
Machine Learning for Antimicrobial Resistance Prediction:
Current Practice, Limitations, and Clinical Perspective

Jee In Kim,a,b,h Finlay Maguire,a,b,c,l,m Kara K. Tsang,d Theodore Gouliouris,e,f,g Sharon J. Peacock,e Tim A. McAllister,h

Andrew G. McArthur,i,j,k Robert G. Beikoa,b

aFaculty of Computer Science, Dalhousie University, Halifax, Canada
bInstitute for Comparative Genomics, Dalhousie University, Halifax, Canada
cDepartment of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Canada
dLondon School of Hygiene & Tropical Medicine, London, United Kingdom
eDepartment of Medicine, University of Cambridge, Cambridge, United Kingdom
fClinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, United Kingdom
gCambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
hLethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
iDavid Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
jM.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
kDepartment of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
lShared Hospital Laboratory, Toronto, Canada
mSunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
MACHINE LEARNING FOR AMR PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Suitability of Genomic Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Representing Genomes and Phenotype Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Feature Selection for Interpretable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Training and Testing Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Choosing the appropriate classifier/algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Evaluating machine-learning models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LIMITATIONS OF MACHINE LEARNING ANALYSIS IN AMR RESEARCH . . . . . . . . . . . . . . . . . . .11
Overcoming the Limitations and Bridging the Knowledge Gap . . . . . . . . . . . . . . . . . . . . . . . . .13

TRANSLATINGML-AMR PREDICTION FROM RESEARCH TO PRACTICE . . . . . . . . . . . . . . . . . . .14
ML for Public Health AMR Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
ML for Clinical Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
AUTHOR BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

SUMMARY Antimicrobial resistance (AMR) is a global health crisis that poses a
great threat to modern medicine. Effective prevention strategies are urgently
required to slow the emergence and further dissemination of AMR. Given the avail-
ability of data sets encompassing hundreds or thousands of pathogen genomes,
machine learning (ML) is increasingly being used to predict resistance to different
antibiotics in pathogens based on gene content and genome composition. A key
objective of this work is to advocate for the incorporation of ML into front-line set-
tings but also highlight the further refinements that are necessary to safely and con-
fidently incorporate these methods. The question of what to predict is not trivial
given the existence of different quantitative and qualitative laboratory measures of
AMR. ML models typically treat genes as independent predictors, with no considera-
tion of structural and functional linkages; they also may not be accurate when new
mutational variants of known AMR genes emerge. Finally, to have the technology
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trusted by end users in public health settings, ML models need to be transparent
and explainable to ensure that the basis for prediction is clear. We strongly advocate
that the next set of AMR-ML studies should focus on the refinement of these limita-
tions to be able to bridge the gap to diagnostic implementation.

KEYWORDS antimicrobial resistance, machine learning

INTRODUCTION

The antimicrobial resistance (AMR) crisis is responsible for more than 1.27 million deaths
per year worldwide (1). It is accompanied by high economic costs due to associated

morbidity and mortality, the need for additional diagnostics and treatments for drug-
resistant infections (DRI), and prolonged hospital admissions (2). Such impacts have driven
governing authorities to identify several key objectives to rectify the urgent issue, including
improved surveillance and the development of rapid diagnostics (3–5). Surveillance will
inform when and where AMR is occurring to improve policies on antimicrobial use (AMU)
in human and animal health, and improved diagnostics will aid in the effective use and
stewardship of the already limited armory of antimicrobials. Depending on the purpose of
AMR detection, different requirements are necessary in terms of speed, accuracy, and
mechanistic understanding. For example, clinical diagnostic AMR detection requires high
speed and accuracy to guide urgent treatment protocols, whereas research and surveillance
are generally less time critical.

Current laboratory-based diagnostic and characterization methods for priority pathogens
do not provide all information needed for effective surveillance. Moreover, routine proce-
dures for antibiotic susceptibility testing (AST) do not always yield consistent results between
different phenotypic methods or across different laboratories (6, 7). The data extracted from
high sequencing, in conjunction with lab-based methods, can help overcome such obstacles
(8). Specifically, whole-genome sequence (WGS) data can be used to monitor which genetic
variants associated with AMR are widespread. One can also infer an organism’s functional
potential from sequence information, making rapid diagnostics possible.

Different strategies have been used to link genomic information with AMR phenotype.
A common set of genomic methods to study functional potential are genome-wide asso-
ciation studies (GWAS), which test the statistical associations between genetic variants in
whole genomes and the corresponding AMR phenotypes to potentially discover new re-
sistance determinants (9–11). Classical GWAS often takes a single-locus approach, provid-
ing interpretable results with P values for each identified variant (12). However, given that
phenotype is often the product of epistatic interactions of variants rather than the prod-
uct of individual loci (13, 14), this approach can lead to reduced prediction accuracy.
Microbial genomes provide extra difficulties for the single-locus approach in the form of
increased heterogeneity due to factors such as the potential for high rates of recombina-
tion and horizontal gene transfer (HGT) events. This is especially relevant for AMR genes,
as they are often horizontally transferred and are part of a dynamic accessory genome
(15, 16). To deal with such limitations, microbial GWAS have increasingly adopted multilo-
cus approaches and methods derived from machine learning (ML) (17, 18).

ML methods employ algorithms to learn and predict AMR phenotypes directly from
sequenced bacterial genomes, which can be rapid and highly accurate. However, much
as with GWAS adopting ML influenced approaches, ML methods can also incorporate
elements traditionally associated with GWAS, such as association tests (19) and correc-
tion for population structure (20). This overlap between ML and GWAS approaches and
the influence they exert on one another can make it increasingly difficult and conten-
tious to differentiate between them (much as with ML and statistics [21]). Arguably the
main difference in these approaches is a matter of prioritization: GWAS focuses on detec-
tion of strong (putatively causal) associations between genomic features and phenotype,
whereas ML attempts to maximize the predictive value of genomic features.

ML implementation has gained popularity for AMR phenotype prediction studies,
which can support surveillance and precise diagnosis as well as offering the chance to
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explore the mechanisms driving AMR (22–24). In spite of the promise of ML, relatively few
methods have been adopted in clinical or broader public-health settings (25). A recent
review by Anahtar and colleagues (26) summarizes the recent findings in the field with a
focus on implementing the ML technology in electronic health records to aid antimicrobial
stewardship and combat AMR. In this review, we present key developments in AMR pre-
diction using ML and suggest appropriate practices (Fig. 1), examine current limitations,
and propose future directions. Specifically, we advocate for collaborative and interdiscipli-
nary efforts with basic science research, which will push ML applications to fully integrate
into public health and clinical usage.

MACHINE LEARNING FOR AMR PREDICTION

ML methods for AMR prediction typically use supervised learning, where a set of data
with known labels (e.g., genome assemblies and their corresponding antimicrobial suscep-
tibility profiles) are used to train and test a predictive model (27). The goal is to learn a set
of rules or functions that can transform input genetic data or “features” (e.g., genes or sin-
gle nucleotide variants [SNVs] in genomic context) into output predictions (i.e., labels) that
are interpreted as phenotypes. ML has been applied to AMR prediction in pathogens such
as nontyphoidal Salmonella and Mycobacterium tuberculosis with well-characterized resist-
ance mechanisms. For example, the abundance of nontyphoidal Salmonella genomes and
the corresponding antimicrobial susceptibility profiles obtained through programs like the
National Antimicrobial Resistance Monitoring System (NARMS) led to the implementation
of ML methods to predict the MICs within 61 2-fold dilution range, which resulted in a
model with an overall average prediction accuracy of 95% (28). The aim of the investiga-
tion was to develop ML models that can predict MIC values that potentially can guide
responses to outbreaks and inform antibiotic stewardship decisions. As NARMS tracks
select enteric bacteria found in ill people, retail meats, and food animals in the United
States, the MIC prediction models based on such data may have wider applicability for var-
ious sectors, like medicine and agriculture.

For multidrug-resistant M. tuberculosis, well-defined SNVs associated with AMR were
used to yield multidrug prediction models with the highest sensitivity of 96.3% (29). The
investigation’s aim was to apply a recently developed ML technique, the deep denoising
auto-encoder, to learn the M. tuberculosis isolates collected from 16 countries and predict

FIG 1 Workflow for ML prediction of AMR.
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their multidrug resistance. Multiple-drug classification is not yet as common as single anti-
biotic resistance prediction models, and the model was able to outperform other more
commonly used classifiers. As most pathogens are now resistant to multiple antibiotics,
multidrug-resistant models better emulate the current state of AMR.

In addition to showing high accuracy in resistance phenotype prediction, ML models
can be further dissected to investigate the drivers of AMR. Maguire et al. applied an ML
model to Salmonella WGSs isolated from broiler chickens (30). The authors were able to
construct models with average precision ranging from 0.91 to 0.98, achieved through
learning the known AMR genes in WGSs. The authors also identified the main genetic
drivers for resistance in the studied group of Salmonella, which corresponded with previ-
ously identified AMR mechanisms for respective antibiotics (30). In Kavvas et al. the
authors used ML models to find known AMR-implicated genes of M. tuberculosis,
uncover new putative AMR determinants, and resolve potential epistatic interactions
driving AMR evolution (31). The goal of the study was to extract key insights from AMR
genomic data instead of predicting resistance with high accuracy. Tsang et al. combined
explainable ML models with Escherichia coli targeted gene expression experiments of
the selected features from the model. This uncovered previously unknown substrate ac-
tivity for known b-lactamases (32).

These examples demonstrate that trained ML models can potentially answer a wide
array of research questions beyond phenotypic resistance prediction. However, an
essential predicate to the application of ML techniques is their ability to generalize (i.e.,
to make accurate predictions on data sets beyond those that were used to train and
test the model).

Suitability of Genomic Data Sets

A critical first question surrounds the amount of data required for ML analysis. An
appropriate but unsatisfying answer is that the genomic data set size required to
implement ML depends on the prediction problem in question, although “sufficiently
large” is often implicitly defined based on the availability of data rather than any theo-
retical lower bound of required numbers of genomes. In general, larger data sets offer
more information to support the identification of key predictors, especially when cer-
tain predictors are relatively rare, but complex resistance mechanisms and nonrandom
sampling can limit the effectiveness of additional genomes within a data set.

If the bacterial species of interest exhibits low DNA sequence and gene content diver-
sity between isolates (e.g., highly clonal M. tuberculosis) with well-known high-penetrance
AMR genes, fewer genomes will suffice to identify key genes or sequence features that
predict the phenotype of interest. The reality is that there are many factors interfering with
the linear process of resistance genotype to phenotype translation. That is, resistance phe-
notypes are the product of multiple genes of various penetrance. Only accounting for the
high-penetrance AMR genes with a limited number of genomes is not a suitable approach
for a number of species. Organisms with higher genomic diversity (e.g., highly recombin-
ing Helicobacter pylori) (33) will have many differences that are not associated with the
AMR phenotype. In such instances, a larger data set is required to identify the key AMR
features against a large backdrop of noise that may or may not be relevant to AMR.

Recent AMR prediction studies vary widely in the number of genomes used, from
97 nontyphoidal Salmonella genomes isolated from broiler chickens (30) to a multispe-
cies bacterial study containing more than 7,000 genomes (34). Each study resolved ML
models with high precision (.0.90) (30) and readily differentiated resistant from sus-
ceptible phenotypes (34). Regardless of the number of sampled genomes, nonrandom
sampling of pathogen diversity induces correlation structure within the set of sampled
pathogens, which can reduce the effective size of the data set. Samples from similar
locations, times, and habitat types can produce large sets of very similar genomes, and
the resulting population structure can be a significant confounder in the ML model.
This structure can also provide less information to a prediction model than a more
evenly sampled data set, resulting in a prediction model that is constrained to the
characteristics of the data set and not broadly applicable. Models are more likely to
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associate features that are common in the background of closely related strains to the
AMR phenotype, and controlling for this effect in studies with unevenly sampled data
is vital (35, 36).

For example, Hicks et al. demonstrated skewed resistance model performance based
on sampling bias (37). Gonococcal models from one clinical source versus aggregated
data from various clinical sources showed substantial variation in predictive performance,
which was attributed to the population structure (37). Consideration of population effects
is especially relevant for studies developing prediction models from a multisectoral One-
Health perspective with genomic data sets of various origins. Although there is overlap in
the genomic content of samples from different environments, clinical and agricultural set-
tings can possess distinct sets of AMR determinants and genomic backgrounds (38–40).
This habitat sorting of determinants is enhanced by horizontal transfer of genes present
on mobile genetic elements. Given such evidence, it is important to consider that an ML
model trained on samples from one source may be ineffective in predicting the resistance
phenotype for isolates from different environments, and universal ML models for AMR
may not be feasible. Rather than focusing on constructing universal ML models, adapting
ML models based on the genomic epidemiology of the concerned species could create
more generalizable ML models that reduce the confounding effect of source location.

Another common concern is class imbalance, where the majority of the data are
comprised of one phenotype. In many AMR phenotype prediction studies, representa-
tion of resistant (R) and susceptible (S) phenotypes is often uneven, in part due to
focus of sequencing efforts on isolates associated with poor clinical outcomes or just
the rarity of certain types of resistance in a population. If a classifier naïvely learns from
an imbalanced data set containing predominantly resistant instances, it may predict all
genomes as resistant and be inaccurate for identifying susceptible phenotypes.
Resampling techniques such as the Synthetic Minority Oversampling Technique
(SMOTE) (41, 42) aim to increase the size of the underrepresented set by interpolating
between existing samples or otherwise generating new points from an inferred distri-
bution. An alternative is to reweight cases to increase the importance of the minority
class relative to the majority phenotype or to undersample the majority class.
However, the use of such methods in AMR studies has been limited, and the utility of
resampling does not always guarantee improved model accuracy, especially when
data sets are very small (43), such as in the case of recently emerged resistant strains.
Expanding genomic surveillance efforts would benefit ML studies by sequencing a
broad diversity of antimicrobial-susceptible and -resistant isolates.

It is also imperative to explore and evaluate genome assembly quality. Poor assemblies
can confound the learning algorithm and lead to inaccurate prediction if key features are
missing or false features are introduced. For example, an assembled genome with a high
contamination rate may associate the contaminated sequences as the key contributor to
the phenotype of interest. To establish quality control metrics such as number of reads, av-
erage read length, and depth of coverage of assemblies (44), tools like QUAST (45) are
used. The quantity and quality of assembled genomes increase as sequencing and ge-
nome assembly technologies advance. For example, hybrid short- and long-read assembly
approaches have been used to reconstruct complete genomes and identify determinants
in pathogens with highly diverse and mosaic resistance content in clinically relevant
Neisseria gonorrhoeae (46) and agriculturally important Mannheimia haemolytica (47).
Similarly, long-read sequencing and hybrid assembly have shown high efficacy in resolving
the genetic context and plasmid associations of mobile AMR genes that are difficult to
resolve with short-read WGS (48, 49). Nonetheless, sharing of raw sequencing results (e.g.,
FASTQ for short-read data deposited in an NCBI BioProject) along with assemblies and
phenotypic data are critical for assessment of assembly quality as well as development of
assembly-free ML approaches as described below.

Representing Genomes and Phenotype Labels

Once the suitability of genomic data sets has been confirmed, representations of
the sampled genomes and associated AMR phenotypes must be created using an
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appropriate encoding scheme. In terms of phenotype encoding, the key consideration
is whether we are interested in a regression approach to predict specific quantitative
measures of resistance (e.g., MIC) from genomes or a classification approach to predict
discrete categorical labels derived from MICs (e.g., susceptible/intermediate/resistant,
or SIR, interpretive categories). SIR categories are based on a series of cutoffs deter-
mined by standard-setting organizations such as the Clinical and Laboratory Standards
(CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST;
https://www.eucast.org/clinical_breakpoints/), with the exact cutoffs dependent on
context, e.g., clinical versus veterinary. It is important to note that the cutoff guidelines
do not exist for all antimicrobials, hence sometimes only MICs can be determined for
epidemiological purposes.

The SIR interpretive categories are used to help guide antibiotic choice and dosing
(50); however, there are differences between guidelines that have implications for AMR
prediction applicability (51). The majority of ML AMR studies have focused on the clas-
sification of isolates into binary S/R phenotypes and bypass information that can be
drawn from the intermediate, or I, category, as discussed in detail in “Limitations of ML
analysis in AMR research,” below. On the other hand, while creating predictive models
for the underlying MICs is possible (28, 52–54) and potentially provides models less
prone to biases from categorical cutoffs derived from different guidelines, this
approach is more difficult, as MICs cannot be interpreted based on single absolute val-
ues. To predict MICs, larger antimicrobial susceptibility test (AST) data sets are required,
and we need to consider the complexities of MIC measurements (e.g., 2-fold serial dilu-
tions, left and right censorship, etc.) and the suitability of ML methods for MIC interval
regression (55).

In preparation for ML, genomes can be represented in several different ways, including
gene presence and absence, mutations in specific genes, and compositional properties.
Gene-based approaches can focus on known AMR genes by finding closest-matching
known resistance genes using curated AMR databases such as the Comprehensive
Antibiotic Resistance Database (CARD) and its Resistance Gene Identifier (RGI) software
(56) or the PathoSystems Resource Integration Center (PATRIC)’s AMR-focused tools (57),
among others (see, e.g., reference 58). Using different databases can lead to fluctuating
results in identifying AMR genes and predicting AMR (59–61); hence, a harmonized
approach incorporating more than one database may be necessary. Alternatively, more
comprehensive functional assignments can be made using general-purpose genome
annotation tools such as the Prokaryotic Genome Annotation Pipeline (62, 63) or Prokka
(64), which draw on multiple reference databases (65–67).

Even simple gene-focused genomic encoding approaches contain a lot of nuance. For
example, Nguyen et al. (68) implemented a feature-encoding approach that used only core,
non-AMR-associated genes from partial genome sequence data of Klebsiella pneumoniae,
Mycobacterium tuberculosis, Salmonella enterica, and Staphylococcus aureus to construct ML
models with incomplete WGS. Random nonoverlapping subsets of core genes were chosen
to construct different models to eliminate the confounding effects of population structure.
Although the accuracy of this approach was lower than that of models built from
assembled genomes (52), the outcomes demonstrated that incomplete genome sequences,
like those obtained without culturing from shotgun metagenomics or PCR-based amplifica-
tion, can still contain discriminating information for S/R phenotype prediction. The exclu-
sion of well-known AMR genes, many of which are often or always plasmid associated, also
hints that other highly scored core gene features are associated with resistance pheno-
types. The associated core genes may contribute to the clinically resistant phenotype, or
they may correlate with the phenotype without themselves being causal; experimental
work must be done to differentiate these two hypotheses. Such studies illustrate that alter-
native approaches to encoding genetic information can be used to generate new hypothe-
ses for investigating AMR mechanisms.

Rather than considering the presence or absence of entire genes (known AMR
determinants or otherwise), a genome can also be represented by the presence of all
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mutations, including SNVs, insertions, and deletions, relative to a known reference ge-
nome. Such encodings are especially suitable for bacterial species that show relatively
low sequence diversity and limited evidence of HGT, such as clinically relevant M. tu-
berculosis (69) and agriculturally relevant Mycoplasma bovis (70). Many studies on drug-
resistant M. tuberculosis have genomes at the level of SNVs (31, 71, 72). For example,
the presence and absence of SNVs can be seen by comparing every nucleotide site dif-
ferent from the reference genome that contributes to amino acid substitution (71).
Kavvas et al. (31) used a similar approach but avoided the need for a single reference
genome by representing strain-to-strain variation within each protein-coding cluster.
However, focusing only on genes, their nonsynonymous mutations, and their func-
tional annotations can overlook the role of noncoding sequences and potentially
unknown or poorly annotated resistance determinants. Instead, combining information
from annotated genes and noncoding regulatory sequences may contribute significant
insights on biological mechanisms underlying the predicted resistance phenotype.

Composition-based approaches offer a promising alternative to gene-centric fea-
ture-encoding methods by examining variation across the entire genome. In this
approach, a genome is decomposed into fixed-length nucleotide sequences, referred
to as k-mers, where k represents the nucleotide length. The presence and absence pat-
terns of k-mers among resistant and susceptible isolates can then be used as features
for ML. Analyzing the features used by trained models can help identify k-mers derived
from resistance-associated genes or noncoding elements (73, 74). For example, 31-
mer-based prediction analysis with 12 different pathogenic species yielded models
that in 95% of cases had an accuracy of .80% and in nearly 50% of cases had accuracy
of .95% (24), demonstrating the broad efficacy of this approach in resistance predic-
tion. Notably, predictions using 31-mers could identify mutations previously known to
confer resistance, increasing confidence in the method. A k value of 31 has been
shown to be suitable for bacterial genome assembly (75) and reference-free bacterial
genome comparisons (35, 73). However, investigators can examine the predictive abil-
ity of alternative lengths or even a range of k-mer sizes. k-mer methods additionally
provide some benefits over other feature-encoding methods, as k-mer sets can be gen-
erated without alignments or reference genomes and can even be used on raw
sequencing reads without genome assembly.

One can also combine different encoding approaches. Davies et al. chose several fea-
ture-encoding strategies to improve the challenging prediction of amoxicillin-clavulanate
resistance in E. coli, including the presence/absence of well-known b-lactamase genes
(76). Models based only on the presence of b-lactamase genes did not perform well, but
the addition of features including promoter mutations and copy number estimates associ-
ated with b-lactamase hyperproduction improved performance. Although the authors
used random-effect models and not ML, Davies and authors suggest that a broader set of
genetic features improves the prediction outcome.

Feature Selection for Interpretable Models

The encoding methods described above can produce huge numbers of genetic fea-
tures. For example, Drouin et al. generated up to 123 million k-mers from pathogen
genomes (73). Large numbers of genetic features can lead to extremely long learning
times and a failure to identify meaningful associations among candidate predictors. In
general, only a very small subset of genes, k-mers, or mutations in a genome will corre-
late with or contribute to the resistance phenotype of bacteria. To simplify the learning
process, a first pass of feature evaluation and selection can be conducted. Feature
selection techniques often apply filter methods (77) that statistically evaluate the asso-
ciation of features with the phenotype of interest (similar to classical GWAS
approaches), either one by one or in small subsets, prior to training an ML model. A
benefit of this type of filtering is that it is computationally feasible even for very high-
dimensional data. Pairwise association tests, such as the chi-square test, that eliminate
features prior to constructing a model can help select those features with the highest
predictive power.
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Other types of feature selection methods exist, such as the model-dependent wrap-
per methods like the recursive feature elimination (RFE), which selects features based
on weights (e.g., the coefficients of a linear model) and recursively eliminates the least
important features, or the sequential feature selection (SFS), which can start with either
zero or all features included in the model, with features added or removed until an
optimal set is obtained (78, 79). If features are being added, the process stops when
additional features yield no improvement to the model, whereas if features are being
removed, the process stops when removal of additional features starts to reduce
model accuracy. Lastly, some model types have built-in feature selection known as em-
bedded methods. Feature selection can drastically reduce the complexity of the model
and the learning time, making it more comprehensible to users when the model is
dissected.

One disadvantage of conducting feature selection is the potential of losing prediction
information based on rare resistant genetic variants. Therefore, it is recommended that
investigators benchmark prediction performance with and without feature selection meth-
ods and thoroughly examine the features ranked highly by the selection method rather
than following a completely automated process without human intervention.

Training and Testing Machine Learning Models

Processed input data with resistance phenotypes are typically divided into different
subsets: training, validation, and a holdout test set. The training set is used to optimize
the parameters of the predictive model with respect to some function measuring how
well the desired output phenotypes are predicted. The validation set is used to evalu-
ate the relative effectiveness of different types of models and model hyperparameters.
Hyperparameters are important external variables related to the model (e.g., splitting
criterion in a decision tree model) that must be set before a model can be trained and
cannot be directly optimized during training. Careful tuning of hyperparameters can
greatly increase the prediction performance of individual models. The test set is used
only once to evaluate the performance of the final optimized predictive model, hence
it should not be used by the classifier in any of the previous training and optimization
steps. The performance on the test set expresses the ability of the model to generalize
its predictions to new or larger data sets. More directly, the test set performance allows
us to speculate how well the trained model is likely to work when used outside the
specific study.

Typically, to maximize the amount of data available to train the model, a separate
validation set is dispensed with in favor of a k-fold cross-validation approach over the
training set. Cross-validation splits the training set into k equal-sized subgroups, or
folds, with all but one of these folds used to fit the model, and the remaining fold then
used as a validation set to evaluate the model’s performance. This process is repeated
for all folds and used to select the models and hyperparameter values that achieve
best overall performance. Ensuring that the test set is only used once, and being me-
thodical in training and validation, is vital to reduce the risk of producing models that
cannot be generalized and are low in utility.

Given the range of current ML algorithms, the speed at which new ones are devel-
oped, and the variety in strengths and weaknesses these algorithms encompass, it is
imperative to robustly evaluate a range of models and carefully optimize each one. A
simple, well-trained model with carefully optimized hyperparameters can outperform
even highly complex models on some data sets (80). Investigators can pursue a com-
prehensive approach and implement a huge number of model types before selecting
for the best cross-validation results. However, structured implementation of a smaller
number of models with optimized hyperparameters may be a more effective use of
resources and less prone to overfitting to the training data (see below for more
details).

Choosing the appropriate classifier/algorithm. A key decision in the choice of clas-
sification algorithm is the expected complexity of the classification task. Generally, rela-
tively simple models (in terms of numbers of learned parameters) have a higher bias,
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while more complex models have higher variance (81). Simple models can be more
interpretable (i.e., easier to determine which genetic features are important for predic-
tion), and have shorter run times, but may be unable to learn more-complex classifica-
tion rules leading to a model with higher bias (“underfitting”). Alternatively, higher-
complexity models can capture more complex associations among input features but
are more prone to creating higher-variance models that are excessively tailored to the
training set (“overfitting”), leading to poor predictions on the test set and unseen/new
data. However, the overfitting associated with more complex models can sometimes
be mitigated by using techniques like regularization that penalize model complexity.
Overall, it is important to assess the parameters in an algorithm to consider the trade-
off between bias and variance and the types of feature relationships a model can rep-
resent when choosing an algorithm.

It is often necessary to examine more than one type of algorithm to carefully assess
their interpretability (also referred to as explainability) and to train performance met-
rics in the context of a specific problem to make an appropriate choice. Especially in a
public health workflow, the ML classifiers’ prediction process should be transparent to
develop a highly interpretable model. Interpretability can be expressed in many ways
(82, 83) and is a very active area of current ML research (84, 85).

Three aspects of interpretability are highly relevant to AMR prediction: (i) ability to
evaluate individual input features, (ii) traceability, and (iii) ability to assess the interac-
tions of features. First, certain methods like logistic regression (LG)- and decision tree
(DT)-based classifiers explicitly evaluate individual input features: LG associates a
weight to each feature, while DT can rank the importance of features by identifying
features that reduce the variance. DT and its derivatives, such as random forest (RF),
contain hierarchically structured sets of internal nodes that apply explicit decision cri-
teria until a final prediction is made and a class label assigned (86). Hence, each node
is traceable (82) for DT-based algorithms, i.e., one can backtrack from the decision class
to understand the decision logic. DTs are flexible, as they can handle classification and
regression, such as the maximum margin interval trees designed for the specific
difficulties of MIC predictions (55). DT ensemble classifiers such as gradient-boosted
decision methods are increasingly being applied to AMR prediction problems (e.g.,
XGBoost used to predict MICs by Nguyen et al. [28]). The ensemble of decision trees is
created by sequentially adding trees and correcting errors at every iteration based on
previously grown trees (87) and has been found to outperform other learning methods
in AMR prediction studies (88). It is of high popularity due to its faster learning speed,
ability to handle sparse data sets (i.e., missing values), and avoidance of overfitting via
regularization (89). Another traceable set of algorithms is rule-based ML methods that
stem from the traditional but rigid rule-based system that uses IF-THEN statements
with conditions and a prediction, but these can only handle classification problems
(unless combined with another model type) (90). Rule-based algorithms like the set-
covering machine (91), which uses a set of Boolean rules (conjunction or disjunction of
features), can construct models that generalize well to different data sets as the rules
identify the smallest number of features that maximize prediction performance.
Finally, some algorithms integrate the calculation of feature interaction, e.g., addition
of an interaction term in the prediction model after considering the individual feature
effects to examine dependency. However, choosing a classifier that can model
increased interactions among features can reduce traceability. The studies highlighted
in Table 1 illustrate the use of different ML methods and demonstrate successful
design of ML models for classifying antibiotic resistance within genomes and identify-
ing the relevant genetic attributes.

Evaluating machine-learning models. Several evaluation metrics are available to
assess the different characteristics of a model, such as its ability to accurately discrimi-
nate classes and generalizability to unseen data (92). Two-class problems are often
expressed in terms of positive and negative sets; in the context of AMR, the positive set
usually encompasses the resistant isolates and the negative set the susceptible isolates
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for each antibiotic examined. One should choose an appropriate metric based on the
implementation purpose of the prediction model. For example, misclassification is costly
in clinical laboratories where a false-negative diagnosis (i.e., a resistant case incorrectly
classified as a sensitive case; also known as a very major error) can lead to treatment fail-
ure. Therefore, metrics that consider the effectiveness of the classifier on each class sepa-
rately are necessary. False-positive diagnosis, known often as major error, is also a high
risk that leads to misuse of antibiotics increasing the selective pressure for AMR patho-
gens. Based on the intended use of the model, whether that be clinical or surveillance
oriented, the error threshold can change and the choice of metric may differ.

Many accuracy measures are based on correct and incorrect assignments to each class,
which are typically organized into a confusion matrix (Table 2). True positives are correct
predictions of resistance, while true negatives are correct predictions of susceptibility to an
antibiotic. Multiclass classification can also be handled without denoting the classes as
positive or negative but instead using the class name. For example, with the inclusion of
intermediately resistant class of pathogens, the classes could simply be resistant, interme-
diate, and susceptible, without designating a preference for any class as positive.

Many evaluation metrics base their calculations on values in the underlying confu-
sion matrix, detailed in Table 3. A classifier’s error rate (E) can be calculated by dividing
the incorrectly predicted samples by the total number of samples (93). The accuracy
measure is the total number of correctly predicted samples divided by the total num-
ber of samples (i.e., 1 2 E). Many studies report accuracy due to its simplicity and

TABLE 1 Commonly used ML algorithms in AMR investigationsa

Algorithm Learning method Feature evaluation Traceable Interaction AMR investigation
Logistic regression Regression algorithm with

logistic curve that
associates weights to
each input features (134)

Yes No Nob Maguire et al. (30), investigated
primary AMR drivers of
nontyphoidal Salmonellawith
known AMR determinants as
features

Support vector machines Separates labeled training
data via constructing an
optimal hyperplane,
grouping appropriate
genes, k-mer, or SNV
features together (135)

Noc No Yes Niehaus et al. (136) used
M. tuberculosis SNVs to develop
resistance prediction models for
the 4 common first-line drugs

Random forest Set of decision trees with
internal nodes
containing a series of
questions about relevant
features; different
answers are directed to
separate child nodes
until reaching the final
class label (86)

Yes Yes Yes Moradigaravand et al. (88)
predicted AMR from E. coli
pangenome with various
feature representations
including the presence-absence
of accessory genomes and the
population structure inferred
from the core genome

Rule based Set of IF-THEN statements
with condition and a
prediction

Yes Yes Yes Drouin et al. (73) predicted
resistance of Gram-negative and
-positive pathogens using k-mer
features and the optimized set
covering machine

Neural networks Models loosely inspired by
the structure of human
brains, including deep
learning (DL) models,
and capable of modeling
complex nonlinear
relationships but require
large amounts of data

Yes No Yes Yang et al. (29) usedM. tuberculosis
SNV with DL to predict
resistance to the four first-line
antituberculosis drugs

aFeature evaluation is when the algorithm can weigh or rank the features’ impact on the prediction. A traceable algorithm allows visualization of the logical flow that leads
to a prediction. Interaction indicates whether the algorithm can represent feature interdependencies.

bWithout additional data processing.
cUnless using a linear kernel.
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applicability in binary or multiclass classification problems. However, if the data set is
imbalanced, the model training and accuracy will be more strongly influenced by the
abundant class, which will give a skewed representation of the model’s performance.
In such cases, metrics such as precision, recall/sensitivity, and specificity are better
measures to assess model performance. Precision measures which proportion of a
model’s positive predictions were correct, recall measures the proportion of actual pos-
itives correctly identified, and specificity measures the proportion of actual negatives
correctly identified. The best choice of evaluation method can be application specific.
For example, in the context of AMR diagnostics, a high-precision model can reduce the
overuse of antibiotics stemming from false-positive results. Conversely, high-recall
models can help reduce morbidity caused by treatment failure due to false-negative
results. Following model optimization, a desired balance between these needs can be
determined with metrics such as the F1 score and precision/recall (PR) plot. The F1
score is the harmonic mean of precision and recall, allowing simultaneous evaluation
of both measures, while the PR plot illustrates precision versus recall to allow model-
wide evaluation. The PR plot has a baseline that caters to the class distribution and is
well suited for imbalanced data (94). Overall, these evaluation metrics are commonly
used as performance measures in AMR studies, aiding model selection based on per-
formance with test/held-out sets.

LIMITATIONS OF MACHINE LEARNING ANALYSIS IN AMR RESEARCH

ML has great potential to replace a significant portion of conventional bench work
to determine AMR, streamlining and accelerating surveillance, diagnosis, and treat-
ment. However, further refinements are necessary to safely and confidently incorporate
these methods for applications beyond research. Global recognition of the AMR crisis
has increased the research and clinical attention being paid to AMR, with a corre-
sponding aggressive search for new antibiotics, yet our knowledge of the underlying
mechanisms of (and corresponding determinants of) AMR and modes of evolution still
needs to be expanded. The underlying mechanisms of many observed drug-resistant
infections are still poorly understood. This is especially acute for new, rapidly emerging,
resistant infections. A mechanistic understanding of AMR becomes even more chal-
lenging when resistance arises from changes at the cellular or microbial community
level. For example, subpopulations of bacteria can become persister cells in response

TABLE 2 Confusion matrix

True label

Predicted label

Positive Negative
Positive True positive False negative
Negative False positive True negative

TABLE 3 Evaluation metrics based on positive and negative predictions of a modela

Evaluation metric Equation
Error rate ¼ FP1 FN

TP1FP1 TN1FN
Accuracy ¼ TP1 TN

TP1FP1 TN1FN
Precision ¼ TP

TP1FP
Recall/Sensitivity ¼ TP

TP1FN
Specificity ¼ TN

TN1FP
F1 ¼ 2P� R

ðP1RÞ
aTP, true positive; FP, false positive; TN, true negative; FN, false negative; P, precision; R, recall.
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to antibiotics or other cellular stressors (95), and genomic capacity for resistance can
be rapidly augmented via HGT during biofilm formation (96). These complex processes
are challenging to predict even when the entire genome sequence is available.
Consequently, ML models can struggle to learn and generalize with incomplete infor-
mation and highly complex cellular and evolutionary mechanisms of resistance.
However, ML can be used to generate hypotheses to aid in the elucidation of AMR
genes or mechanisms. For example, if sequences previously unrelated to resistance are
highly scored during a feature selection step, one can postulate that there is some con-
nection to resistance that can be further examined via experimentation.

Another problem is that many current ML investigations treat each gene or
sequence independently. While such models tend to be more interpretable, pheno-
types are often the product of several genes working in concert in a nonlinear manner.
For example, AMR is often associated with tolerance to heavy metals stemming from
coselection of metal and antibiotic resistance genes (97). The association has been sug-
gested to enhance the maintenance and spread of AMR in the environment (98). Metal
resistance genes do not directly confer resistance to antimicrobials, except in cases of
a shared efflux mechanism, but they improve the fitness of the bacteria to tolerate a
higher level of antibiotics, prolonging bacterial survival and persistence of AMR genes.
Current ML models using univariate features cannot capture such variations of gene
interplay. Techniques to better resolve the interplay of gene features in ML studies
have been investigated, although they are not yet commonly adopted. A study opti-
mizing a classical LG algorithm to measure the interaction effects of multivariate fea-
tures is an example (99). However, the abundance of features in genomic studies
makes it very challenging and complex to consider the large potential number of inter-
actions among features. Some aspects of classical multivariate statistics simply do not
translate well to rich genomic data sets and ML algorithms.

Kavvas et al. (31) used M. tuberculosis SNVs and incorporated an improved support
vector machine (SVM) classifier (Table 1) to postulate genetic interactions of multiple
alleles and identify potentially new resistance genes not directly related to drug targets
but involved in the regulation of the resistance mechanisms. The candidate alleles
were mapped to homologous protein structures to validate their role in AMR. A posi-
tive control using a known allele selected by the modified SVM confirmed the identi-
fied mutation mapped to a known location of AMR-conferring mutations, indicating
that the new method could associate newly identified alleles with the AMR phenotype.
Another recent study by Benkwitz-Bedford et al. presented a reverse genetics approach
and paired ML models to predict bacterial growth and doubling time under subinhibi-
tory concentrations of various antimicrobials from E. coli genomic data. Although the
prediction performance was not at the level of applicability, the features from the
model provided insight into the resistant-specific and housekeeping-related genes
that bacterial cells incorporate to evolve AMR (100). Such approaches better resemble
the biological reality of resistance mechanisms that utilize many genes that participate
in epistatic interactions. However, these computational correlation studies cannot
replace experimental validation to confirm the causality of resistance by the deduced
features. Pairing of ML with high-throughput chemical-genomic screens, Tn-Seq knock-
out libraries, and antibiotic selection thus could hold great promise.

Finally, to date, most AMR prediction methods have been classifying susceptible
and resistant binary categories based on clinical guidelines. These models correspond
to a snapshot in time that is useful for diagnostic purposes (50) but will not recognize
low-level resistance that may become fully resistant with selection pressure and misuse
of antibiotics. The use of an intermediate category (between susceptible and resistant)
could address this limitation. Isolates with an intermediate phenotype have often been
included in the resistant category in AMR ML studies, but considering them a separate
class could provide further insights into emerging resistance. However, there are sev-
eral challenges that arise from the inclusion of an intermediate class. First, the unclear
definition of the term requires standardized data collection and clear guidelines on the
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boundary between resistant, intermediate, and sensitive. To complicate things further,
the EUCAST definition of I was recently revised, and what was traditionally grouped
with resistant is now referred to as susceptible, increased exposure, denoting a high
likelihood of therapeutic success from increasing the exposure to the antimicrobial
agent (https://www.eucast.org/newsiandr/). Combining CLSI and EUCAST definitions, a
pathogen is said to exhibit intermediate phenotype when a drug exerts a certain level
of antimicrobial activity without a definitive therapeutic effect and when an infection
can be treated with a concentrated or high dosage of drug (51). The complications and
consequences of inconsistent phenotypic testing protocols and guidelines have been
reported numerous times in the literature and summarized in Cusack et al. (101). This
is an important issue that will need to be tackled as ML begins to get implemented
into real-life applications.

Another challenge is that intermediate isolates are relatively rare in genomic data
sets, partially attributable to the lack of a standardized definition, which leads to imbal-
anced data sets and limits the effectiveness of training and generalization. Finally,
there is an added complexity that stems from developing multiclass classification, rela-
tive to the binary approach, that leads to less interpretable models and imbalanced
data sets.

A few investigations have used regression-based approaches to predict MICs rather
than a category-based approach, allowing the results to be interpreted under CLSI or
EUCAST definitions. Nguyen et al. generated nontyphoidal Salmonella MIC predictions
with genomes encoded as 10-mers, using a modified tree-based algorithm (28). The
predictions in the study had an overall average accuracy of 95%. The study defined ac-
curacy as the model’s ability to predict the correct MIC within 61 2-fold dilution step
of the laboratory-derived MIC. MICs are qualitative outputs that can be indicated as
intervals, which makes ML implementation more complicated compared to binary in-
terpretive categories, but ML prediction of MICs is increasingly being investigated (55).

Overcoming the Limitations and Bridging the Knowledge Gap

An important hurdle for AMR-ML prediction is that there are knowledge gaps in the
molecular understanding of evolving AMR mechanisms. While ML methods can
deduce and narrow down associations of sequences with resistance phenotypes, iden-
tifying causation is not possible without experimental validation. All areas of AMR
investigations, from AMR evolutionary research to clinical diagnostics, will benefit from
having a better mechanistic understanding of resistance mechanisms. Therefore, we
advocate for the inclusion of follow-on validation steps such as transcriptomic analysis
and experimental expression of the putative AMR determinants used as key features
by the ML model. The validation step will require periodic updates as AMR mechanisms
emerge and evolve.

Transcriptomic analysis can be used to investigate how gene expression varies with
environmental changes; this can include the induction of resistance genes in response
to antibiotics, host immune cells, or other environmental selective pressures (102–104).
This method provides quantifiable gene expression results that offer insights into how
relevant genes may be responding. For less well-studied pathogens that do not yet
have an extensive library of known AMR mechanisms, expression studies will increase
the chance of identifying new resistance determinants. However, the global transcrip-
tome assessed in laboratory settings cannot be an exact reflection of how bacteria
respond to an antibiotic because, in reality, an environment contains a mixture of fac-
tors that influence the expression profile. Given the central roles of promoters and
transcription factors in the regulation of gene expression, an appealing option would
be to use ML to predict the expression profiles of genes based solely on genomic DNA
sequence. The highly challenging problem of gene expression prediction from genetic
sequences is in its very early days and shows exciting potential (105, 106).

Transcriptome profiling alone is insufficient to validate ML predictions and must be
accompanied by direct validation of putative AMR genes and their activity against anti-
microbials. A recent example of AMR ML work that incorporates experimental
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validation is that of Tsang et al. (32). By evaluating LG models, the authors used tar-
geted gene expression experiments via the Antibiotic Resistance Platform (ARP) (107)
to validate novel genotype-phenotype relationships between known b-lactamases
and resistance phenotypes. This approach generated the first experimental validation
that the b-lactamase CTX-M-15 inactivates cefazolin.

The few comprehensive ML investigations paired with experimental validation have dem-
onstrated their effectiveness in confirming the accuracy of ML predictions as well as their
ability to postulate previously unknown AMR determinants or substrate activities. Genetic
sequences that are validated by gene expression and experimental studies can be further
used to optimize the initial ML model, improving prediction performance and increasing
interpretability. This level of understanding will be necessary to support the development of
ML models that are grounded in known mechanisms and less susceptible to genomic varia-
tion that correlates with the resistance phenotype but does not contribute to it.

TRANSLATING ML-AMR PREDICTION FROM RESEARCH TO PRACTICE

Most AMR-ML models constructed to date are not yet ready to be implemented in
real-life settings. Some models were created with the intention of deducing hypothe-
ses about potential new AMR genes or mutational variants to further expand our
understanding of AMR mechanisms (108), while other models were designed to
achieve the highest prediction performance for clinical diagnostics (28). To integrate
these models beyond research, we need to precisely define the intended use and
design the ML methods accordingly.

ML for Public Health AMR Surveillance

AMR surveillance programs focus on select top-priority organisms, such as the extended-
spectrum b-lactamase (ESBL)- and carbapenemase-producing organisms Staphylococcus
aureus, Salmonella spp., and Enterococcus (109). Integration of genomics to improve AMR
surveillance is an active topic of discussion, with systems and analysis pipelines around resis-
tomes and metagenomics data being rapidly developed for implementation in the near
future (110). Monitoring known causal resistance genes can show emerging AMR trends,
identify new variants, and reveal transmission patterns that can help with the identification
and control of outbreaks of multidrug-resistant pathogens. With the expanding library of
WGS data from pathogens and their corresponding AST profiles, ML can increase the sensi-
tivity and efficiency of the current surveillance process (111–113).

The focal point of ML implementation in surveillance is the features of high impor-
tance that the models base their predictions on (i.e., causal genes that contribute to
the phenotype). Knowing the important features, ML models can be used to conduct
the initial monitoring and highlighting of the potentially significant AMR genes. One
possible way to implement and refine ML models to streamline the surveillance pro-
cess is to construct an initial model based on current genomic epidemiological infor-
mation or species, systematically test model performance as new data are acquired,
and update the model as necessary. When the prediction performance deviates
beyond a set error threshold, the training sets should then be reevaluated and division
of training data can be assessed. The ML performance could be used as a gauge to
determine the relevancy of the data.

Timely integration of data from hot spots of AMR transmission and growing inven-
tories of specific priority organisms will allow longitudinal monitoring of AMR evolu-
tion in a manner that is highly useful for public health. The monitoring of AMR genes
has already been initiated with metagenomic analysis, like the investigation of
untreated sewage from 60 countries that showed AMR gene abundance correlating
with socioeconomic, health, and environmental factors rather than antimicrobial use
(114). Such an approach is being advocated as a feasible strategy for continuous global
surveillance of AMR genes, and we believe the integration of ML with the metage-
nomes can further enhance surveillance efforts. While AMR research in basic science
would use ML to discover and explain a wide array of AMR determinants, public health
genomic surveillance with ML would focus on the select few AMR genes known to be
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of high risk. Key k-mers identified through a composition-based approach can also pro-
vide the potential to monitor mutational variants that arise within well-defined AMR
genes of interest or elsewhere.

Timely identification of emerging AMR genes with ML can also accelerate the bridg-
ing of the surveillance data to individual care via diagnostic stewardship programs.
Based on AMR surveillance data, the treatment guidelines and AMR control strategies
are regularly updated (115). Consolidating such observations into diagnostic steward-
ship programs allows improved therapeutic decisions for better patient outcomes. ML
has the potential to contribute to and accelerate this process.

In some parts of the world, priority organisms already have an established library of
WGS and ASTs along with a defined set of AMR genes of concern (116, 117), hence ML
models could be constructed readily. However, policies and guidelines on updating
and monitoring the models with appropriate isolates should be detailed first. When
the ML model implementation reaches the stage of producing reliable surveillance
data, there is a potential to significantly accelerate the routine update procedure of
diagnostic stewardship programs and influence the diagnostic process in clinical mi-
crobiology and laboratory management.

ML for Clinical Diagnostics

Clinical diagnostics of AMR must produce a rapid and highly accurate result without
necessarily needing to know the causality of the prediction. The categorical agreement
rate of commonly used phenotypic AST methods to inocula prepared from the same
subculture can range from 89.6% with Phoenix (118) to 98.9% with Vitek 2 (119). ML
could in the future complement the current diagnostic tests to potentially improve ac-
curacy and speed. The focal point of ML implementation for diagnostics would not be
to dissect the internal processing of the ML models but to achieve the most reliable
predictions of resistance and susceptibility.

A tool leading to personalized medicine based on rapid detection of a bacterial
pathogen and its resistance profile directly from clinical samples would be revolution-
ary for antimicrobial stewardship. One key application would be in sepsis, where
delayed effective antibiotic therapy adversely impacts mortality by up to 20% (120).
There is increasing interest for molecular rapid diagnostic tests in bloodstream infec-
tions that, combined with antimicrobial stewardship programs, have the potential to
improve patient outcomes (121). Metagenomics is in its infancy for the identification of
pathogens from blood, but a protocol (122) was recently combined with ML methods
to produce a commercial assay (123). This test does not currently provide susceptibility
results but illustrates how the commercial sector could produce a viable product. Any
new tool will need to demonstrate added value and cost-effectiveness compared to
existing rapid tools for identification (e.g., matrix-assisted laser desorption ionization
time-of-flight mass spectrometry) and susceptibility testing from positive blood cul-
tures (124) and ought to concentrate on the limited number of the most common
causative bacteria and drug-pathogen combinations. New tools must also be sup-
ported by robust validated databases for each drug-pathogen combination that are
curated and used to retrain the models periodically.

In some public health laboratories, the use of whole-genome sequencing is already
established for specific target organisms (125, 126), which is likely to become increas-
ingly used in routine diagnostic laboratories. Sequencing can be cost-effective as it
replaces multiple phenotypic and genotypic tests at scale to provide a range of infor-
mation (e.g., lineage, isolate relatedness, resistance mechanism surveillance, and detec-
tion of toxin genes), although prediction of AST is not a primary output. The addition
of ML methods would only be accepted with further improvement in accuracy at a
reduced financial cost (127). Mycobacterium tuberculosis is one example where WGS
has resulted in a paradigm shift in phenotypic susceptibility testing, with tools such as
Mykrobe (128) being used to infer susceptibility to first-line and some second-line
agents and in defined cases obviating the need for phenotypic susceptibility testing al-
together (129, 130). For very slow-growing organisms such as M. tuberculosis, which
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can take up to 8 weeks to culture (131, 132), the WGS-based method that significantly
cuts the detection time is highly favored. In the case of other bacterial pathogens, phe-
notypic or PCR tests targeting specific resistance markers remain gold standards as
they provide a cheap, reliable result to clinicians in an actionable turnaround time.

Making the leap from a research tool to routine clinical practice remains chal-
lenging. Existing wet- and dry-lab workflows will require extensive updates and opti-
mization and will need to undergo a robust clinical evaluation for accuracy. These
protocols will need to be underpinned by defined quality control requirements for
preanalytical, analytical, and postanalytical components. A report should be easily
interpretable by clinicians with no specialist knowledge of genomics or ML, which
could include predicted susceptibility/resistance together with a measure for degree
of uncertainty. External quality assessment schemes and accreditation standards will
need to be developed. A risk of very major errors will remain an issue due to the
emergence of novel resistance mechanisms, and phenotypic testing for surveillance
or diagnostic purposes will continue to be necessary, especially for novel agents or
those where models perform poorly. As technologies advance to overcome current
limitations, shotgun metagenomic sequencing directly from clinical samples pro-
vides the most feasible opportunity for culture-free identification and antimicrobial
susceptibility prediction (124). However, AMR genes identified in a metagenomic
sample may not be assignable to a specific organism, especially in cases where mo-
bile genetic elements are frequently shared between different pathogen species.
The clinical relevance of identified AMR genes may be unclear, especially when path-
ogenic organisms are present at very low frequencies. The ML methodologies will
be translated and accepted in the clinical settings for the appropriate end users
upon resolving the outlined barriers.

CONCLUDING REMARKS

The global resistome of AMR constantly evolves in human populations, animal pop-
ulations, and the environment (133), and as such the suite of AMR threats is ever
changing via both novel mutation and transmission of resistance via HGT. The selec-
tion pressure from unchecked antibiotic use and misuse has led to the current AMR cri-
sis. ML has become a popular choice to predict the resistance potential of high-risk
pathogens from genome sequences that are now readily available, but many predic-
tion models are based primarily on well-defined resistance genes for molecular diag-
nostics purposes. The focus on well-defined genes does not recognize that genes may
not be expressed or may play a different role in a given isolate and ignores new and
potentially high-risk resistance genes and mutations.

Integrating AMR phenotype prediction into surveillance and diagnostic pipelines will
require several activities. Data availability and quality is a significant concern, and newly
sequenced pathogens should include associated metadata with MIC/AST results and ex-
perimental details. The range of antibiotics tested in the published literature varies widely,
and the community should consider standards when describing new AMR genes, e.g., a
standardized panel of b-lactams, when describing a new b-lactamase. This standardiza-
tion will allow greater harmonization of data sets, models, and predictions.

We also advocate for associated experimental workflows with hypotheses obtained
from ML models experimentally tested to increase the breadth, depth, and scope of
ML activities and to provide confidence in ML methods for real-life public health and
diagnostics implementation. Enhanced efforts to obtain genome sequences and anti-
microbial susceptibility information from various niches beyond clinical settings to
make successful predictions across the One-Health continuum will significantly con-
tribute to the risk assessment of hot spot reservoirs that accelerate AMR evolution.
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