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A N T H R O P O L O G Y

Bayesian analyses of direct radiocarbon dates  
reveal geographic variations in the rate of rice  
farming dispersal in prehistoric Japan
Enrico R. Crema1,2*†, Chris J. Stevens2†, Shinya Shoda3,4

The adoption of rice farming during the first millennium BC was a turning point in Japanese prehistory, defining 
the subsequent cultural, linguistic, and genetic variation in the archipelago. Here, we use a suite of novel Bayesian 
techniques to estimate the regional rates of dispersal and arrival time of rice farming using radiocarbon dates on 
charred rice remains. Our results indicate substantial variations in the rate of dispersal of rice within the Japanese 
islands, hinting at the presence of a mixture of demic and cultural diffusion, geographic variations in the suitability 
of its cultivation, and the possible role of existing social networks in facilitating or hindering the adoption of the 
new subsistence economy.

INTRODUCTION
The dispersal of agriculture, its timing, speed, and the mechanisms 
behind its spread have long been seen as one of the most important 
shifts that laid the genetic, linguistic, and cultural foundations for 
many regions of the world (1, 2). Reconstructing details and varia-
tion in this process has been a key research agenda for nearly a 
half-century of archaeological, linguistic, and genetic research, with 
much emphasis dedicated to the mode (e.g., demic versus cultural 
diffusion) and tempo (i.e., estimates of arrival dates and the pace of 
the dispersal process) of this key process. The primary mode of 
diffusion has been inferred from genetic and archaeological evidence, 
with demic diffusion typically characterized by a geographic gradient 
in gene frequency surfaces along the main direction of dispersal, sig-
naling the admixture of migrant farmers and local hunter-gatherers 
(3). While this relationship portrays a continental-scale process of 
agricultural diffusion common to many parts of the world, closer 
examination of the archaeological evidence has increasingly re-
vealed that the tempo of this process can vary substantially across 
different areas, with substantial episodes of local slowdowns and 
accelerations (4–6). These variations in expansion rates have been 
explained by several hypotheses, ranging from the environmental 
suitability of specific farming practices to the possibility that different 
modes of diffusion were locally dominant (4, 6–13). For example, 
on the basis of a reaction-diffusion model, Fort (14) argued that a 
mixed demic-cultural diffusion model is expected to be faster than 
a purely demic diffusion model, while a purely cultural diffusion 
model would lead to the slowest dispersal rates. He then identified 
putative regions of dominant modes in different parts of Europe 
using observed variation in the dispersal rate of farming.

While the extent to which the front speed of dispersal alone can 
reveal the dominant mode of agricultural diffusion remains an open 
question, it is undeniable that accurate and precise estimates of 

dispersal rates are fundamental steps for determining the underlying 
processes of agricultural diffusion. The increasing availability of 
large collections of radiocarbon dates provides robust empirical 
foundations to undertake this research agenda. However, most 
studies typically cover vast geographic scales, use mixed-quality 
samples (e.g., short-lived samples of carbonized seeds versus culture 
chronologies), and do not fully account for the different sources of 
uncertainties that characterize the archaeological record. There are 
some notable exceptions (15, 16), but to our knowledge, a compre-
hensive study aiming to detect variations in the tempo of the disper-
sal processes within smaller geographical regions, exclusively using 
direct dates from seeds, and providing a more robust inferential 
framework to discern genuine signals from statistical artifacts does 
not exist.

Here, we contribute to this wider research agenda by analyzing 
regional variations in the dispersal of rice farming in Japan during 
the first millennium BC. The high intensity of archaeological exca-
vations and comparatively large number of radiocarbon dates on 
charred remains, combined with the diverse ecological and envi-
ronmental settings of the Japanese islands, make this region highly 
suited for investigating the drivers behind the uneven dispersal 
rates of agriculture.

The arrival of rice and millet (foxtail and broomcorn) agricul-
ture in the Japanese archipelago is traditionally used as the defining 
feature that marks the end of the Jomon period and the beginning of 
the Yayoi period (17, 18). The former period is associated with a 
subsistence economy largely based on hunting, fishing, and gathering, 
with a smaller contribution of small-scale plant husbandry (19, 20), 
whereas the Yayoi period is associated with the introduction of a 
cultural package of continental origin that is archaeologically asso-
ciated with paddy fields, farming tools, moated settlements, new 
types of pottery, dwellings, burials, and, at a later stage, metallurgy 
(18). This continental package was brought into the Japanese islands 
by migrant communities from the Korean peninsula (21, 22) to the 
northern coastal area of the southwest island of Kyushu (Fig. 1) 
during the first millennium BC (23) and subsequently dispersed in 
the rest of the Japanese archipelago. This process took several 
centuries, effectively determining a different timing of the economic 
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transition in different parts of the Japanese islands (24, 25). While 
both millets and rice have continental origins, the extent to which 
their arrival and dispersal within the Japanese archipelago were 
synchronous is still an open question, limited by the comparatively 
smaller radiocarbon evidence for the former. Here, we concentrate 
specifically on the dispersal of rice agriculture.

Several authors have suggested that the pace of the diffusion of 
rice agriculture in Japan was geographically uneven, hinting at the 
possibility of different forms of interaction between migrant com-
munities and incumbent hunter-gatherers. While details vary sub-
stantially (15, 24, 26–29), the general consensus sees the dispersal of 
rice farming originating from northern Kyushu (28), initially limited 
to three of the four main islands of the Japanese archipelago 
(Kyushu, Shikoku, and Honshu; Fig. 1) until later historical periods 
(30, 31), and characterized by faster dispersal rates in the west and a 
significant slowdown in the east.

These general patterns broadly mirror different population den-
sities of the incumbent population (32), regional social networks 
inferred from pottery styles (33), and latitudinal differences that 
might correlate to differences in the suitability of rice farming. 
However, a formal evaluation of these factors is currently hindered 
by limitations in the data and the methodologies used. First, the 
presence of a radiocarbon calibration plateau at around 2500 14C BP 
yields calibrated dates spanning a substantial portion of the eighth 
to fifth century BC, effectively limiting accurate inferences about 
the timing of the dispersal within western Japan. Second, most studies 
have relied on a mixture of direct dates on carbonized seeds, dates 
contextually and stratigraphically associated with farming (e.g., 
samples recovered from paddy field layers), and ceramic typology. 
While this offers larger sample sizes and multiple proxies for the 
presence of farming at a given location, they are severely limited 
in their capacity to provide accurate chronological estimates that 

formally account for different sources of uncertainty. The most 
notable example of this problem is the use of pottery-based chronolo-
gies, characterized by major discrepancies between scholars with 
regard to the start and end date of key phases (28, 34, 35). Third, 
with one notable exception (15), claims on the arrival dates in 
different regions have been based on descriptive, rather than inferen-
tial, statistics. As a result, the impact of sampling error is typically 
not accounted for, and estimates do not provide formal measures of 
uncertainty. Last, as we discuss below, existing inferential methods 
used for estimating rates of dispersal and arrival times have their 
own limitations, which become particularly problematic when deal-
ing with narrower geographical and chronological spans as in this 
case. Because of these limitations in data and methods, reliable esti-
mates on whether, when, and where we observe variations in the 
rate of rice farming dispersal are currently not available, hindering 
our ability to postulate more robust hypotheses on its nature.

Inferring dispersal rates and arrival time
Dispersal rates of farming are typically estimated from spatio-
temporal analyses of either direct (e.g., radiocarbon dates on charred 
macrofossil remains, charcoal, bone collagen, etc.) or indirect (e.g., 
material culture) lines of evidence. While there is a substantial body 
of literature spanning nearly four decades, with very few exceptions 
(12), the analytical framework has predominantly focused on attempts 
to refine the estimate of the arrival dates via Bayesian phase models 
(15, 36, 37) or on inferring the speed of crop dispersal via regression- 
based analyses (4, 7–9, 38, 39).

The application of Bayesian phase models for regional studies 
was originally introduced to study Late Glacial human occupation 
in Northwest Europe (40) and has since been used to study a variety 
of similar phenomena [e.g., (41) for a recent application]. The 
approach is effectively an adaptation of models typically designed 
to investigate the stratigraphic chronology of individual sites and 
has the benefit of providing estimates of arrival dates while taking 
into account the uncertainties associated with sampling and mea-
surement errors. Leipe and colleagues (15) have recently adopted 
this approach to investigate the dispersal of rice farming in eastern 
Japan. Their work confirmed the earlier chronology of northern 
Tohoku compared to southern Tohoku and even led to the sugges-
tion of an earlier uptake of farming in the Chubu region before 
northern Kyushu [although this latter result was entirely dependent 
on one questionable outlier date; see (35)].

The analyses by Leipe and colleagues (15), however, highlight 
two current limitations of this work. First, regional Bayesian phase 
models depend on how spatial units (i.e., “regions”) are being 
defined. Larger regions would provide more samples and lower 
uncertainty in the estimated parameters but at the expense of 
potentially missing important internal variations in arrival times. 
For example, Leipe and colleagues (15) suggest a starting date of 
rice farming in the Kanto region around the start of the sixth century 
BC, several centuries before the chronology suggested by the previ-
ous authors [cf. (24)] and an earlier date compared to their estimate 
for northern Tohoku (ca. third century BC). These figures either 
indicate that the region with the greatest resistance to the dispersal 
of farming was indeed southern Tohoku or that such a boundary 
was located somewhere within Kanto [as suggested by other authors, 
e.g., (26)]. These differences of a few hundred kilometers can have 
profound implications in examining different hypotheses on why 
the dispersal of rice agriculture slowed down.
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The second limitation of regional Bayesian phase models is the 
sample interdependence, particularly when some sites contribute a 
disproportionately higher number of dates within a region. Ignoring 
this issue is effectively the same as considering a sample of 20 dates 
from 20 sites for a given region to be equivalent to a sample of 
20 dates from a single site from that same region. The former would 
be more representative of the regional arrival date for agriculture, 
while the latter effectively provides an estimate of the arrival date to 
that particular site. While this is an extreme example, ignoring sam-
ple interdependence can lead to biased estimates (see fig. S16 and 
section S3.1 for a demonstration with a simulated dataset). The 
problem can be solved by either reducing the data to the earliest 
dated sample from each site or using a more complex model that 
accounts for the hierarchical structure of the data.

In contrast to Bayesian phase models, regression-based analyses 
are typically used with the objective of estimating the speed of the 
diffusion process rather than an accurate estimate of arrival dates. 
These analyses consist of fitting to the radiocarbon dates the geo-
graphic distance between sampling locations and a putative point of 
origin of the dispersal process, and the estimated slope is then used 
to obtain the diffusion rate. The approach has seen a number of 
additional features, including the use of alternative distance metrics, 
formal comparisons of putative points of origin, and spatially ex-
plicit models that account for geographic variation in the dispersal 
process (4, 8, 38, 39). Despite differences in methodology (particularly 
with regard to how error ranges are calculated and reported), this 
wealth of case studies provides some benchmark estimates on the speed 
of the dispersal process, with figures around 0.6 to 1.3 km/year for Europe 
(9, 10, 14), 2.4 ± 1.0 km/year for South Africa (42), and values from 
0.45 to 2.88 km/year for different parts of tropical South America (6).

While the possibility of direct comparison of dispersal rates 
makes these regression models highly appealing, particularly from 
the standpoint of reconstructing the generative process behind 
these patterns, there are several methodological issues related to the 
application of these methods. First, in contrast to Bayesian phase 
models described above, these regression analyses commonly ig-
nore measurement errors associated with individual dates and fit 
models using median calibrated dates. As noted by Riris and Silva 
(43), this approach effectively dismisses the uncertainty associated 
with individual dates, and hence, in the best-case scenario, error 
estimates of the dispersal rates will be too low, and in the worst case, 
the estimate itself can be biased, particularly when the time range of 
analyses includes plateaus in the calibration curve as is the case with 
the first half of the Yayoi period (see fig. S1 and section S1).

The second issue stems from how samples are selected for analyses 
to capture the earliest dates associated with farming. While theoreti-
cally justifiable, the practical decision is clearly dependent on the 
spatial scale of analyses (i.e., “earliest” where?). Many earlier works 
have not provided the exact filtering protocol, although more recent 
works (16, 44) offer more explicit and reproducible criteria. A more 
practical solution consists of fitting a quantile regression model, 
where the relationship between the predictors and the dependent 
variable is based on specific, user-defined percentiles. Several au-
thors (38, 39, 43) have used this approach to model the earliest date 
using the full sample available. Regression-based methods can also 
be adapted to investigate possible variations in the dispersal rate, 
using techniques such as nonlinear regression (39), geographically 
weighted regression (8), or geostatistical interpolation (4, 14). These 
solutions can reveal key variations in dispersal rates, which, in turn, 

are interpreted as evidence of low versus high receptivity of farming 
practices or demic versus cultural diffusion processes. However, it 
is hard to discern whether observed variations in the estimated rates 
of dispersal are genuine or just the consequences of calibration and 
measurement error or variation in sample structure.

Here, we use a Bayesian hierarchical Gaussian process quantile 
regression (GPQR), which combines the principles of Bayesian 
phase model and quantile regression while accounting for the full 
uncertainty of each date, sampling independence, and spatial varia-
tion in dispersal rates (see Materials and Methods and section S2). 
Our inferential method provides both global and local estimates of 
the rate of dispersal, with the latter representing the average local 
cumulative speed from the putative point of origin (in this case, 
Northern Kyushu). To maximize the reliability of our dated sam-
ples and avoid issues regarding old wood and reservoir effects or 
questionable stratigraphic associations of short-lived dates, we 
considered only direct 14C dates on charred rice grains (Fig. 1). We 
account for the measurement error of individual radiocarbon dates 
using the same modeling protocol commonly used in the Bayesian 
analyses of radiocarbon dates. We used quantile regression with the 
90th and 99th percentiles to specifically look at the distribution of 
the earliest local arrival dates and a Gaussian process model to 
account for variation in the local dispersal rate.

Arrival dates were estimated using a hierarchical Bayesian phase 
model, which accounts for the problem of sampling independence 
discussed above (see Materials and Methods and section S3). Spatial 
units were defined by aggregating prefectures with sites yielding 
similar local dispersal rates from the GPQR model, ensuring a geo-
graphic subdivision that can highlight better differences in arrival 
dates between, rather than within, areas. We considered an un-
constrained model (model a) where the arrival date of each area was 
solely determined by the radiocarbon dates of the focal area and a 
partially constrained model (model b) assuming a wave of advance 
dispersal in western Japan. Model a effectively allows for any possi-
ble routes of dispersal but yields estimates with higher uncertain-
ties. In contrast, model b offers lower levels of uncertainties by 
imposing an origin of rice farming in northern Kyushu and a wave-
of-advance diffusion for western Japan that is aligned with the 
current consensus in the literature.

RESULTS
Average dispersal rates obtained from the GPQR ranged between 0.9 
and 2.38 km/year [90% HPDI (highest posterior density interval)], with 
negligible variation between the 90th and 99th percentile models 
(figs. S14 and S15 and tables S1 and S2). Median posterior estimates 
(1.42 km/year for the 99th percentile and 1.33 for the 99th percentile 
model) were slightly higher than the average rate of agricultural diffu-
sion observed in Europe (9, 10), and the difference is even stronger in 
the case of a nonspatial version of the model, which yielded a median 
estimate of 2.00 km/year (90% HPDI interval of 1.59 to 2.51 km/year; 
fig. S3). The difference between the spatial and nonspatial model was 
most likely determined by the fact that the quantile regression is designed 
to capture the distribution of extreme observations (in this case, the 
earliest dates) and hence biased toward the fastest estimates for a given 
distance. In the GPQR, this is accounted for as a local deviation, 
while in the nonspatial regression, this is part of the global model.

Our analyses revealed substantial geographic variation in the 
dispersal rate (see Fig. 2), comparable to those observed elsewhere 
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on a continental scale. Estimates of the length parameter  (fig. S14; 
see section S2 and figs. S4 and S5 for interpretation) indicate fairly 
wide regions (~300 km) yielding similar dispersal rates, with median 
estimates as high as 4 km/year on one end and below 1 km/year on 
the other. The model suggests that the rate of dispersal was initially 
slow within the island of Kyushu (below 1 km/year), accelerated in 
Chugoku and especially in Kansai (up to 4 km/year), and decreased 
its speed but maintained an above-average rate in Chubu (ca. 2 km/
year), before slowing down from Kanto northward (1 km/year or 
less). The exception within this general pattern can be captured in 
the 99th percentile model, where the northernmost region of Honshu 
Island is associated with higher dispersal rates (ca. 2 km/year) 
compared to the rest of eastern Japan, providing support for the 
presence of a leapfrog transmission to this area.

Estimates of the arrival time in the different areas obtained from 
the Bayesian hierarchical model are aligned with these findings 
(Fig. 3; see also figs. S18 and S19 and table S4). In the unconstrained 
model (model a), the estimated arrival date of rice farming in northern 
Kyushu (Area I) is between 1176 and 845 BC (90% HPDI; see table 
S5), confirming this area to be that with the earliest adoption of rice 
farming in Japan [contra (15); see fig. S20]. The next two earliest 

areas, comprising Chugoku, Shikoku, and Kansai, have estimated 
arrival dates between 1061 and 779 BC for Area III (90% HPDI) and 
between 946 and 703 BC for Area IV (90% HPDI) in the constrained 
models and with wider posterior density intervals in the unconstrained 
models. Arrival dates for Area II (central and southern Kyushu) and 
Area V (Chubu region) are very similar, the former yielding esti-
mates between 735 and 430 BC (90% HPDI) and the latter between 
754 and 560 BC (90% HPDI) in the constrained model. The largest 
chronological gap between geographically adjacent regions is re-
corded northeast of Area V, the same regions where we start to ob-
serve below-average local rates of dispersal in the GPQR model. 
Estimates of arrival time in Area VI (most of Kanto region, excluding 
Kanagawa prefecture) are between 471 and 124 BC, ca. 375 years 
(90% HPDI: 133 to 557 years; fig. S21) after the arrival in Area V, 
while Area VII yielded the latest median arrival date (152 BC, 90% 
HPDI: 434 BC to 42 AD) in the constrained model. As for the 
results of the GPQR with the 99th percentile, the phase model does 
confirm that rice cultivation arrived in northern Tohoku (Area VIII) 
before neighboring regions (Areas VI and VII), with an estimated 
arrival time between 709 and 203 BC (90% HPDI) in the constrained 
model. While the comparatively smaller sample size for this region 
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has led to fairly large posterior intervals, the unconstrained model 
nonetheless provides support for a leapfrog transmission in northern 
Tohoku, with the probability of rice arriving in Areas VI and VII 
before VIII being 0.19 and 0.12, respectively (fig. S20).

DISCUSSION
The introduction and dispersal of rice farming in the Japanese islands 
are a defining moment that sets the foundations of the subsequent 
genetic, linguistic, and cultural variations in the archipelago (21, 45, 46). 
Our analyses have confirmed that this process was characterized 
by substantial regional variation in its pace, with local episodes of 
slowdowns and accelerations in the dispersal of rice farming.

We have strategically traded off quantity for quality, focusing 
only on direct dates from charred rice remains, and used novel 
Bayesian inferential tools capable of handling different sources of 
uncertainties in our dataset, addressing many of the issues affecting 
previous studies aiming to estimate the rates of dispersal and arrival 
times. We demonstrated that inferring front speeds while ignoring 
the uncertainty associated with individual dates can drastically change 
estimates, particularly in the presence of calibration plateaus (see 
figs. S1 and S2) and that not accounting for sample independence 
can affect the conclusion of phase models applied in regional set-
tings. The methods that we introduce were tested with simulated 
data (see sections S2.2 and S3.1) and are particularly well suited for 
handling smaller geographical and temporal windows of analyses 
that are typically characterized by smaller sample sizes and weaker 
signals. Furthermore, the hierarchical version of the Bayesian phase 
model provides a solution to the uneven sampling intensity that 
often characterizes legacy datasets. Our Gaussian process model 

offers an alternative to simple geostatistical interpolations of arrival 
dates used in previous studies. It provides a robust method for 
detecting changes in dispersal rates that accounts for variations in 
sample size via partial pooling, i.e., estimates for areas with fewer 
samples are based partially on neighboring regions with a more 
abundant number of radiocarbon dates. Although the relative den-
sity of dates on short-lived samples is higher compared to studies 
with continental scales of analyses, our limited sample size led to 
fairly larger posterior estimates. This is, however, in part due to the 
fact that our analyses fully account for the measurement errors 
associated with individual dates in contrast to previous studies based 
on median calibrated dates. Both the approaches that we introduce 
can be augmented by including independent variables and, hence, 
can offer a foundation for directly testing more specific dispersal 
hypotheses.

In general terms, our estimates point to earlier arrival dates for 
all regions, as, in contrast to most existing studies, we base our 
figures on formal inference and not on the visual inspection of sam-
ple dates. We estimate that the introduction of rice agriculture in 
northern Kyushu occurred around the turn of the first millennium 
BC. Evidence for rice farming occurring in the Japanese islands 
during this time or earlier is patchy and often controversial, although 
their density is higher in northern Kyushu compared to that in 
other parts of the archipelago [cf. figure 83 in (29)]. Several studies 
have shown impressions of rice grains on potsherds predating the 
Initial Yayoi period (35). Nakazawa and Ushino (47) identified a 
rice grain impression from a ceramic vessel recovered at Itaya III 
site in Shimane prefecture (Fig. 1) attributed to the Maeike phase 
of the Final Jomon period. However, its typological classification is 
controversial [see (48) for suggestions of a later chronology], and 
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the lack of direct dating and a reliable absolute chronology of the 
Maeike phase do not provide sufficiently robust evidence for farm-
ing occurring earlier in the Chugoku region. Leipe and colleagues 
(15) argue for the possibility of an earlier adoption of rice farming 
in the Chubu highlands based on the direct date of a single rice 
grain (IAAA-83092, 2889 ± 29 14C BP) from the Chikaraishijori site 
in Chubu (Fig. 1). However, the sample is a clear outlier when com-
pared to the other charred rice dates from the same site, and one 
of the authors acknowledges in a subsequent study that its identity 
could not be verified (35). Removing this sample provides a much 
later date for this region, and our model (fig. S20) strongly indicates 
that the arrival of rice in northern Kyushu (Area I) predates the 
arrival in the Chubu Highlands (Area V).

The expansion of agriculture outside northern Kyushu was 
characterized by major differences in the eastward and southward 
dispersal. The eastward expansion within the cultural area of pre-
existing Tottaimon pottery (Areas III and IV) was fast paced, reaching 
dispersal rates of more than 4 km/year, while the adoption of farm-
ing in southern Kyushu was significantly slower with later arrival 
dates compared to Chugoku, Shikoku, and Kinki regions (Fig. 2 and 
fig. S20). The fast dispersal rate in these regions has been pointed 
out by several authors in the past [e.g., (24)], although our chronology 
is substantially earlier, particularly for Kinki (Area IV). The slower 
dispersal rate in southern Kyushu has been hinted at in the past, with 
authors suggesting that the underlying cause was due to rice farming 
being less suited to local topographic and soil conditions (49, 50). 
Evidence of earlier farming sites in areas south of northern Kyushu 
has been advocated, but most are based on indirect lines of evidence, 
and a reliable chronological assessment is still lacking (29, 51).

The expansion of rice farming in central and eastern Japan is 
characterized by a slower pace compared to that seen for Areas III 
and IV, albeit with considerable variability. The adoption of early 
wet rice farming in central Japan is noteworthy, mostly due to the 
lack of paddy field sites dated to this period in the area, which has 
led some authors to suggest the presence of dry rice farming [e.g., 
(26) for Nakayashiki site in Kanagawa; Fig. 1; but see (52) for an 
alternative interpretation]. While the pace of dispersal is slower 
than in Kinki, the presence of hybrid pottery styles (i.e., Joukonmon 
pottery) does hint at the presence of different forms of cultural 
interaction (53), although our analyses suggest that the front speed 
in this area was faster than previously thought. Kobayashi (26) 
identifies two “Jomon Walls” in the area, one located near the waist 
of Japan (53), approximately between Areas IV and V (the “Chubu 
Wall”), and one located in the Kanto region (the “Tone River Wall,” 
between Areas V and VI). The former “wall” corresponds to the 
expansion limit of the new Ongagawa pottery (33) and has been 
considered by many as the point of the largest slowdown in Honshu. 
Our analyses confirm a slower rate of dispersal in eastern Japan 
compared to most of western Japan, but we identify that the largest 
discrepancy in arrival dates appears to be between Areas V and VI 
(Fig. 3 and fig. S21).

The expansion of rice farming beyond Area V is further charac-
terized by higher levels of uncertainty, particularly due to the smaller 
sample sizes in the Tohoku region. Our analyses do confirm that 
rice farming was present in the Tsugaru plain in Aomori prefecture 
(Area VIII) before other regions in eastern Japan (Areas VI and VII; 
fig. S20). However, we found no evidence supporting a coastal route 
via the Sea of Japan followed by a possible downward expansion via 
the Pacific coast as claimed by some authors (24), based on the 

presumed movement of material culture (54). Instead, our analyses 
identified Area VII (Tohoku excluding Aomori) to be the last region 
of those analyzed to witness the arrival of rice farming (although 
with considerable uncertainty; see fig. S20).

Several putative factors could explain the dispersal rates we 
inferred. Although not part of our analyses, the colder climate in 
Hokkaido most likely hindered the dispersal of rice farming in the 
north (31), while the lack of suitable terrains might have played a 
role in the slowdown of its expansion into southern Kyushu (49, 50). 
However, the role played by environmental factors is less clear for 
the rest of the archipelago. The cooler climate of Tohoku could have 
been less suitable for the cultivation of rice, while the mountainous 
regions of central Japan might have acted as a transmission barrier. 
Our analyses have confirmed an early uptake of farming in Aomori 
prefecture (Area VIII), where several early paddy field sites, such as 
Sunazawa and Tareyanagi, have been identified. These sites were, 
however, abandoned after just a few centuries, and the local com-
munities reverted to a predominantly hunting and gathering economy, 
suggesting that rice farming was not a fully consolidated part of 
their subsistence economy. Takase (55) suggests that these aban-
donments were triggered by a local flood event, but the lack of 
subsequent recovery of rice agriculture hints at the possibility that 
northern Tohoku was indeed at the edge of the thermal niche for 
rice cultivation. Previous studies (26, 46) have suggested that the 
location of the largest slowdown in the dispersal of farming oc-
curred at the so-called “waist of Honshu” (between areas IV and V 
in our study), with the mountainous area in Chubu effectively acting 
as a topographic barrier. While we do indeed observe a delay of a 
few hundred years in this region (fig. S21), our analyses suggest that 
a larger slowdown took place between areas V and VI. The lack 
of any prominent variation in topography, soil, and climate within 
these regions east of the Chubu mountains suggests that other pro-
cesses might have played a greater role in determining the rate of 
dispersal here.

Discussions regarding the relative contribution of demic versus 
cultural diffusion have been comparatively limited in Japanese 
archaeology, although some [e.g., (56)] have suggested that the faster 
dispersal rate in Western Japan was more likely associated with 
migratory movements, while the slower dispersal in Eastern Japan 
is suggestive of a greater role played by cultural transmission. This 
is, in principle, in line with the expectations suggested by other 
studies outside of Japan (5), but it is worth noting that a pure cultural 
diffusion (i.e., an intergroup transmission without genetic admix-
ture) was extremely unlikely, given the complex knowledge such as 
water management and transplanting required in rice cultivation. 
While some authors have argued for a difference in the receptivity of 
rice cultivation among western and eastern Jomon hunter-gatherers 
(57), it is worth considering whether a full change in the subsistence 
economy can be triggered by intergroup transmission alone. A 
possible alternative scenario is a mixed demic-cultural diffusion, 
where the dispersal of rice farming was promoted via intermarriages 
and group fission events. The intermarriage between farming groups 
and hunter-gatherers might have been conditioned by preexisting 
social networks, and hence, preexisting cultural boundaries might 
have hindered the dispersal of rice farming. At the turn of the first 
millennium BC, the Japanese archipelago was characterized by 
three major ceramic zones [Tottaimon in the west, Fusenmon in the 
center, and Kamegaoka in the northeast; (18, 33)] and higher popu-
lation densities in eastern Japan compared to the west (32). While 
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the degree by which the three ceramic zones represent cohesive 
social networks is speculative, it is worth considering the possibility 
that their presence might have conditioned the rate of dispersal 
of farming. In western Japan, expanding migrant communities had 
potentially less competition for space and, at the same time, might 
have become integrated into preexisting social and intermarriage 
networks of the Tottaimon zone. The slowdown in central Japan 
could then be attributed to the consequence of crossing a cultural 
boundary that brought expanding agriculturalists into contact with 
communities outside this social network, along with a necessary 
adaptation to the different topographic settings of central Japan, 
characterized by smaller coastal plains and narrower fluvial valleys. 
Similarly, the dispersal into northeastern Japan entailed a further 
transition into the Kamegaoka zone, which might have again 
contributed to a slowdown in the diffusion of rice farming rate into 
this region.

The picture currently emerging from our analyses reveals that 
even within the relatively confined space of the Japanese islands, the 
dispersal of farming was characterized by a substantial degree of 
heterogeneity. While variations in the rate of dispersal have often 
been approached simplistically by the contrast of demic versus cul-
tural diffusion, we argue that the interplay of different environmental 
settings, the density of incumbent communities of hunter-gatherers, 
and preexisting networks of social connectivity are plausible alter-
native explanations that are worth pursuing here and elsewhere. 
The Bayesian methods introduced here were primarily focused on 
detecting more accurately where and when we can observe varia-
tions in the dispersal of rice agriculture, but at its core, it provides 
the necessary framework required to evaluate these hypotheses in 
the future.

MATERIALS AND METHODS
Radiocarbon data
We compiled a 14C dataset of 439 charred samples of direct dates on 
Oryza sativa grains from 218 archaeological sites located in the 
Japanese islands. Dates were collected from site reports, journal 
articles, and the 14C database of the National Museum of Japanese 
History (58). We filtered these data by excluding samples from the 
Ryukyu Islands and Hokkaido, samples yielding uncalibrated 14C 
ages smaller than 1000 BP, and those with possible contamination 
of dated carbon or without a reliable taxonomic identification. The 
resulting dataset (data file S1) consisted of 294 dates from 132 site 
locations.

Gaussian process quantile regression
We modeled the geographic variation in the rate of dispersal from a 
putative origin point located at Ukikunden Shell Midden in Northern 
Kyushu, where the earliest charred rice date in our dataset was 
recovered, using a Bayesian hierarchical GPQR defined as follows

     i   ~ AsymLaplace(   i  , , )  

   X  i   ~ Normal (f(   i   ) ,    i  )  

where θi is the true calendar date of the earliest charred sample 
identified at each site i, f(𝜃i) is its corresponding 14C age on the 
IntCal20 calibration curve (59), Xi is the observed conventional 
radiocarbon age of the sample, and i is the square root of the sum 

of the squares of the samples’ 14C age error and the error on the 
calibration curve. The core of the model is the asymmetric Laplace 
likelihood (60), where τ is the quantile of interest,  is the scale, and 
i is the location parameter defined by the linear expression

     i   =    0   +  d  i  (   1   −  s  i  )  

where 0 is the intercept, di is the great-arc distance (in kilometers) 
between the focal site i and the putative origin point, 1 is the average 
negative reciprocal of the dispersal rate, and si is a spatially auto-
correlated random effect representing the local deviation of the dis-
persal rate. More specifically, si is modeled as a multivariate normal 
distribution

   s  i   ~ MVNormal(0, 𝚺)  

with a vector of mean equal to 0 and the covariance matrix defined 
by a quadratic exponential model

   ∑ i,j     =     2  exp(− 0.5  ( D  i,j   / )   2  ) +  I  i,j       2   

where the covariance Σi,j between pairs of sites i and j declines expo-
nentially as a function of their great-arc distance Di,j at a rate defined 
by the length-scale parameter , and with a maximum covariance 
equal to the square of the marginal deviation . The term Ii,j 2 pro-
vides additional covariance 2 in case the i and j are identical (i.e., Ii,j 
is an identity matrix equal to 0 when i ≠ j and 1 when i = j). In prac-
tical terms, because there is only one local deviation per site, this 
part of the equation is not relevant. However, with small values of  
and Di,j, setting 2 to 0 can be problematic for algorithmic reasons 
(nonpositive eigenvectors), and hence, a small constant of 10−6 was 
assigned to this parameter. We also considered a nonspatial version 
of the same model where i was simply defined by a linear equation 
without a random effect, i.e., 0 + di1 (see section S1.1).

We used the weakly informative priors informed by prior pre-
dictive checks and realistic ranges of dispersal rates inferred from 
other studies (see section S2.1 and figs. S7 and S8). To establish the 
robustness of the proposed approach, we generated a simulated 
dataset with a comparable sample size to our observed data and 
fitted our GPQR model (see section S2.2 and figs. S9 to S11). Results 
indicate a good performance with all fixed parameters and most 
random effect parameters within the 95% higher posterior density 
interval.

Following previous studies, we fitted our models using the 90th 
and the 99th percentiles (i.e., τ = 0.9 and τ = 0.99). The latter 
represents more closely the earliest arrival date of rice, but it is more 
susceptible to potential outlier dates.

Hierarchical phase model
We estimated the arrival date for eight geographic areas using a 
Bayesian hierarchical phase model (see section S3). The spatial 
extent of the areas was defined on the basis of a combination of 
prior archaeological knowledge while ensuring that the dispersal 
rates estimated by the GPQR were internally homogeneous. The eight 
areas are as follows: I (Fukuoka, Saga, and Nagasaki prefectures), II 
(Oita, Miyazaki, Kagoshima, and Kumamoto prefectures), III (Chugoku 
region, Ehime, and Kochi prefectures), IV (Kansai region, Kagawa, 
and Tokushima prefectures), V (Chubu region and Kanagawa 
prefecture), VI (Saitama, Tokyo, Chiba, Gunma, Tochigi, and Ibaraki 
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prefectures), VII (Fukushima, Yamagata, Miyagi, Iwate, and Akita 
prefectures), and VIII (Aomori) (table S3). The separation of the 
island of Kyushu between Areas I and II was based on the distinct 
nature of the earliest farming communities of northern Kyushu, 
while eastern Shikoku was assigned to Area IV rather than III based 
on the result of the GPQR that suggested a faster dispersal rate in 
those areas closer to sites in eastern Kansai. Kanagawa had several 
early sites and faster dispersal rates than the rest of Kanto and hence 
was assigned to Area V, and lastly, Aomori was kept separated from the 
rest of Tohoku (Area VII) to evaluate the leapfrogging hypotheses 
based on the presence of earlier paddy fields in the Hirosaki plain area.

In contrast to typical regional phase models where sample inde-
pendence is either ignored (i.e., multiple dates from the same site 
represented within each phase) or controlled by limiting the num-
ber of specimens to a unit per site, we first modeled the distribution 
of all charred rice dates within each site i and estimated its start date 
ai as follows

     i,j   ~ Uniform( a  i  ,  a  i   +    i  )  

   X  i,j   ~ Normal (f(   i,j   ) ,    i,j  )  

where θi,j is the calendar date of the sample j from the site i, and δi is 
the duration of the rice use at the focal site. The measurement error 
of the θi,j was modeled using the same procedure used in the GPQR 
model. The distribution of start parameters ai within a given Area 
k was modeled using a uniform probability distribution with start 
and end dates k and υk, where the former is our primary parameter 
of interest representing the arrival of rice in the focal region. As for 
the GPQR model above, we tested the robustness of our model on 
simulated data (see section S3.1).

We considered two different models based on assumptions 
(or lack thereof) on the relationship of k for the eight areas (see Fig. 3, 
left). In model a, we assumed no constraint, and hence, estimates of 
k were effectively made independently for each area. In model b, 
we instead assumed a wave of advance dispersal between northern 
Kyushu (Area I) and Kansai (Area IV), hence imposing the constraints 
I > II and I > III > IV, so that Area I was earlier than Area II, Area 
III was earlier than Area IV, etc. Areas in central and eastern Japan 
(Areas V to VIII) were assumed to be later than Area IV, but we did 
not impose any constraints between them (i.e., IV > V, IV > VI, 
IV > VII, and IV > VII) to allow for possible leapfrog dispersals as 
hypothesized by some authors [e.g., (24)]. We used flat priors 
bounded between 5000 and 500 cal BP for k and υk and weakly 
informative prior for δ (see section S3.2) for both models.

Parameter inference
Model fitting was carried out in R v.4.1.0 (R Core Team 2021), using 
the nimble v.0.12.1 (61, 62) and the nimbleCarbon v.0.2.1 (63, 64) 
R packages. We used a Metropolis-Hasting adaptive random walk 
sampler for all parameters except for 1 and sj in the GPQR model, 
which were inferred using an automated factor slice sampler to 
account for correlation between the parameters. We ran four chains 
for all models, using 2 million iterations for the GPQR and 6 million 
iterations for the hierarchical phase model. In both cases, we dedi-
cated half the iterations for the burn-in and thinned our sample to reduce 
file sizes (every 300 steps in the phase model and 100 in the GPQR). 
Convergence of the chains was checked using the Gelman- Rubin 
diagnostic and visual inspection of the trace plots.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.adc9171
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