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The adverse human health effects of exposure to per- and poly-
fluoroalkyl substances (PFAS) have been documented since the
1980s.1 Two common long-chain subtypes, perfluorooctanoic
acid (PFOA) and perfluorooctane sulfonic acid (PFOS),2 are
gradually being phased out globally because of their persistence
in the human body and the environment. They are being replaced
by short-chain alternatives that in most cases show reduced bio-
accumulation. However, a chemical’s potency derives from both
its toxicity and how it accumulates within an organism; these
characteristics differ among PFAS. The authors of a recent study
in Environmental Health Perspectives3 used published rat liver
toxicity data for nine different PFAS to calculate the internal rela-
tive potency factor (RPF) for each.

“Most toxicity studies report only external doses administered
to animals,” says first author Wieneke Bil, a regulatory toxicolo-
gist at the Dutch National Institute for Public Health and the
Environment. “Converting these external doses to modeled blood

concentrations allowed us to estimate blood-specific RPFs that
we can apply to human biomonitoring studies.”

The authors chose relative liver weight increase in male rats
as the end point because it had the most published dose–response
curves for subchronic exposures to the chemicals of interest.
PFOA, which also has been heavily studied, was chosen as the
reference chemical.

The researchers found that six of the nine PFAS—including
three supposedly safer replacement chemicals—had greater rela-
tive potency than PFOA when serum levels (internal doses) were
compared. Only two of the PFAS had a lower calculated potency
than PFOA. Moreover, the study showed that previously devel-
oped4 potency rankings of the PFAS based on external doses dif-
fered greatly from the new rankings based on internal doses. For
example, GenX was a less potent liver toxicant than PFOA based
on administered doses but was more potent than PFOA when
considering blood serum levels.

Biomonitoring in recent decades suggests that, on average, people’s exposures to older “legacy” PFAS are declining, likely due to limits set on uses and emis-
sions of these chemicals.14 However, the health effects of the chemicals that replaced them are not yet clear. Image: ©.shock/adobe.stock.com.
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These findings are consistent with earlier work on mice5,6

and zebrafish.7 The new study builds on that work by examining
a more complex PFAS mixture and by using a toxicokinetic
model to derive RPFs. The results highlight the importance of
toxicokinetic differences between PFAS when conducting risk
assessments.

The RPF method assumes that chemicals do not interact bio-
logically with one another and contribute to a common effect—in
this case, the relative liver weight increase in male rats. This
assumption results in dose–response curves on a logarithmic
scale8,9 that are parallel for each chemical examined.

To illustrate the method’s application to human data, the
researchers first assumed that relative potency rankings are similar
in rats and humans. Then they used measurements of six PFAS in
1,929U.S. National Health and Nutrition Examination Survey par-
ticipants to calculate a single PFOA-equivalent dose for each indi-
vidual. Researchers can then estimate how exposure to a mixture
of these six PFAS is related to an outcome of interest.

Species differences in PFAS half-lives and bioaccumulation
are poorly understood butmay be due to different PFAS transporter
proteins in the kidney or liver10,11 and hormonally mediated proc-
esses.12 To calculate PFOA-equivalent doses for non-liver out-
comes, such as immune suppression end points,13 researchers can
apply similar methodology to different animal or in vitro experi-
mental data. Themain limitation of themethod, Bil says, is its need
for extensive existing data on the chemicals of interest.

Nevertheless, the newmethod is a significant advance in PFAS
toxicology according to Carolina Vogs, a staff scientist at the
Swedish University of Agricultural Sciences in Uppsala, Sweden,
who was not involved in the project. “The study confirms that
external and internal RPFs may generate very different toxicity
rankings,” says Vogs. “Identifying three short-chain substitutes as
more potent than PFOAwhen accounting for differences in internal
uptake, distribution, and excretion processes is both important and
disconcerting.”

Jamie DeWitt, a professor of pharmacology and toxicology at
East Carolina University, who also was not involved in the project,
says the new findings are compelling and generate many follow-up
questions. “A key takeaway for me is that we really need to under-
stand how PFAS are acting at the site of toxicity to better predict
their effects,” she says. For example, studying how GenX interacts
with liver cells and receptors may clarify whether its higher inter-
nal potency results from faster cell entry or slower excretion from
the body because transport to the kidneys is less efficient.

Carla Ng, an assistant professor of environmental engineering
at the University of Pittsburgh, who also was not involved in the
study, points to another research need: understanding the poten-
tial competition within a mixture of similar chemicals for pro-
tein-binding sites. Such competition could lead the mixture’s
behavior to deviate from simple additivity.

At the same time, Ng appreciates the ability of the method to
simplify risk communication by comparing a single number
across studies, and she echoes Vogs’ concern about the implica-
tions of the potency findings. “Describing the short-chain substi-
tutes as less toxic because they are more quickly excreted is

incorrect,” she says. “By decoupling the concepts of bioaccumu-
lation and toxicity, this study clearly shows that the opposite may
be true and that we have not landed in a safer space yet.”

Silke Schmidt, PhD, writes about science, health, and the environment from
Madison, Wisconsin.
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