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Abstract

Mutation is the origin of all genetic variation, good and bad. The mutation process can evolve 

in response to mutations, positive or negative selection, and genetic drift, but how these 

forces contribute to mutation rate variation is an unsolved problem at the heart of genetics 

research. Mutations can be challenging to measure, but genome sequencing and other tools 

have allowed for the collection of larger and more detailed datasets, particularly in the yeast 

model system. We review key hypotheses for the evolution of mutation rates and describe recent 

advances in understanding variation in mutational properties within and among yeast species. 

The multidimensional spectrum of mutations is increasingly recognized as holding valuable clues 

about how this important process evolves.

As the source of novel and heritable variation, spontaneous mutations play a fundamental 

role in genetics and development. While the occurrence of mutations is ubiquitous across 

the tree of life, there appears to be substantial variation among species and genotypes 

in both the rate and kinds of mutations that occur. Understanding how genomes have 

evolved and will change in the future requires that we characterize the sources of variation 

in the mutation process. Technological advances and lower costs associated with genome 

sequencing have accelerated progress in this area, particularly for fast-growing model 

organisms like yeast, where thousands of spontaneous mutations can readily be identified in 

laboratory experiments. Importantly, yeast are also used to explore many other dimensions 

of biological variation, providing opportunities to associate mutational patterns with other 

genomic and cellular features. Here we review recent studies that describe and explore 

variation in mutation patterns in yeast.

Models of mutation rate evolution

The simplest metric of mutation is arguably the rate of single-nucleotide mutation (SNM) 

per site per generation, μ. It has long been clear that μ varies by orders of magnitude among 

organisms [1,2], and we have multiple data points from several yeast species [3-13]. Such 

variation implies that the DNA replication and repair mechanisms that prevent or promote 

mutation must evolve [14,15]. Why should this be? One idea is that there could be some 

selective benefit to evolving a higher mutation rate if beneficial mutations are available; 
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the optimal mutation rate would then depend on the balance between the benefits of rare 

adaptive mutations and the fitness costs of deleterious mutations. Theoretical investigations 

of this hypothesis ask whether a “mutator allele” that increases the mutation rate will 

be favored by selection. In the absence of sex, mutator alleles can hitchhike to high 

frequency along with beneficial alleles they generate, but this is unlikely in the presence 

of sexual reproduction, where recombination destroys this linkage. We therefore expect 

mutator alleles to be occasionally favorable in asexual populations, but generally disfavored 

in sexual populations [1,16-18], and empirical data support these predictions [19-26]. The 

benefits of mutator alleles may also be transient, disappearing once the population has 

adapted [27,28]. While a need for beneficial mutations may not be a sufficient explanation 

for broad taxonomic patterns of mutation rate evolution, there is still more to learn about 

when positive selection on mutation rates may occur, giving rise to mutation rate variation 

at some scales. For example, Raynes et al. [29-31] found that the nature of selection on 

mutation rate modifiers in yeast depends on the size and structure of populations and 

is not frequency-dependent. Continued investigations into the reproductive behavior and 

population structure of yeast in the wild [32-34] will therefore be important for predicting 

mutation rate evolution.

An alternative explanation for broad patterns of mutation rate diversity is that weak 

modifiers of the mutation rate, which have small and indirect effects on fitness, could be 

hidden from selection in finite populations, eventually becoming fixed at random due to 

genetic drift [2,35]. This “drift barrier” hypothesis predicts higher mutation rates in smaller 

populations, as well as low but non-zero mutation rates even in very large populations, 

and the data are broadly consistent with this prediction [2,36]. Detecting natural mutation 

rate modifiers within and among populations is challenging, but exciting evidence for 

such alleles in yeast strains is emerging [9,37-41]. Another prediction of the drift barrier 

hypothesis is that the effectiveness of each DNA replication or repair mechanism may be 

related to how frequently that mechanism is employed: rarely-used mechanisms will be 

subject to selection less often, such that their evolution is more likely to depend on genetic 

drift. This prediction is consistent with the observation that polymerases used infrequently to 

replicate small amounts of DNA are also error-prone [3,35]. Similarly, there is evidence 

that the SNM and mitochondrial mutation rates are higher in haploid Saccharomyces 
cerevisiae than in diploids of the same genetic background [11,42,43], suggesting that 

natural selection has had more opportunity to optimize DNA repair for the diploid cell 

state, which predominates in the wild [44]. We expect that continued efforts to characterize 

the natural genetic and genomic variation in this species will produce further insights into 

mutation rate evolution.

Experimental evolution is another strategy for studying the mutation process that is readily 

applied to yeast (see Jagdish and Ba, this issue). Liu and Zhang [9] predicted that, if 

selection always acts against mutator alleles, suppressing μ to the drift barrier limit, then 

a relaxation of selection should result in upward evolution of μ. Instead, they found that 

yeast mutation accumulation lines showed both increases and decreases in μ, indicating 

that the progenitor strain has a μ value above that predicted by the drift barrier hypothesis. 

A possible explanation is that the optimal mutation rate reflects a trade-off between the 

fitness costs of deleterious mutations and the “cost of fidelity”, meaning the energetic 
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requirements of minimizing errors in DNA replication [9,14,15]. Long-term evolution of 

small asexual yeast populations found little evidence for the emergence of mutator alleles 

[45] (unlike similar experiments in E. coli [25,26]), implying that there was little opportunity 

for second-order selection on μ to produce beneficial mutations. Clearly, multiple population 

genetic models of mutation rate evolution are still in play, and yeast will no doubt remain a 

key model system for testing these models.

Moving past μ –– the many dimensions of mutation

While much of the research on mutation rates has historically focused on μ, the rate of 

single-nucleotide mutation (SNM), there are many other dimensions of the mutation process 

that have been characterized, which reflect DNA replication and repair mechanisms and 

show evidence of evolution. Six types of SNM events are possible (Fig. 1), and the pattern 

of these changes appears to vary within and among species. For example, while the overall 

SNM rate of the haploid fission yeast Schizosaccharomyces pombe is similar to that of S. 
cerevisiae [3,5,11], these species show distinct biases towards different substitution types, 

as well as insertion/deletion biases [6,46]. There is also evidence that the substitution 

spectrum of S. cerevisiae varies among culture media conditions [8,47]. While this genetic 

and environmental variability is fascinating, it may complicate the task of finding general 

evolutionary explanations for mutation patterns, particularly since more complex aspects of 

the mutation spectrum will require greater empirical effort to characterize precisely.

Experiments with yeast also find evidence that local and regional genomic context can affect 

the rate of mutation [4-7,10-12,48-50]. For example, a common finding is that CpG sites 

show an elevated C→T mutation rate; in other organisms such a pattern has been attributed 

to spontaneous deamination of methylated cytosines, but fission and budding yeast seem to 

have little or no DNA methylation [51], so the explanation for this pattern remains unclear. 

There is evidence that the rate and spectrum of SNMs is altered in late-replicating regions of 

the budding yeast genome, possibly due to the use of alternative DNA repair mechanisms at 

different times [11,48,52]. Unique mutation patterns occur in yeast mitochondrial genomes 

[3,8,13,53], but relatively high levels of structural variation among these sequences has 

made it challenging to quantify complex types of mutation [53]. Several more patterns 

of context-dependent mutation have been reported, for which we often lack mechanistic 

and evolutionary explanations. Further research will ideally address the origins of specific 

context-dependent mutation patterns now that the prevalence of such patterns has become 

clear.

A recent study of mutation patterns in the plant Arabidopsis thaliana reports evidence that 

epigenomic factors substantially reduce SNM and indel rates in genes, particularly those 

under strong selective constraint [54]. Several MA studies with S. cerevisiae have examined 

the rate of mutation in genes as a measure of possible selection during the experiment; as 

reported previously [5,8,11], SNMs occur in genes at a rate that closely matches the null 

expectation (Fig. 2A), with a consistent pattern across genetic backgrounds, ploidy states, 

and environments. These experiments all show a bias of indel mutations away from genes, 

but this effect may be largely driven by the fact that low-complexity sequences and simple 

repeats are more common outside of genes in this species [11]. We extended these analyses 
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by considering whether each gene is classified as “essential” [55]; we find no evidence that 

the rate of SNMs or indels in essential genes differs from the null expectation (Fig. 2B). 

There is also evidence that mutations in essential genes are not more likely to affect yeast 

growth rates than mutations in non-essential genes [56]. These findings suggest that, while 

context-dependent mutation patterns exist in yeast, there is no substantial bias away from 

genic regions. Instead, highly-transcribed yeast genes seem to be subject to higher rates 

of DNA damage and mutation [57-59], though this effect may be partially counteracted 

by transcription-coupled repair or nascent RNA folding [60]. From a population genetic 

standpoint, it is perhaps surprising that targeted hypomutation [61] would evolve in A. 
thaliana but not S. cerevisiae, given the latter’s much larger effective population size, but 

yeast also have a much lower mutation rate overall [9]. We speculate that selection might 

act to prevent deleterious mutations by either reducing μ throughout gene-rich genomes, or 

alternatively by preferentially targeting DNA repair to functionally important regions.

Budding yeast has become a key model for studying large structural mutations, particularly 

aneuploidy and whole-genome duplication. Such changes often seem to be well-tolerated 

in this species and can contribute to adaptation [62-67], though there is also evidence that 

aneuploidy can cause fitness deficits and give rise to genome instability [11,68-70]. The 

spontaneous rate of aneuploidy events has been estimated based on mutation accumulation 

experiments [5,8,11,71], but because these events are rare relative to point mutations, 

consistent patterns of aneuploidy mutation have been harder to characterize. In particular, 

it is still unclear whether the observed variation in aneuploidy rates across chromosomes 

and the observed bias towards chromosome gains over chromosome losses (in diploids) 

stem from true differences in spontaneous mutation patterns, strong selection against 

mutant karyotypes, high rates of reversion to euploidy, or some combination of these 

effects. High-throughput methods to quantify spontaneous aneuploidy rates without the 

influence of selection would be valuable. Similarly, whole-genome duplication events are 

frequently observed in adapting populations of budding yeast, with huge consequences 

for adaptation (reviewed in [72]), but there have only recently been systematic attempts 

to quantify the spontaneous rate of such changes independently from their fitness effects 

[73-75]. Comparisons among experiments suggest there may be variation among haploid 

S. cerevisiae strains in the rate of spontaneous diploidization [76], so further study of the 

evolution of this unique mutation type may be fruitful, despite the challenges associated with 

its measurement.

The properties of yeast as a model system have made it possible to investigate a number 

of complex mutational mechanisms. A unique type of structural variation that has received 

recent attention in yeast is copy number at the highly-repetitive ribosomal DNA (rDNA) 

locus, where research has benefitted from technical advances like digital droplet PCR 

[77-79]. There is evidence for species diversity, standing genetic variation, and mutational 

variation in rDNA copy number [71,79-82]. The rDNA locus is particularly interesting 

because yeast seem to have evolved mutational mechanisms to maintain an optimal copy 

number in the face of recurrent copy loss and replication stress [78,83,84], so this genomic 

feature could serve as a model for the evolution of directed mutation. Transposable elements 

(TEs) can be a major source of mutations, and the facultatively-sexual nature of yeast has 

been leveraged to test the role of sexual reproduction in the evolution of TE activity [85,86]. 
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Yeast strains and species can be hybridized in the lab as another way to study TE activity 

[87-92], as well as the mutation rate and spectrum generally [75,93,94], revealing mutation 

rate variation among genetic backgrounds. Yeast and their hybrids have also been used 

to identify genome-wide patterns of loss-of-heterozygosity mutations [33,44,75,93-95], an 

important form of genome evolution in many populations. This is only a brief overview, but 

yeast has clearly become a critical model for studying the amazing diversity of mutation 

mechanisms.

Mutation rates across yeast species

While the bulk of the work on mutation rate in yeast has been performed with S. 
cerevisiae, comparative insight into mutation rate evolution is also increasingly available 

from analyses of other yeast species. Given the close relation and undomesticated history 

of S. paradoxus, it is the species most often directly compared with S. cerevisiae [92,96]. 

In addition to comparing these species, recent studies have examined mutation patterns 

in their hybrids, revealing that specific genotypes rather than broad phylogenetic patterns 

often shape mutation rates and spectra [75,93,94]. Other types of phylogenetic comparison 

have been conducted between ascomycete and basidiomycete yeasts, the two largest phyla 

of fungi. This was done by comparing Rhodotorula toruloides, a basidiomycete yeast, to 

the ascomycete models S. pombe and S. cerevisiae which are themselves quite diverged 

within their clade [10]. This study found that while mutation rates are similar between 

clades, the types of mutations that occur vary greatly between groups, shaped by species-

specific genomic architecture. Similar variation in mutation spectra has also been observed 

among species in the Saccharomycodaceae family [13], but much of this variation remains 

poorly understood. In yeast known as opportunistic human pathogens like Cryptococcus, 

genetic variation in DNA repair pathways are of particular interest due to the potential for 

mutator alleles to affect rapid adaptation and virulence [97,98]. Finally, in Candida albicans, 

the causal agent of human candidiasis, work has focused on understanding the interplay 

between (para)sexual reproduction and spontaneous genomic changes, including loss of 

heterozygosity and ploidy change [99,100]. We are only just beginning to uncover mutation 

patterns among the great diversity of yeast species; as more systems become genetically 

tractable, including species with industrial applications or health relevance, new dimensions 

of variation in mutation are likely to emerge.

Conclusion

Researchers increasingly recognize the importance of the broad spectrum of mutations, 

beyond the rate of single nucleotide substitution, and so we have tried to emphasize some of 

these traditionally-understudied patterns. Using yeast as a genetic model, including variation 

among species, genotypes, and environments, promises to shed new light on how DNA 

replication and repair systems evolve.
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Figure 1. 
Mutations in yeast occur on multiple scales, from single-nucleotide changes to whole 

genome duplication. There is evidence for variability in mutation patterns at every genomic 

scale, as well as among strains, species and environments. Example references are indicated 

for each type of variation.
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Figure 2. Mutation rates in yeast genes.
Bars show observed frequencies of mutations from three MA studies of S. cerevisiae (A) in 

genes, as a fraction of the whole genome, and (B) in essential genes relative to all genes. 

Dashed red lines represent the expected frequency if mutations occur in an unbiased fashion 

with respect to genes (A) or essential genes (B). These expected values account for gene 

length but do not incorporate other sources of mutation rate variation across the genome 

or variation in detection power. Values shown on bars indicate sample sizes, i.e., the total 

number of mutations observed in each category. Data from Ref. 11 are aggregated over 

ploidy levels and genotypes. Data from Ref. 8 are aggregated over environments; there is 

no evidence for a deviation from the null expectation in any individual environment. Indel 

mutations are observed in genes less often than expected, but are not observed in essential 

genes less often than expected; the deficit of genic indels may therefore reflect differences in 

sequence complexity between genic and intergenic regions. Overall, there is little evidence 

that mutations in this species occur less often in selectively-constrained regions.
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