of other transporter proteins, such as HP0939, HP0497,
HP0471, HP1174 (GluP), HP1017, HP0497, HP0471, HP1165, and HefA, have been
depicted in single-drug or multidrug efflux-mediated resistance (469–471). During
stress and under nutrient-limiting conditions, the enzyme SpoT, which is a bifunctional
enzyme with synthetase and hydrolase activities in H. pylori, regulates bacterial adapta-
tion (472). In recent studies, SpoT was found to induce high levels of expression of
transporter proteins, such as HP0939, HP0471, HP0497, HP1017, and HP1174, which
are involved in clarithromycin and multidrug efflux-mediated resistance (470, 473).

Biofilm Formation

Biofilms, or microbial communities, are characterized by bacterial cells embedded
in a matrix of extracellular polymeric materials produced by microbial cells (474). The
biofilm matrix prevents antibiotics from reaching the bacteria and protects them from
antibiotic action, aiding the development of antibiotic resistance (475). In vivo produc-
tion of biofilms by H. pylori in a mouse model was demonstrated by Attaran et al., who
concluded that the same potential may be reflected in humans (476). In another recent
study, Attaran et al. found a 2- to 4-fold increase in the MIC level of amoxicillin, tetracy-
cline, and metronidazole by biofilm-forming strains than their planktonic counterparts
(471). Although most studies have evaluated the in vitro formation of biofilms, several
recent studies have shown the capacity for biofilm formation in vivo on human gastric
mucosa (477–479). The expression of efflux proteins, such as HP0939, HP0497, HP0471,
HP1174, HP1165, and HefA, by biofilm-forming strains in comparison to their plank-
tonic counterparts suggests the enhancement of efflux-mediated resistance by biofilm
formation (469–471).

HETERORESISTANCE

In one study, two different H. pylori strains were isolated from two antral biopsy
specimens collected from a single patient that significantly differed in their antibiotic
susceptibility, showing MICs of amoxicillin between 2 and 0.06 mg/mL, respectively
(480). This finding provides new insights into the importance of heteroresistance in H.
pylori, which is defined as the coexistence of susceptible and resistant strains in the
same patient at the same anatomical site for the same antimicrobial agent (481).
Heteroresistance can occur as a result of multiple infections with genetically different
strains or the presence of susceptible and resistant variants of genetically related
strains. Genetically different heteroresistant strains, if present at the same time at the
same anatomical site (i.e., the gastric mucosa), are described as intradistrict, whereas if
susceptible and resistant strains are present in different areas of the stomach, they are
described as interdistrict (480, 482, 483).

Heteroresistance can be either polyclonal or monoclonal, based on the behavior
exhibited by bacterial populations in the presence of antibiotics. Polyclonal heterore-
sistance describes the presence of stable resistant or susceptible phenotypes exhibited
by genetically distinct clones. For example, two or more isolates causing coinfections
show different MICs for the same antibiotic or the emergence of stable resistant mu-
tant clones during antibiotic treatment. Monoclonal heteroresistance describes the pres-
ence of subpopulations of genetically identical isolates displaying transiently increased
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resistance, and during this interval, any resistant or susceptible cell may give rise to a new
heteroresistant population (484, 485). The importance of heteroresistance implies that no
single biopsy site should be considered representative of antimicrobial susceptibility test-
ing (480). Therefore, to obtain a full view of the inflammation status and to identify the
presence of heteroresistance to antibiotics, biopsy specimens from all gastric regions
should be collected from patients with pangastritis (486). Furthermore, the importance of
the presence of heteroresistant H. pylori strains suggests the clinical consequence of the
possibility of further propagation of resistant clones despite antibiotic therapy (487).
Heteroresistance can be detected by E-tests or the disc diffusion method of antimicrobial
susceptibility testing against different antibiotics. In the presence of heteroresistance, colo-
nies of resistant strains appear within the clearing zone around E-test strips or antibiotic-
impregnated discs (488). Heteroresistance can also be detected more accurately by com-
paring the growth rates of many single cells at various antibiotic concentrations (489).
Furthermore, the recently developed droplet digital PCR has also been successfully
employed for the detection of clarithromycin resistance in the context of heteroresistance
(336).

DETECTION OF ANTIMICROBIAL RESISTANCE

The detection of antimicrobial resistance is important because the proportion of bacte-
rial constituents exhibiting resistance to antibiotics continues to change over time, which
is critical for designing and optimizing the most effective therapy (490). Injudicious con-
sumption of antibiotics empirically causes the development of antimicrobial resistance,
generates a financial burden, or may cause adverse events (491). Therefore, the application
of antimicrobial susceptibility testing prior to the initiation of antimicrobial therapy needs
to be evaluated. The detection of antimicrobial resistance can be evaluated either by phe-
notypic methods that utilize the bacterial isolate obtained by culture growth or by geno-
typic methods that detect resistance in pure culture isolates or directly in specimens such
as biopsy, gastric juice, or stool specimens.

Phenotypic Detection of Antimicrobial Resistance

Phenotypic detection of antimicrobial resistance can be carried out using the dilu-
tion method (agar dilution and broth dilution methods) and the diffusion method (E-
test and disc diffusion methods). Agar dilution, broth dilution, and E-test methods pro-
vide the MICs of antibiotics, whereas the disc diffusion method does not provide MICs.
However, it provides a resistance cutoff based on the zone diameter of inhibition.
Unfortunately, as described in “Bacterial Culture,” culture-based susceptibility results
may not be obtained in all cases because the sensitivity of bacterial culture is not
100% and isolation of bacterial strains depends on several technical factors. According
to the European Committee on Antimicrobial Susceptibility Testing (EUCAST), the MIC
breakpoints that define the cutoff values for resistance are.0.125 mg/L for amoxicillin,
.1 mg/L for levofloxacin, .0.5 mg/L for clarithromycin, .1 mg/L for tetracycline,
.8 mg/L for metronidazole, and .1 mg/L for rifampicin (492). The Clinical and
Laboratory Standard Institute (CLSI) recommendation describes resistance breakpoints
as $1.0 mg/L for clarithromycin (sensitive cutoff of #0.25 and intermediate cutoff of
0.5) (493). The cutoff MIC for furazolidone has not been described by EUCAST; however,
several authors have used a resistance cutoff MIC of $2 mg/L (494, 495). Different cut-
off MICs have been used in different studies, for example, .0.125 and 2 mg/L for
amoxicillin, .1 mg/L and 2 mg/L for levofloxacin, .0.5 and 1 mg/L for clarithromycin,
.1 mg/L and 4 mg/L for tetracycline, and .8 mg/L and 8 mg/L for metronidazole
(421, 492–494, 496, 497).

Dilution methods (agar and broth dilutions). The agar dilution method of suscepti-
bility testing is the gold standard and is recommended by the CLSI (493). This method
has been widely used in epidemiological studies on a large number of stored clinical
strains. However, its use in clinical practice is unrealistic and not suited for individual
testing of a single strain in everyday practice, because it requires laborious preparation,
takes a long time, is technically demanding, and may not be cost-effective (498). In this
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method,1 to 3 mL of 2.0 McFarland-adjusted bacterial suspension (containing 1 � 107 to
1 � 108 CFU/mL) is spot inoculated on Mueller-Hinton agar supplemented with 5 to 10%
sheep or horse blood (aged .2 weeks) and containing 2-fold dilutions of the antibiotics.
After incubation for 72 h at 35°C 6 2°C under microaerophilic conditions, the plates are
read for any bacterial growth (421, 493, 499). The maximum dilution of antibiotic resulting
in no growth on the agar plate is considered the MIC of that antibiotic. The broth microdi-
lution method of susceptibility testing is not recommended and is seldom used because
of the difficulty in growing H. pylori strains in broth without supplementation with serum
or defibrinated blood. However, a few studies using supplemented broth have reported
acceptable MIC results (500–503). Recent studies have reported discrepancies in the results
between agar dilution and E-test for antibiotics, such as metronidazole (494, 504).
Considering these discrepancies, some authors have recently used the broth dilution
method to monitor drug resistance rates and obtained reliable results (494, 505). Agar and
broth dilution are quantitative methods that can provide more accurate results (506).

Diffusion method (E-test and disc diffusion). The E-test, an alternative method of
agar dilution, is relatively simple and easy to perform. In this method, the bacterial sus-
pension adjusted to 3.0 McFarland standard is spread on Mueller-Hinton agar supple-
mented with 5 to 10% sheep blood. An E-test strip impregnated with dried antibiotics
at increasing concentrations from one end to the other is placed on the inoculated
plate and incubated for 72 h at 37°C under microaerophilic conditions. After incuba-
tion, the elliptical zone of inhibition around the strip is observed in the inoculated
plate, indicating the MIC at the intersection point between the zone of inhibition and
the strip edge (507, 508). This method has been found to correlate closely with the
results of the agar dilution method (504, 509–511). However, according to recent stud-
ies, the E-test has a tendency to overestimate the resistance to metronidazole com-
pared with the gold standard agar dilution method (494, 504).

The disc diffusion method is the simplest method for antimicrobial susceptibility test-
ing, with the additional benefit of being the least expensive method. However, because of
the inadequate studies on its performance and because it is semiquantitative and thus
unreliable, this method is not recommended for slow-growing bacteria, including H. pylori
(506). During the late 1990s and the early 2000s, several studies performed susceptibility
testing using this method and validated the results for macrolides such as erythromycin
and metronidazole (512, 513). Recently, a few studies, such as those performed by
Ducournau et al. in 2016 (317) and Zhong et al. in 2021 (514) conducted susceptibility test-
ing using the disc diffusion method. Ducournau et al. used resistance cutoff diameters of
,17 mm,,14 mm, and,17 mm for tetracycline, rifamycin, and levofloxacin discs, respec-
tively, and found good concordance for rifamycin-resistant strains, which was subse-
quently confirmed by sequencing the rpoB gene that possessed the mutations (317).
Zhong et al. used resistance cutoffs of #13 mm, ,13 mm, ,14 mm, #14 mm, #14 mm,
and ,16 mm for clarithromycin, levofloxacin, amoxicillin, furazolidone, tetracycline, and
metronidazole, respectively, and found good concordance between phenotypic and geno-
typic detection of resistance to clarithromycin and levofloxacin (514).

For susceptibility testing by diffusion methods, Mueller-Hinton agar supplemented
with 5 to 10% sheep or horse blood is most frequently used, and recommended me-
dium with Columbia agar supplemented with 5 to 10% sheep or horse blood is used
as a second choice (515). However, its performance has been found to vary according
to the commercial sources and brands of Mueller-Hinton agar used for susceptibility
testing (516, 517). E-test and disc diffusion methods provide the additional benefit of
allowing the visualization of resistant subpopulations in the case of heteroresistance,
as they form colonies within the clear zone of inhibition (488).

Genotypic Detection of Antimicrobial Resistance

Although culture followed by MIC detection-based antimicrobial susceptibility test-
ing is the gold standard method, it is not widely used because the method requires
highly trained laboratory personnel and usually takes up to 14 days to obtain results
due to the fastidious nature of H. pylori. Therefore, rapid and highly accurate molecular
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methods are becoming popular for evaluating antimicrobial resistance. A recent meta-
analysis by Gong et al. emphasizes that the PCR-based detection of clarithromycin re-
sistance conducted on stool specimens is a reliable and accurate method with high
sensitivity (91%) and specificity (97%) (518). Molecular methods such as conventional
PCR followed by Sanger sequencing, RT-PCR, and whole-genome sequencing (WGS)
are commonly used for the detection of mutations conferring resistance.

Conventional PCR-based detection. Advances in molecular biology techniques, such
as conventional PCR and Sanger sequencing, have enabled the identification of mutation-
based molecular mechanisms that cause observed phenotypic antimicrobial resistance. In
conventional PCR-based methods, a small gene region exploiting specific mutations is tar-
geted; therefore, this method is insufficient for the discovery of novel or rare resistance
mechanisms (519). In the conventional genotypic method, targeted genes, such as pbp1,
pbp2, and pbp3 for amoxicillin, 23S rRNA gene for clarithromycin, rdxA and frxA for metro-
nidazole, gyrA and gyrB for levofloxacin, 16S RNA gene for tetracycline, rpoB for rifabutin,
and oorD and porD for furazolidone, are amplified using specific primers targeting the
regions that frequently show the mutations. The amplified PCR products are subjected to
Sanger sequencing and compared with consensus sequences for the presence of any
mutations in the genes (421, 500, 514). Conventional PCR-based detection of mutations
shows good agreement with phenotypic drug resistance (421, 500, 514). High agreement
with the phenotypic method and easy operational management suggest that the conven-
tional PCR-based method can be extended to the detection of mutation-based drug resist-
ance (500, 514).

RT-PCR-based detection. Clarithromycin resistance attributed to well-known single
mutations, such as A2142C, A2142G, and A2143G in the 23S rRNA gene, is a major fac-
tor that contributes to the treatment failure of standard clarithromycin-based triple
therapy (520, 521). These mutations have been associated with a high level of clarithro-
mycin resistance in Europe, Asia, South America, North America, and Africa, whereas
other mutations, including T2182C, C2611A, T2717C, and T2142C, have been reported
to confer low levels of clarithromycin resistance (317, 522, 523). With increasing clari-
thromycin resistance rates in H. pylori, the use of molecular methods that offer rapid
and accurate detection of H. pylori infection and clarithromycin resistance simultane-
ously in real time is being emphasized. In line with this, modern molecular methods
based on RT-PCR techniques can provide results directly from biopsy specimens or
stool specimens within a few hours.

Currently, several molecular methods for simultaneous detection of H. pylori infection and
clarithromycin resistance are commercially available, including H. pylori ClariRes (Ingenetix,
Vienna, Austria) (524), Allplex H. pylori and ClariR (Seegene, South Korea) (525), Lightmix H.
pylori (TIBMolbiol, Germany) (526), H. pylori TaqMan real-time PCR assay (Meridian Bioscience,
United States) (328), Amplidiag H. pylori 1 ClariR (Mobidiag, Espoo, Finland) (319, 527), and
RIDA GENE H. pylori (r-Biopharm, Darmstadt, Germany) (318). These methods have shown
excellent performance for simultaneous detection of H. pylori infection and clarithromycin
susceptibility with a sensitivity and specificity up to 94% and 100%, respectively, from biopsy
or stool specimens. Furthermore, several other RT-PCR assays have been developed for the
detection of resistance to clarithromycin and other antimicrobials (528, 529). A one-tube mul-
tiplex PCR that applies the amplification refractory mutation system (ARMS) combined with
RT-PCR assay was developed and validated for the simultaneous detection of H. pylori, clari-
thromycin resistance, and levofloxacin resistance (528). RT-PCR was performed with relevant
ARMS-PCR primers specific for the 16S rRNA, 23S rRNA, and gyrA genes in a single tube. The
ARMS-PCR-specific products were detected using fluorescent TaqMan gene probes specific
for these genes. The diagnostic performance of this assay was very high, with sensitivity and
specificity for H. pylori, clarithromycin resistance, levofloxacin resistance, and double resistance
of 100% and 95%, 100% and 100%, 98% and 95%, 100%, and 97%, respectively (528). A novel
assay for wild-type and QRDR-specific mutations leading to quinolone resistance detection
using Forster resonance energy transfer (FRET)-labeled probes was evaluated for quick detec-
tion of quinolone-resistant H. pylori strains (529).
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The RT-PCR-based assays are simple, highly accurate, fast, and cost-effective and
provide results for infection as well as for antimicrobial resistance in real time that can
be easily applied even in resource-limited, small and medium-sized hospital laborato-
ries and will foster AST-guided therapy.

Whole-genome sequencing-based detection. Recently, whole-genome sequenc-
ing technology has advanced considerably in terms of its affordability with regard
to the technology as well as the sample running, which has provided a good oppor-
tunity for laboratories to conduct mutation-based drug resistance evaluation (526,
530). Next-generation sequencing (NGS) technology-based bacterial WGS is cur-
rently emerging as a high-throughput, cost-effective, and faster technology that
offers a more comprehensive and accurate tool for the detection of infection as well
as antimicrobial resistance (531, 532). NGS-based WGS has been found to be highly
successful and employed for the detection of mutations resulting in phenotypic
drug resistance, enabling its potential for designing and implementing local treat-
ment policies (436, 499, 533, 534). The performance of NGS over conventional
Sanger sequencing is evident from the fact that alleles with frequencies of 2 to 10%
can be detected by NGS, whereas those with frequencies of 15 to 25% can be
detected by Sanger sequencing (535). However, the requirement of culture isolates
remains the major limitation of WGS, as the application of metagenomics
approaches directly on clinical specimens, such as gastric biopsy specimens, is ham-
pered due to the low bacterial genome and high human genome background. A
good concordance of WGS has been reported in detecting mutation-based pheno-
typic antimicrobial resistance to amoxicillin, clarithromycin, and levofloxacin com-
pared with Sanger sequencing (534, 536–540). Furthermore, the results of NGS-
based testing of formalin-fixed paraffin-embedded tissues for resistance mutations
have been correlated with those of agar dilution method for clarithromycin, levo-
floxacin, rifabutin, and tetracycline resistance with fair concordance for metronida-
zole and amoxicillin (411, 541). Nevertheless, NGS-based sequencing performed
with formalin-fixed paraffin-embedded tissues has also enabled the detection of
mutations that correlate with treatment failure (521, 541).

Owing to their high concordance in mutations and phenotypic drug resistance,
WGS-based methods are an attractive alternative to phenotypic methods. Recently,
PacBio technology was used to evaluate mutations causing resistance to antibiotics,
including amoxicillin, clarithromycin, levofloxacin, metronidazole, tetracycline, and
rifampicin (421, 507). Although good agreement between PacBio technology-based
mutations and the mutations evidenced by targeted PCR and Sanger sequencing
has been found (421), moderate agreement for levofloxacin and an unusual number
of SNPs showing no agreement for metronidazole have also been demonstrated
(507). However, discrepancies in the agreement between the NGS-based genotype
mutation and phenotypic drug resistance for clarithromycin (542) and metronida-
zole (534) have also been reported. The metronidazole resistance-conferring genes,
rdxA and frxA, turned out to be highly variable genes with an unusually high num-
ber of SNPs without any clear association with phenotype resistance, resulting in
discrepant agreements (507). Furthermore, it is worth considering other mecha-
nisms of metronidazole resistance, including mutations in dapF and efflux system
proteins, to understand the discrepant concordance with metronidazole (437).
Moreover, NGS could resolve and detect novel, rare, and complex drug resistance
mechanisms, such as deletions, large insertions ending with stop codons, or no-
stop mutations, making it challenging to detect by conventional PCR followed by
Sanger sequencing (430).

Other genotypic detection methods of antimicrobial resistance. Other novel
methods that have been successfully employed for the detection of antimicrobial re-
sistance in H. pylori include droplet digital PCR (336, 337), DNA microarray technology
(543), and multiplex quantitative PCR (544). The droplet digital PCR-based detection of
antimicrobial resistance, especially to clarithromycin, has shown a high concordance
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with phenotypic detection by E-test or genetic detection by Sanger sequencing (336,
337). Moreover, droplet digital PCR is efficient in detecting clarithromycin resistance
alleles in DNA extracted from formalin-fixed paraffin-embedded tissues (337).
Furthermore, studies have found a high prevalence of mixed drug-resistant isolates,
and their accurate detection of culture-based antimicrobial resistance testing of a sin-
gle clone provides a misleading result (480, 481) that could lead to the failure of eradi-
cation therapy. However, with the advent of droplet digital PCR for detecting heterore-
sistance, eradication therapy can be performed more effectively. DNA microarray
technology is a reliable, cost-effective, high-throughput, and rapid method that can
provide clarithromycin and levofloxacin results within 6 h with a sensitivity to detect
103 CFU/mL and specificity of 97.5% (543). Quantitative PCR has provided perfect con-
cordance with the E-test for detecting clarithromycin and levofloxacin resistance (544).
The sensitivity, specificity, PPV, NPV, and accuracy for detecting clarithromycin resist-
ance were 98.7%, 100%, 75.0%, 100%, and 98.8%, respectively, whereas they were
99.8%, 100%, 93.8%, 100%, and 99.8%, respectively, for detecting levofloxacin resist-
ance (544). The line probe assay GenoType HelicoDR (Hain Life Sciences, Germany), a
commercially available assay based on multiplex PCR with strip hybridization requiring
operator interpretation, is capable of simultaneously detecting the most common
point mutations in 23S rRNA (A2143G, A2142G, and A2142C) for clarithromycin resist-
ance and in the gyrA gene (N87K, D91G, D91N, and D91Y) for levofloxacin resistance
from biopsy specimens (545).

SUSCEPTIBILITY-GUIDED TREATMENT FOR EFFECTIVE ERADICATION

Typically, the rates of resistance to clarithromycin and metronidazole in a particu-
lar region determine the constituents and predict the success rate of eradication
therapy. However, resistance to these antibiotics is frequently observed. A meta-
analysis conducted on the resistance pattern of primary antibiotics in the Asia-Pacific
region reported resistance rates of 17% for clarithromycin, 44% for metronidazole,
and 18% for levofloxacin; the rate was below 5% for amoxicillin and tetracycline
(546). In most countries, the prevalence of resistance to clarithromycin, metronida-
zole, and levofloxacin has increased to a level that renders their empirical use in tri-
ple therapies unsuccessful (443). Based on the threat that may be imposed, clarithro-
mycin-resistant H. pylori was listed in the WHO’s priority list of antibiotic-resistant
bacteria, and it was ranked as the most common cause of community-acquired infec-
tion (547). Given the importance of AST in eradication therapy, recently published
reports indicate that AST-guided therapy improves the efficacy of clarithromycin-
based first-line triple therapy for H. pylori eradication (224, 225, 541, 548). Current
consensus guidelines, including the Maastricht V/Florence and Taipei consensus
report, also recommend AST for clarithromycin before the initiation of therapy when
it is included as a constituent of the first-line standard therapy, unless a low resist-
ance rate of clarithromycin is documented in populations or regions for empirical
therapy (72, 78). However, currently, AST for H. pylori is largely unavailable, and only
a few major reference laboratories offer culture-based or molecular-based antimicro-
bial susceptibility testing because the cultivation of H. pylori to determine suscepti-
bility can be very difficult, as it can demonstrate poor growth and be time-consum-
ing and expensive (493, 549).

In the absence of AST results, inappropriate prescription and use of resistant antimi-
crobial constituents are the most common factors contributing to eradication failure
and fueling the development of clarithromycin resistance. To increase the efficacy of
standard eradication therapy and decrease the spread of antimicrobial resistance, the
application of properly articulated and carefully implemented hospital-wide H. pylori
therapy using antimicrobial stewardship principles should be considered, which is
based on the use of optimized and direct or indirect AST-guided therapy (550).
Furthermore, the coronavirus disease 2019 (COVID-19) pandemic has resulted in uni-
versal accessibility of PCR-based diagnostic approaches in hospitals and led health care
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policy makers to speed up the collection and dissemination of clinical evidence, includ-
ing diagnostics, treatments, vaccine developments, and health-related technology
advancements, which could be repurposed to implement the readily available molecu-
lar approaches to prevent the emergence of antimicrobial resistance and its dissemina-
tion. For example, due to the COVID-19 pandemic, almost all of the local hospitals and
testing laboratories in Europe adopted RT-PCR-based testing for simultaneous detec-
tion of H. pylori infection and clarithromycin resistance from biopsy and stool samples
(551).

CONCLUSIONS

Increasing clarithromycin resistance and lack of AST-guided therapy are key fac-
tors contributing to the failure of eradication therapy and worsening of H. pylori-
associated mortality. Accurate diagnosis of an infection is a critical step in the suc-
cessful eradication and curbing of the development of antimicrobial resistance. The
performance of the diagnostic methods depends on several factors, such as clinical
setting, skills of laboratory personnel, patient factors, and H. pylori strains used for
preparing diagnostic kits. Therefore, methods achieving excellent performance after
local validation usually provide the most accurate infection diagnosis. Moreover, the
real-time assessment of clarithromycin susceptibility by RT-PCR-based methods is
valuable for the judicious use of appropriate and effective therapy to achieve the
highest eradication rate. Furthermore, AST-guided therapy using the antimicrobial
stewardship principle might play a role in minimizing eradication failure and resist-
ance development.
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