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Abstract
Chemical signature of airborne particulates and deposition dusts is subject of study since decades. Usually, three comple-
mentary composition markers are investigated, namely, (i) specific organic compounds; (ii) concentration ratios between 
congeners, and (iii) percent distributions of homologs. Due to its intrinsic limits (e.g., variability depending on decomposition 
and gas/particle equilibrium), the identification of pollution sources based on molecular signatures results overall restricted 
to qualitative purposes. Nevertheless, chemical fingerprints allow drawing preliminary information, suitable for successfully 
approaching multivariate analysis and valuing the relative importance of sources. Here, the state-of-the-art is presented about 
the molecular fingerprints of non-polar aliphatic, polyaromatic (PAHs, nitro-PAHs), and polar (fatty acids, organic halides, 
polysaccharides) compounds in emissions. Special concern was addressed to alkenes and alkanes with carbon numbers 
ranging from 12 to 23 and ≥ 24, which displayed distinct relative abundances in petrol-derived spills and exhausts, emissions 
from microorganisms, high vegetation, and sediments. Long-chain alkanes associated with tobacco smoke were characterized 
by a peculiar iso/anteiso/normal homolog fingerprint and by n-hentriacontane percentages higher than elsewhere. Several 
concentration ratios of PAHs were identified as diagnostic of the type of emission, and the sources of uncertainty were eluci-
dated. Despite extensive investigations conducted so far, the origin of uncommon molecular fingerprints, e.g., alkane/alkene 
relationships in deposition dusts and airborne particles, remains quite unclear. Polar organics resulted scarcely investigated 
for pollution apportioning purposes, though they looked as indicative of the nature of sources. Finally, the role of humans 
and living organisms as actual emitters of chemicals seems to need concern in the future.

Keywords  Molecular signature of sources · Diagnostic concentration ratios · Particulate organic matter (POM) · Air 
pollution · Toxicants

Introduction

Chemicals released into the atmosphere are known as posing 
a threat for humans and injuring the environment. There-
fore, the knowledge of nature, amount, and land spread of 
emissions is mandatory whenever legislative or technologi-
cal actions must be implemented to mitigate the toxicants’ 
impact (Albaiges et al. 1984; Bascom et al. 1996; Yassaa 
et al. 2001; Ma and Harrad 2015; Błaszczyk et al. 2017; 
Sifakis et al. 2017; Cetin et al. 2018; Nieder et al. 2018; 
Vaz 2018). Chemical and physical characterization of both 
gaseous and particulate phases plays a key role to picture 
the behavior of pollutants in the environment (i.e., through 
valuing the concentrations of selected chemicals in air and 
exhausts, and comparing them with current legislation). 
Besides, dedicated studies allow assessing the relative impor-
tance of pollution sources that affect the sites or land domains 
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subject of study (Gundel et al. 1993, Hecht 1999; Ventrice 
et al. 2013, Jedynska et al. 2014a,b, Giulivo et al. 2016, Liu 
et al. 2017, Praveena et al. 2018, Rabhi et al. 2018, Yury 
et al. 2018, Brehmer et al. 2020).

The first approaches to identification of the emission 
sources of organic toxicants by means of molecular sig-
natures were carried out in late twentieth century (Daisey 
et al. 1986; Harrison et al. 1996). Attention was paid overall 
to alkanes, PAHs, and nitrated derivatives (NPAHs); how-
ever, other groups were taken in account also, including 
fatty acids, halides (polychlorinated dioxins/furans [PCDD/
Fs], polychlorobiphenyls [PCBs], and polybromodiphenyl 
ethers [PBDEs]), polysaccharides (levoglucosan, man-
nosan), sterols (cholesterol, stigmasterol, sitosterol), and 
triterpenols (amyrins). According to these studies, the char-
acterization of organic substances comprised in particulate 
matters (both airborne particles and dust settled on surfaces 
and soil) resulted an important tool of investigation but also 
a challenge for scientists, due to complex nature of these 
matrices. In fact, organic compounds display a wide variety 
of chemical and physical properties, e.g., acidity/alkalinity/
neutrality, rate of polarity, solubility in water and n-octanol, 
vapor pressure, resistance to action of oxidants, and light. As 
for chemical composition, organics include linear and cyclic 
aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, 
fatty acids and phenols, amines, carbonyls, organic halides, 
sulfates, and phosphates.

Many organic compounds have been associated to distinct 
emission sources and recognized as tracers of living organ-
isms, natural phenomena, and man’s activities. Unfortu-
nately, only in few cases one substance is unequivocally typi-
cal of one only emission and allows assessing the impact of 
that source onto the environment. Usually, chemicals occur 
in more types of emissions, so that the peculiarity is lost; 
nevertheless, in this case the composition per groups and the 
distribution pattern of congeners within each group can aid 
in identifying the pollution sources. For instance, biofuels 
are usually richer of esters than fossil fuels, and the reverse 
occurs with regard to polycyclic aromatic hydrocarbons 
(PAHs) (Damanik et al. 2018). Besides, the percentages of 
PAHs associated to ultra-fine, fine, and coarse fractions of 
suspended particulate are a function of the nature of source 
(Zielinska et al. 2004). Fresh exhausts undergo the action of 
light (overall UV) and oxidizing species (O3, NO2, OH, and 
NO3 radicals) (Arey and Atkinson 2003; Estève et al. 2004; 
Perraudin et al. 2007; Chu et al. 2010). Therefore, chemicals 
released primarily into the atmosphere tend to change into 
degradation products; e.g., alkenes and PAHs into ketones 
and quinones, polyacids, diols, epoxides, cumulatively 
defined as secondary pollutants. These transformations alter 
both chemical signature of the substrate and toxicity of the 
air parcel impacted by the emissions (Atkinson and Arey 
1994; Durant et al. 1999; Bandowe et al. 2014). Reactivity of 

compounds introduces some rate of uncertainty with regard 
to identification of emission sources of airborne particulate. 
On the other hand, due to wide ranges of lifetime character-
izing organics, the rank of decomposition can work as an 
index of aging, i.e., of the importance of processes develop-
ing in the atmosphere (Sofowote et al. 2010; Cecinato et al. 
2014). With regard to deposition dust, reactivity seems to 
play a twin role. On the one hand, its high surface extension 
favors the adsorption of chemicals from the air; the sub-
stances are back released when the contour conditions are 
favorable, the substrate composition changes, and this latter 
acts as secondary emitter. On the other hand, the collection 
time of depositions adopted for chemical characterizations 
is ≥ 15 days, which implies the wide occurrence of decom-
position products of primary pollutants.

According to the above considerations, the simple 
approach of molecular signature of environmental particles 
suffers some intrinsic constraints; hence, better tools are 
employed today to trace the emissions, e.g., principal com-
ponent analysis. Nevertheless, the knowledge of chemical 
fingerprints remains suitable as a preliminary screening of 
factors forcing pollution; for instance, chemical profiles of 
POM (and the resulting numerical parameters) allow exclud-
ing or including as real main pollution sources the types of 
emissions suspected to affect the environment. Molecular 
signature is easily integrated in statistical approaches based 
on a number of chemical and physical variables (Kavouras 
et al. 2001, Mostert et al. 2010, Brown and Brown 2012a, 
2012b, Khedidji et al. 2017, Chen et al. 2019, Maechler et al. 
2019, Molnar 2019, Sofowote et al. 2020), which look fine 
for source apportionment studies. Besides, any multivariate 
analysis approach alone does not add any contribution to 
knowledge of the nature of sources, whereas no preliminary 
information is available about the chemical fingerprint of 
emissions. For instance, multivariate analysis is able to gather 
or distinguish sets of samples and of chemical species within 
environmental databases, by putting in the evidence differ-
ences and similarities among them. Nevertheless, it is neces-
sary knowing the chemical profiles of emissions and other 
contour information (e.g., reactivity of compounds, type of 
locations, size, and chemistry of substrates…) to assign reli-
ably the abovementioned behaviors to specific origins.

With regard to chemicals hosted, interiors as a whole 
are a space different at all from outdoor environment (Zhao 
et al. 2007, Guo and Kannan 2013, Sangiorgi et al. 2013, 
Romagnoli et al. 2014, Hassanvand et al. 2015, Tran et al. 
2015, Oliveira et al. 2016, Subedi et al. 2017, Liu et al. 
2018, Lu et al. 2018, Lucattini et al. 2018, Steinemann 
2018, Wong et al. 2019, Zhu et al. 2019). Three categories 
of contaminants affect indoor locations, i.e., (i) chemicals 
released overall outside and driven indoors through building 
openings and ventilation devices (e.g., hydrocarbons com-
prised in motor vehicle exhausts); (ii) substances released 
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indoors and outdoors at broadly analogous levels (e.g., 
nitrogen oxides, psychotropic substances); and (iii) com-
pounds released typically indoors (e.g., cosmetics, plasti-
cizers). Indoors, the substances released meet up reaction 
chambers with temperatures roughly steady along the whole 
year, ozone normally much less than outside, and surfaces 
much larger. These factors deeply influence the chemistry of 
locations, the lifetime of substances, and the gas/condensed 
phase equilibria. In particular, in interiors the substance abil-
ity to interact with the human body is different with regard to 
intensity and route, compared with open air. At this regard, it 
is worth noting that current legislation aimed at preserving 
health considers only inhalation as primary way of intake; 
meanwhile, outdoor pollution is viewed as predominant, and 
the occurrence of toxicants in interiors is linked to intrusion 
from outside. This is the reason why attention is paid usu-
ally to gasses and fine aerosols, as well as to [lung] cancer. 
Instead, indoors the neat exposure to toxicants is larger, and 
the amounts of dusts with which humans enter in contact 
exceed of orders of magnitude those of fine particles inhaled. 
Therefore, the alternative ways of body intake (i.e., skin con-
tact and ingestion) gain importance (Xing et al. 2011; Hou 
et al. 2018; Weiss et al. 2018; Settimo et al. 2020a), and 
the role played by depositions increases, as well as that of 
health problems other than tumors. That garbles the role 
of toxicants affecting interiors and promotes the search for 
their sources.

This paper aims at providing a short review of current 
knowledge concerning the molecular fingerprints of particu-
lates (both airborne and settled), suitable to elicit informa-
tion about the sources of pollution. Three major categories 
of fingerprints are discussed, namely, (i) individual tracers; 
(ii) diagnostic concentration ratios; and (iii) homolog per-
cent distributions within groups. As for chemicals, non-polar 
hydrocarbons (i.e., chain- and cyclo-aliphatic compounds) 
are examined in particular here, and glance is given to need 
of further investigations aimed at understanding the sources 
of uncommon alkane/alkene percent distributions. Finally, 
some insights are provided about the role played by living 
organisms and humans, as actual emitters of contaminants, 
with regard to chemistry of their own life places.

The state‑of‑the‑art of research 
about molecular signatures of pollution 
sources

General features of emission profiles

Three key factors influence the composition of both anthro-
pogenic and natural emissions, as it results from chemical 
analysis. They are (i) the operating conditions of source, 
including the kind of fuel, temperature of exhausts, and the 

type of abatement devices adopted; (ii) the collection proce-
dure of exhaust (which includes vapors, condensation waters, 
and particle matters); and (iii) the methodology adopted to 
process samples and determine chemical composition. These 
factors hinder to assign thorough emission factors to chemi-
cals released by sources, and precise chemical profiles to 
groups of substances like alkanes and PAHs (Tobiszewski 
and Namiesnik 2012; Cecinato et al. 2014). Investigations 
undertaken with different methodological approaches can 
lead to results hardly comparable (Kavouras et al. 1999). 
For instance, the profile of particulate n-alkanes actually 
identified in emissions depends on the effluent temperature 
during sampling operation, which influences the loss rates 
of the most volatile compounds. Analogously, the profile of 
airborne 3/4-ring PAHs depends on year season as well as on 
the use of the only filter membrane or also vapor trap to col-
lect samples. Hence, the study of their percent distribution 
in the emissions and in airborne particulates is preferably 
restricted to high molecular weight homologs, namely, to 
hydrocarbons with carbon number ≥ 25 (C25). As for PAHs, 
compounds with vapor pressures of the same order of mag-
nitude (e.g., fluoranthene/pyrene) or with high molecular 
weights (e.g., benzo[a]pyrene/benzo[ghi]perylene) are kept 
in consideration when exploring concentration ratios hypo-
thetically diagnostic for source assessment purposes.

n‑Alkanes

Non-polar fraction of particulate organic matters (POM) 
includes numerous groups. They are alkanes, alkylated 
mono-aromatics and biphenyls, alkenes, branched and cyclic 
aliphatic hydrocarbons. Among them, attention has been 
paid overall to n-alkanes (linear homologs); alicyclic com-
pounds have been investigated as tracers of petrol products, 
and mono-methyl substituted alkanes as markers of tobacco 
smoking. As total, n-alkanes are among the most abundant 
components of particulate organic matter. For a long time, 
investigations dealing with this group were restricted to 
chemistry of high plants (Eglinton et al. 1962; Eglinton and 
Atkinson 1967; Li et al. 2018) and to characterization of 
vehicle exhausts. Instead, n-alkanes gained concern when 
the strong dependence of their molecular imprinting on 
nature of source was ascertained, as well as their toxicity 
that includes skin inflammation, pulmonary edema, respira-
tory disfunction, co-carcinogenic and co-tumorogenic prop-
erties (Rabovsky and Judy 1989).

The saw-tooth distribution of high-molecular-weight 
n-alkanes has been associated to terrestrial high plants 
(Simoneit and Mazurek 1982; Alves et al. 2001; Rabhi et al. 
2018). Indeed, biogenic synthesis leads to generation pref-
erably of even C-numbered fatty acids; afterwards, acids 
tend to loose CO2 through the natural process of decar-
boxylation, and form odd-C numbered n-alkanes as the final 
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products (or alkenes, in the case of unsaturated acid precur-
sors). Since in the case of high trees this phenomenon is 
more evident along the range of long-chain homologs, the 
most used parameter to value the impact of (high) vegeta-
tion is carbon preference index starting from normal pen-
tacosane (CPI25) (Alves et al. 2001; Pio et al. 2001; Omar 
et al. 2007). This parameter is expressed by the following 
formula (1):

where nCi means the concentration of n-alkane homolog 
with carbon number equal to i.

On the other hand, the n-alkane distribution typical of 
exhausts of fuels derived from petroleum is bell-shaped and 
mono-modal with the maximum centered between C19 and 
C26; in this case, CPI25 values range from 0.6 to 1.3 (Simo-
neit 1984; Perrone et al. 2014). According to that, CPI25 
rates equal to ~ 1 were found during an in-field campaigns 
performed close to a highway in the Algiers metropolitan 

(1)
CPI25 =

nC25 + nC27 + nC29 + nC31 + nC33 + nC35

2 ∗ (nC24 + nC26 + nC28 + nC30 + nC32 + nC34)

+
nC25 + nC27 + nC29 + nC31 + nC33 + nC35

2 ∗ (nC26 + nC28 + nC30 + nC32 + nC34 + nC36)

area (Fig. 1A), while CPI25 values were > 10 in a forest area 
belonging to Biskra province, Algeria (Fig. 1B). Anyway, 
usually a mix of the two distributions is observed, e.g., as it 
occurred in a city garden of Rome, Italy (Fig. 1C).

Marine biota behaves some differently. In fact, it retains 
the predominance of odd n-alkanes typical of biogenic 
emissions; however, the maximum shifts into the C15–C21 
range. Thus, this percent distribution often characterizes 
the short/medium C-chain non-polar hydrocarbons col-
lected at seaside locations (Romagnoli et al. 2016, Yu et al. 
2019, Hernández-Guzmán et al. 2021, Gal et al. 2022); 
worth of note, this distribution is distinct from that associ-
ated to petrogenic sources, where the predominance of odd 
homologs is not observed.

Further indexes have been examined in order to put in 
evidence the impact of vegetation (Kumar et al. 2019). 
Among them, there are (i) the homolog (Cmax) correspond-
ing to the maximum concentration within the n-alkane 
distribution; (ii) the cumulative percentage attributable to 
natural waxes (NW%) (Alves et al. 2001, 2011; Rabhi et al. 
2018); and (iii) the average chain length of n-alkanes (ACL) 
(Leider et al. 2013). As for Cmax, motor vehicle exhausts 

Fig. 1   GC–MS profiles of the non-polar fraction (m/z = 85) of air-
borne particulates collected at four sites variously influenced by 
emission sources. A Road traffic site; B rural region; C urban loca-
tion (city garden). Symbols: nCi indicates the n-alkane with carbon 
number equal to i. [Personal communication. The samples were col-
lected in the frame of a cooperative research project of our institute 

with INAIL-DIPIA, Rome, Italy, by applying the procedure described 
in Cecinato A, Marino F, Di Filippo P, Lepore L, Possanzini M 
(1999). Distribution of n-alkanes, polynuclear aromatic hydrocarbons 
and nitrated polynuclear aromatic hydrocarbons between the fine and 
coarse fractions of inhalable atmospheric particulates. J Chromatog A 
846, 255–264, 10.1016/S0021-9673(99)00,129–6]
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exhibit the prevalence of short and medium chain hydro-
carbons (< C24), while the leaf debris of high trees is char-
acterized by the predominance of n-C29 or n-C31. The two 
distinct behaviors have pictured in Fig. 1A and B, where the 
maximums correspond to tricosane (C23) and nonacosane 
(C29), respectively.

The NW% value is provided by the formula (2):

where each term at the numerator is set equal to zero 
whereas the actual rate results < 0. For instance, NW% val-
ues ranging from ~ 10 up to > 70% have been calculated for 
airborne particulates collected in Athens metropolitan area 
and in Algeria (Andreou and Rapsomanikis 2009; Rabhi 
et al. 2018).

The average chain length of n-alkanes (ACL) is calculated 
through the formula (3):

Carbon preference indexes analogous to CPI25 have been 
employed also, which consider longer n-alkane ranges (e.g., 
nC11 ÷ nC36) or the only light homolog segment (< nC25) 
(Alves et al. 2000, 2001; Aloulou et al. 2010). The use of 
CPIs computing light hydrocarbons is partly questionable 
due to volatility of compounds. However, these indexes 
allow investigating the possible impact of marine biota 
(algae, plankton) and microorganisms (bacteria, fungi), 
when molecular signature is extended to include isopre-
noids and when nCmax corresponds to nC15/nC17 (Fisher 
et al. 1972; Ekpo et al. 2005; Andreou and Rapsomani-
kis 2009; Horikawa et al. 2010; Wang et al. 2010; Caumo 
et al. 2018). Table 1 provides a synthetic overview of what 
presented above. The action of marine organisms has 
been elucidated also as the possible source of squalene 
(2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahex-
aene) and squalane in offshore and coastal airborne particu-
lates, while abietane (13α-isopropylpodocarpane) and its 
homologs have been adopted to distinguish the emission 

(2)NW% = 100 ∗

∑m

12
nC2n+1 − 0.5*(nC2n+2 + nC2n)

∑m

12
nC2n+1

(3)ACL =

∑

n ∗ [nC
n
]

∑

[nC
n
]

of coniferous trees from that of other plants (Simoneit and 
Mazurek 1982; Fine et al. 2004).

The bell-shaped and saw-teeth percent profiles are the 
two most common within medium/long-chain n-alkanes 
and are used commonly to identify the corresponding 
principal source. Nevertheless, sometimes a distinct fin-
gerprint is observed in the semi-volatile range, where the 
even homologs are predominant. This pattern seems typical 
of sediments (Zrafi-Nouira et al. 2008, Sikes et al. 2009, 
Aloulou et al. 2010, Jafarabadi et al. 2018, Aghadadashi 
et al. 2021, Arshinova et al. 2021); nevertheless, it has been 
observed also in effluents from petroleum-contaminated 
zones and has been interpreted as a tracer of microorganisms 
including bacteria, fungi and spores (Stortini et al. 2009; 
Kuhn et al. 2010; Leider et al. 2013). Hence, the molecular 
signature over the whole nC14–nC40 range is more complex 
than as researchers currently believe and is not yet com-
pletely understood. For instance, it can exhibit high percent-
ages of even homologs in the short/medium-chain range, and 
of odd homologs in the long-chain range.

Finally, the R ratio between total low molecular weight 
(LMW) and high molecular weight (HMW) n-alkanes seems 
to distinguish petrogenic emission (R >  > 1), terrestrial 
plants (R <  < 1), and marine biota (R ≈ 1).

Examples of in-field monitoring aimed at discriminating 
the sources of organic fraction of airborne particulates, sedi-
ments, and waters are Aghadadashi et al. (2021), Aloulou 
et al. (2010), Alves et al. (2001), Balducci et al. (2014), Bi 
et al. (2008), Gal et al. (2022), Kang et al. (2018), and Khe-
didji et al. (2017).

Branched and cyclic hydrocarbons

The important presence of petroleum components (e.g., 
branched alkanes pristane and phytane) compared with nC17 
and nC18, respectively, looks as a track of motor vehicle 
emission (Hamilton et al. 1984; Alexandrino et al. 2019; 
Alkhafaji 2021), or petrol spill from contaminated sedi-
ments, soils, and waters (Jeng 2006; Stortini et al. 2009; 
Wang et al. 2011; Shirneshan et al. 2016; Azimi-Yanchesh-
meh et al. 2017, Hernández-Guzmán et al. 2021). These 
ratios are adopted also to index the maturity of petroleum 

Table 1   Indexes describing the n-alkane percent distributions, typical of various emission types. References: Simoneit (1984), Alves et  al. 
(2001), Zrafi et al. (2008), Leider et al. (2013), Rabhi et al. (2018), Kumar et al. (2019)

Index/source Petroleum Algae Microorganisms High trees Vegetation Anthropogenic

Cmax C16 ~ C21 C17, C19, C21, C23 C16, C18, C20 C29, C31, C33 C25, C27, C29 C16 ~ C23

CPI25 0.7–1.3  > 1  > 10  > 3 0.8–1.3
CPI16 0.8–1.2  > 1.0  > 1.0
NW%  ~ 0  > 75  > 75  ~ 0–30
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and bitumen affecting sediments (Omotoye et al. 2016; Gao 
et al. 2021).

Complex blends of high molecular weight aliphatic 
hydrocarbons with branched and/or cyclic structure (e.g., 
steranes and hopanes) are the bulk of petrol industry prod-
ucts, like fuels and solvents, and affect the exhausts (Xiao 
et al. 2019; Lu et al. 2021), soils and sediments (Arfaoui 
2014). Their identification and quantification, combined 
with the ratio rates of burdens of subgroups, has revealed 
that composition depends on oil maturity or on progress of 
oxidative/biological attack of original blend (Lobodin et al. 
2016; Volkman et al. 1997; Simoneit 1999). These com-
pounds trace the environmental pollution associated with 
fossil fuels (Aboul-Kassim and Simoneit 1995, Fraser et al. 
1997; Wang et al. 2006; Jedynska et al. 2014a,b; Iakovides 
et al. 2021a). Moreover, triterpanes and steranes seem suit-
able to characterize sedimentary organic matter and con-
taminated substrates (Arfaoui 2014; Xiao et al. 2019).

The composition profile of organic matters shows one 
or two humps of “unresolved mixture” accompanying the 
n-alkanes sequence (Zheng et al. 2002; Phuleria et al. 2006; 
White et al. 2013; Jeon et al. 2017). In the case of airborne 
particulate, a hump comprised of light hydrocarbons origi-
nates from gasoline and diesel oil residues. A second hump, 
including heavy components, is related to lubricating oils 
(see a and b humps in Fig. 2); the percent profile of vehicle 
emissions depends on the engine working conditions, and 

the relative importance of hump(s) raises at unregulated 
driving regimens, e.g., during cold starts (Zheng et al. 2002, 
Fang et al. 2020, Iakovides et al. 2021a, Tian et al. 2021).

Though unusual, high percentages of semi-volatile 
homologs (from C20 to C26) have been detected in airborne 
particulate coming overall from agricultural areas. This 
pattern has been found as typical of substrates contami-
nated with bee waxes (Guenther et al. 1995; Fine et al. 
2004).

Among the sources of environmental non-polar hydro-
carbons, both tobacco plant leaves and tobacco smoke 
fumes exhibit a peculiar percent profile with regard to 
monomethyl-branched alkanes. Indeed, long-chain odd 
iso-alkanes and even anteiso-alkanes are much abundant 
compared to normal-alkanes than in other emissions; in 
particular, anteiso-C30/C32 are more than normal-C30/C32, 
respectively (Kavouras et al. 1998). Besides, the nor-
mal hentriacontane (nC31) is predominant when com-
pared to nC29 and nC33 homologs [nC31/average(n-C29, 
nC33) > 1.5] (Cecinato et al. 2022). This twin molecular 
signature was observed in tobacco smoke chambers and 
in interiors heavily contaminated by smoke and allowed 
to derive a semi-quantitative index (%ETS) suitable for 
estimating the percentage contribution of tobacco smoke 
in airborne particulates and depositions (Cecinato et al. 
2022). The %ETS is calculated by applying the formula:

Fig. 2   GC–MS profile of the non-polar fraction of diesel exhaust. A 
Total ion current signal; B Ion trace corresponding to m/z = 85 (labe-
ling n-alkanes); C m/z = 95 ion trace (branched alkanes). Both a and 
b humps occur in the UCM. Symbols: nCi indicates the n-alkane with 
carbon number equal to i. [Personal communication. The samples 
were collected in the frame of a cooperative research project of our 

institute with Istituto Motori CNR, Naples, Italy, by applying the pro-
cedure described in Ciccioli P, Cecinato A, Brancaleoni E, Draisci R, 
Liberti A (1989). Evaluation of nitrated polycyclic aromatic hydro-
carbons in anthropogenic emission and air samples: a possible means 
of detecting reactions of carbonaceous particles in the atmosphere. 
Aerosol Sci Technol 10, 296–310, 10.1080/ 02786828908959266]
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where:

and:
aCj, iCj, and nCj are the anteiso-, iso-, and normal-Cj 

alkane, respectively.

A =	� 1/6 (iC29/nC29 + aC30/nC30 + iC31/nC31 + aC32/
nC32 + iC33/nC33 + aC34/nC34),

B =	� 1/6 (iC29/aC29 + aC30/iC30 + iC31/aC31 + aC32/
iC32 + iC33/aC33 + aC34/iC34),

C =	� 1/6 (aC30/nC30 + aC32/nC32 + aC34/nC34 + aC29/
nC29 + aC31/nC31 + aC33/nC33),

‰(ΣAs)	� per thousand content of total alkanes in particu-
late matter.

(Rem.: For the meaning of 2.58, 1.36, 9.85 and 1.29 at 
denominators see Cecinato et al. 2022).

Total uncertainty of %ETS is provided by:

%ETS = TSI ∗ %0

(

ΣAs

)

∕25.8

TSI =
1
/

3
∗ (

A

1.36
+

B

9.85
+

C

1.29
) ∗ 100

Worth of note, this approach does not require searching 
for minor markers like nicotelline and nitrosamines, nor 
for nicotine and cotinine, which are ease to decompose and 
volatilize (see “Fatty acids and alcohols, polar compounds” 
section).

Alkenes

Though scarce attention is paid to unsaturated hydrocarbons 
occurring in emissions, three distinct molecular signatures 
of normal alkenes can be distinguished within the light range 
of non-polar fraction of POM (i.e., mono-unsaturated hydro-
carbons with 12 up to 20 carbon atoms in the molecule) 
(Ekpo et al. 2005). They are (i) the predominant occurrence 
of n-alkanes, with negligible amounts of n-alkenes; (ii) the 
prevalence of n-alkenes, displaying high dodecene/dodecane 
and tetradecene/tetradecane ratios, and low octadecene/
octadecane and eicosene/eicosane ratios; and (iii) a merged 
distribution. The three fingerprints are pictured in Fig. 3. 
Sample A (deposition dust collected indoors at El Bey, 
Tunisia) was comprised of much more n-alkanes than alk-
enes (Fig. 3A1/A2); dusts from Tipaza, Algeria (Fig. 3B1/
B2), comprised both alkanes and alkenes; finally, n-alkenes 
prevailed on n-alkanes in depositions collected in Reggio 
Calabria, Italy (Fig. 3C1/C2).

S%ETS = 100 ∗ std.dev.(A,B,C) ∗ ‰
(

ΣAs

)

∕25.8

Fig. 3   GC–MS chromatograms of airborne particulate extracts. A1 
El Bey, Tunisia, m/z = 85 (n-alkanes); A2 El Bey, Tunisia, m/z = 83 
(n-alkenes); B1 Tipaza, Algeria, m/z = 85 (n-alkanes); B2 Tipaza, 
Algeria, m/z = 83 (n-alkenes); C1 Reggio Calabria, Italy, m/z = 85 
(n-alkanes); C2 Reggio Calabria, Italy, m/z = 83 (n-alkenes). [Per-
sonal communication. The samples were collected in the frame of 
a cooperative research project of our institute with Kasdi Merbah 

University of Ouargla, Dept. Mathematics and Sciences of Matter, 
Touggourt, Algeria, by applying the procedure described in Romag-
noli P, Balducci C, Perilli M, Perreca E, Cecinato A (2016). Particu-
late PAHs and n-alkanes in the air over Southern and Eastern Medi-
terranean Sea. Chemosphere 159, 516-525. https://doi.org/10.1016/j.
chemosphere.2016.06.024]
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It is known that unsaturated hydrocarbons occur as minor 
components in vegetation emissions; nevertheless, to our 
knowledge no exhaustive explanation of the three patterns 
abovementioned has been found until now, nor specific 
investigations have been undertaken concerning the alkene 
fingerprints in aerosols and dusts. The fact that in the cor-
respondence of alkene predominance vs. alkanes the even 
homologs are much more than the odd ones seems to suggest 
that all compounds enjoy of the same biogenic source; other-
wise, alkenes would originate from the twin decarboxylation 
of unsaturated even α,ω-dicarboxylic acids. Anyway, further 
investigations are necessary to confirm this hypothesis and 
search for alternative solutions. For sake of completeness, 
it is worth to note that the occurrence of ≥ C20 alkenes and 
polyalkenes in estuarine and coastal sediments, even exceed-
ing the corresponding n-alkanes, has been associated with 
algae and phytoplankton (Requejo and Quinn 1983; Yong-
dong et al. 2015).

Polycyclic aromatic hydrocarbons

Though accounting for small fractions of organic matter, 
PAHs are of big concern, because of their strong toxic-
ity in terms of carcinogenic and mutagenic power as well 
as of their ability to promote heart morbidity and prema-
ture deaths (Collins et al. 1998, European Parliament and 
Council 2005, IARC 2012). Organic particulates exhibit 
a plurality of PAH signatures, and many attempts have 
been made to associate the PAH chemical imprinting with 
the nature of emission; this was important not only in the 
perspective of assessing environmental toxicity, but also 
with regard to forensics sciences and remediation policies 
(Andersson and Achten 2015; Stout et al. 2015). It is worth 
to remark that the original percentages of PAHs in emis-
sions do not correspond exactly to those found in PM and 
dust (Kavouras et al. 1999; Kim et al. 2009; Tobiszewski 
and Namiesnik 2012; Keyte et al. 2013; Stogiannidis and 
Laane 2015; Emsbo-Mattingly and Litman 2016). Indeed, 
most PAHs are released at hot conditions by organic matter 
that burns (e.g., during forest fires and fuel combustion), 
and originally exist as vapors; thereafter, PAHs condense 
onto solid substrates according to vapor pressure of com-
pounds, to temperature and substrate features; besides, fuel 
spill and evaporation occur from petroleum reservoirs and 
bitumen/asphalt (Alves et al. 2011). As long as adsorbed, 
PAHs share with particles the ways of dispersion in air, 
including long-range transport, and finally settle onto sur-
faces together with coarse dust (Simoneit 2002; Medeiros 
and Simoneit 2008; Ravindra et al. 2008; Lammel et al. 
2010; Iakovides et al. 2021b). The gas/particle equilib-
rium developing at the particle surface is dynamic and is 
influenced by reactivity of congeners, though the principal 

PAHs (e.g., the sixteen included in the list of priority pol-
lutants (USEPA 1993)) are classified as persistent toxicants 
(USEPA 1993; MacKay and Callcott 1998; Lodovici et al. 
2003; Paolini et al. 2015; Cao et al. 2019), and reactivity 
changes when the compounds are adsorbed on carbona-
ceous substrates or silica (Keyte et al. 2013, and references 
herein). In conclusion, as underlined by several authors, 
both the collection parameters (e.g., time of sampling, 
presence of ozone/oxidant traps, fiber membrane material, 
etc.) and chemical analysis procedure modulate the result-
ing concentrations of individual PAHs in the particulates 
(Tobiszewski and Namiesnik 2012; Balducci et al. 2017).

Only a handful of PAHs, individually or as subgroups, 
have been associated to specific sources. Among them, 
worth of mention are retene (1-methyl,7-isopropylphen-
anthrene), methylphenanthrenes, dimethyl/ethyl-phenan-
threnes, and benzo[ghi]fluoranthene (Tong and Karasek 
1984; Benner et al. 1995; Shen et al. 2012). In fact, retene 
is typical of wood and is a common tracer of forest fires; 
dimethyl/ethyl-phenanthrene isomers occur as mixtures 
that display distinct profiles in the case of vegetation and 
fossil fuel combustion; and benzo[ghi]fluoranthene is an 
important component of motor vehicle exhausts. Hence, 
the dimethyl/ethylphenanthrene molecular fingerprint in 
atmospheric particulate results depending on the daily and 
seasonal modulation of sources (Paolini et al. 2015). On 
the other hand, only very fresh emissions hold benzo[b]
anthracene (naphthacene) and anthanthrene, both prone 
to fast decomposition (Wise et al. 1988; Dominguez et al. 
2003; Kim et al. 2009). In fact, the occurrence of the two 
compounds was documented in exhausts but was not regu-
larly in the atmosphere. The methylphenanthrene mixture 
displays distinct isomer distributions in accordance with 
the kind of the emission source. Moreover, analogously to 
all other alkyl-PAH/parent PAH ratios, the rate of meth-
ylphenanthrenes/phenanthrene ratio depends on the pre-
dominance of kerosene spill or oil combustion exhausts, 
and on burning temperature and time. This ratio is also 
an index of thermal maturity of oil samples (Omotoye 
et al. 2016).

Normally, numerous PAHs affect particulates, and 
researchers prefer analyzing concentration ratios between 
pairs of individual substances to draw information about 
the nature of emissions (Brandli et al. 2007; Ravindra 
et al. 2008; Katsoyiannis et al. 2011; Katsoyiannis and 
Breivik 2014; Famiyeh et al. 2021). Concentration ratios 
that overall look as diagnostic for this purpose are fluoran-
thene vs. pyrene (FA/PY), benz[a]anthracene vs. chrysene 
(BaA/CH), indeno[1.2.3-cd]pyrene vs. benzo[ghi]perylene 
(IP/BPE), and benzo[a]pyrene vs. benzo[ghi]perylene 
(BaP/BPE). Other ratios, e.g., phenanthrene vs. anthracene 
(PHE/AN), total methylphenanthrene vs. phenanthrene 
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(ΣMPHE/PHE), and unsubstituted PAHs vs. total PAHs 
including alkyl-substituted congeners (parent-PAHs/
ΣPAHs), are investigated less frequently. Table 2 provides 
a list of PAH diagnostic ratios (DRs) and the respective 
values calculated for several categories of emissions, as 
described by scientific literature. As shown in Table 2, the 
DR values associated to various emissions are affected 
by some variability; therefore, to investigate the sources 
of particulate PAHs the authors adopted, in field experi-
ments, both short DR ranges and more DRs simultane-
ously (usually three/four pairs) instead of one only DR and 
one precise DR rate (Famiyeh et al. 2021). The benzo[a]
pyrene/benzo[e]pyrene ratio (BaP/BeP) merits a spe-
cial comment. Indeed, BeP was neglected for long time, 
because it is much less carcinogenic than other PAHs; this 
is the reason why BeP does not appear among the sixteen 
priority PAHs. On the other hand, BeP occurs in emissions 
at similar extents as benzofluoranthenes and it is more per-
sistent than benzo[a]pyrene. Thus, the concentration ratio 
between BaP and BeP is usually ≈1.0 in fresh exhausts 
but tends to drop slowly to < 0.1, overall in the presence of 
oxidants. For instance, in two PAH monitoring campaigns 
carried out in Milan, Italy, during 1991, at a site exposed 
predominantly to vehicle traffic (Cecinato 1997), the BaP/
BeP ratio reached 0.9 in the winter and was as low as 0.1 
in the summer. The information obtained through molecu-
lar signatures of PAHs alone seems insufficient to quantify 
the contribution of each emission source to the whole of 
environmental particulates; however, it helps in recogniz-
ing the principal causes of pollution and can be improved 
through associating other markers like oxy-PAHs, sugars, 
and alkanes (Zheng et al. 2002; Tian et al. 2021; Shin et al. 
2022). Besides, this approach allows highlighting the role 
of oxidation processes with regard to toxicity, whenever 
the final products (e.g., PAH quinones and lactones) are 

more harmful than their parent compounds (Durant et al. 
1999).

Nitrated polycyclic aromatic hydrocarbons (NPAHs)

NPAHs begun of big concern when many chemicals 
belonging to this group were identified in emissions (Hoe-
kman 1992; Zielinska et al. 2004; Liu et al. 2010). In par-
ticular, the huge increment of diesel engine vehicles during 
1970s and 1980s contributed to the occurrence of NPAHs 
in the air of cities worldwide. Besides, diesel engines were 
ascertained as main sources of NPAHs (Bamford and Baker 
2003; Bandowe et al. 2014; Bandowe and Meusel 2017); 
on the other hand, many NPAHs were recognized as direct 
mutagens and cancer promoters (Gbeddy et al. 2020). The 
occurrence of NPAHs in the air declined with the updating 
of normative dealing with vehicle emissions and the conse-
quent renewal of vehicle fleets; hence, NPAHs lost concern 
and their measurements in the environment dropped since 
1990s. Instead, NPAH investigations have started again 
in recent years, due to their toxic properties (Degrendele 
et al. 2021) and to occurrence in gasoline-fueled cars (Zhao 
et al. 2020). Usually, attention is paid to a list of NPAHs 
affecting airborne particulate; they are nitrated deriva-
tives of naphthalene, fluorene, anthracene, fluoranthene, 
pyrene, benz[a]anthracene, and chrysene. Nevertheless, 
NO2-position isomeric PAHs associated to airborne par-
ticulates are not the principal ones coming out from emis-
sions. In particular, 2-nitrofluoranthene and 2-nitropyrene 
are commonly absent in exhausts and exist as products of 
in situ reactions developing in the atmosphere; the two 
compounds are sometimes the most abundant NPAHs 
affecting particulates (Bamford and Baker 2003; Bandowe 
and Meusel 2017).

Table 2   Rates of the principal 
PAH concentration ratios 
currently used as diagnostic 
tools to draw insights about the 
nature of source. References: 
Kavouras et al. (2001), Ravindra 
et al. (2008), Tobiszewski and 
Namiesnik (2012), Cecinato 
et al. (2014), Famiyeh et al. 
(2021)

Source Type FA/PY BaA/CH IP/BPE BaP/BPE BaP/BeP

Vehicles Mixed 0.60 0.55
Gasoline 0.54 0.8–1.3 0.20–0.35 0.35 0.95
Diesel 0.8–1.1 0.38 0.65–1.1 0.8–1.1 0.50

Domestic heating Coal 0.65 0.9–1.3 1.57
Wood, pine 0.78 0.64 1.1–1.6 1.94 2.1
Wood, oak 0.75 0.70 1.2–1.6 1.77 1.77
Synthesis fuel 1.19 0.78 1.1 1.91
Heavy oil 0.83 1.01 1.6 0.81 0.52

Steel plant Coke 0.65 0.9–1.3 1.57
Power (coke) 0.66 0.56 2.0 0.88 2.57

Tobacco smoke Particulate 0.96 1.3 0.18 0.23 0.38
Waste fumes Landfill 1.3 0.84 0.76 0.70 0.55

Incinerator ≈17 0.71 0.92  ~ 0.12 0.01
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The molecular signature of nitrated fluoranthenes and 
pyrenes has been used to parameterize the relative impor-
tance of direct emission and action of oxidants. Taking in 
account the nitration rate of precursors reacting with OH 
radicals and NO2, it was suggested that photochemical reac-
tivity is more important than vs. direct emission when the 
2-NFA/1-NPY ratio exceeds 5.0 (Pitts et al. 1985). Instead, 
the formation of 4-NPY can occur only in the presence of 
NO3 radical or N2O5; thus, this isomer is a tracer of pro-
cesses started by reaction of O3 with NO2 and developing 
after sunset. Analogously, distinct nitro-isomers are formed 
by homogeneous and heterogeneous reactions of other par-
ent PAHs with NO2, OH + NO2, and NO3/N2O5 (Jariyasopit 
et al. 2014, and references herein).

Fatty acids and alcohols, polar compounds

Medium- and long-chain acids exist overall thanks to living 
organisms releasing them (Goutx and Saliot 1980; Kawa-
mura and Gagosian 1987; Lindbeck and Puxbaum 1999; 
Oliveira et al. 2007; Bi et al. 2008; Sangiorgi et al. 2013; 
Balducci et al. 2014). The percent distribution pattern of 
fatty acids reveals the clear prevalence of even carbon 
atom homologs, and the rates of carbon preference indexes 
(ACPIs), formulated similarly to those of n-alkanes, usually 
exceed 10 (Alves et al. 2001). Other sources show analogous 
profiles; e.g., vehicle exhausts hold A12–A22 acids (i.e., lin-
ear chain homologs with 12 ÷ 22 carbon atoms), with the 
maximums corresponding to A16 and A18. Biogenic emis-
sions show also typical percentages of medium- and long-
chain fatty acids. Usually, apart from palmitic (A16) and 
stearic (A18) acids, the profiles display a secondary maxi-
mum within the ranges A20 ÷ A24, or > A25; light homologs 
have been associated with microbiota, small plants, and 
softwood trees, while heavy acids characterize high plants 
and hardwood trees (Gelpi et al. 1970). Worth of note, the 
ACPI rates are lower in the case of microorganisms, due to 
important percentages of odd-carbon acids from A15 to A21.

Unsaturated and dicarboxylic acids merit a special men-
tion. Unsaturated acids (UAn), e.g., palmitoleic (UA16), oleic 
(UA18), and linoleic (twin unsaturated A18), are indicative 
of emission from crops and in interiors of cooking (Schauer 
et al. 2002; Yu et al. 2021). Dicarboxylic fatty acids (DAn) 
exist as minor components released by vegetation, whose 
emissions show the usual even-to-odd carbon prevalence; 
however, particulate matters are rich of DA2–DA6 homologs, 
emitted by anthropogenic sources, which influence the 
molecular signature of the short C-chain range. Besides, air 
parcels affected by oxidants show the occurrence of azelaic 
acid (DA9), which is a by-product of oleic acid decomposi-
tion (Balducci et al. 2014; Kawamura and Bikkina 2016; 
Ren et al. 2020).

Linear alcohols, 2-ketones, aldehydes, fatty acid methyl 
esters, and nitriles were not extensively investigated as trac-
ers of suspended particulate sources, though all of them 
have been linked to emission from vegetation (Simoneit 
and Mazurek 1982; Simoneit 2002) and have been found in 
pyrolysis by-products of sewage sludge treated with aerobic 
and anaerobic digestion (Dominguez et al. 2003). Linear 
alcohols exhibit a behavior parallel to that of fatty acids. 
They display the predominance of even carbon homologs 
and are among the principal components of organic aerosols 
in rural regions (Simoneit and Mazurek 1982). Many ster-
ols also (including campesterol, sitosterol, stigmasterol, and 
amyrins) have been associated to vegetation as components 
of epicuticular waxes (Guo et al. 2019; Kumar et al. 2019; 
Gal et al. 2022). The most important exception is choles-
terol, which has been recognized as a tracer of meat cooking 
(Cass 1998; Carreira et al. 2009). Other acid esters (includ-
ing biopolymers, benzoates, terephthalates, myristates, and 
glycols) are employed nowadays as surrogates of old com-
ponents of plastics (Sanchez-Pinero et al. 2021; Evtyugina 
et al. 2021), because these latter have been classified as 
emerging contaminants (Cavanagh et al. 2018, Udayakumar 
et al. 2021). Thus, the occurrence of new esters in soot and 
dust would be indicative of contamination by new plasticiz-
ers and, in interiors, of house cleaning, painting and building 
commodities as well as of cosmetics and other personal care 
products. No extensive investigations have undertaken in the 
environment regarding this topic; however, they should be 
gain importance in the future, due to the general tendency 
to replace alkyl phthalates and polyvinyl chloride with eco-
friend plasticizers.

Several polar organics, including nitrosamines and nico-
telline, have been suggested in the last decade as tracers 
of mainstream, sidestream, and third-hand tobacco smoke 
(Apelberg et al. 2013; Blanchard et al. 2014) in addition 
to, or as substitute for, nicotine, cotinine, fine particulate, 
and CO (Hecht 1999; Hammond et al. 1987; Daisey 1999). 
In particular, nicotelline has recognized as fine to perform 
quantitative assessments of the tobacco smoke contribution 
to pollution of indoor and outdoor environment, thanks to 
its low volatility and enough persistence in the air (Aquilina 
et al. 2021).

Organic halides

Polychlorobiphenyls (PCBs) and polychlorinated dioxins/
furans (PCDD/Fs) are probably the most investigated groups 
of halides affecting the environment (Barbas et al. 2018). 
PCBs were important industrial products during the twen-
tieth century, since they found a number of applications as 
mixtures as solvent, in power transformers and heat exchang-
ers, in substrates for pesticides and inks. By contrast, PCDDs 
and PCDFs exist solely as unwanted by-products of other 
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industrial processes (e.g., paint manufacturing, foundries and 
steel mill, waste incineration). Despite PCBs and PCDD/Fs 
have been banned since long time, both groups continue to 
affect the environment today again (Ngo et al. 2020). Indus-
trial syntheses of PCBs lead to blends characterized by vari-
ous average chlorine percentages, which sometimes could aid 
in highlighting the impact of sources suspected as causing 
environmental pollution. A variety of fingerprints tags the 
emission sources; for instance, distinct PCDD/Fs patterns 
have observed for vehicle exhausts, sewage sludge, and steel 
mill fumes (Mininni et al. 2004; Liu et al. 2015). Besides that, 
the molecular fingerprints of PCBs and PCDD/Fs change with 
time owing to ability of congeners to persist to degradation as 
well as to dissolve in waters and lipids (Di Guardo et al. 2017; 
Ngo et al. 2018, 2020). Finally, looking to bioavailability of 
organic halides, we must take in account that these substances 
are semi-volatile. For instance, 2.3.7.8-tetrachlorodibenzo-p-
dioxin exists overall as vapor in the environment, while most 
dioxin-like congeners occur as adsorbed on particulates (Bar-
bas et al. 2018). Due to key role of dioxin-like compounds 
regarding to toxicity, the contemporary collection of gaseous 
and condensed phases of emissions and atmosphere is manda-
tory to draw information about sources and air quality. Never-
theless, the actual risk for humans depends on the aggregation 
state of toxicants, because vapors are in part breathed out, 
while ultra-fine and fine particles are easily retained in lungs 
with their harmful load.

Other halides have recently gained concern as tracers of 
water, air, and soil pollution depending on waste spill and 
contaminated food. In particular, polybromodiphenyl ethers 
(PBDEs) and phosphoric acid organic esters are present in 
flame retardant formulas (Lee et al. 2020; Percy et al. 2020), 
while perfluoroalkyl acids (PFAs) and other perfluorinated 
chemicals enjoy of many industrial and home care applica-
tions as surfactants (Hubbard et al. 2012).

Polysaccharides

The occurrence of numerous organic substances in the 
environment is associated with biomass burning in general, 
and specifically with that of specific tree species (Oros and 
Simoneit 2001a, b, Oros et al. 2002). Many chemicals are 
carbohydrate molecules (e.g., glucose, xylose, and sucrose) 
and the respective dehydration-polymerization by-products 
of them (levoglucosan, galactosan, mannosan, inositols) 
(Simoneit et al. 2004; Jia and Fraser 2011; Pereira et al. 
2017; Bikkina et al. 2019; Lv et al. 2021) and of lignin 
(e.g., methoxyphenols) (Hawthorne et al. 1988; Hays et al. 
2005). Levoglucosan is usually the predominant anhydro-
sugar; however, other minor polysaccharides allow distin-
guishing hardwood from softwood burning, thanks to their 
concentration ratios vs. levoglucosan; in fact, levoglucosan/
mannosan ratios ranging from 3 to 10 are typical combustion 

of softwood, while ratios ranging 15 ÷ 25 of hardwood, 
and > 40 of crop burning (Kang et al. 2018; Mu et al. 2021). 
Levoglucosan in particular, typical tracer of wood burning, 
allowed to demonstrate that even the downtowns of big cit-
ies undergo the impact of this kind of emission, due to the 
generalized use of wood for heating and cooking in the coun-
tryside (Fine et al. 2004). Indeed, wide uncertainty remains 
about the emission rate of these chemicals; nevertheless, 
according to levoglucosan levels in air, manmade biomass 
burning looks as the principal source of pollution outside 
of cities and heavy industry districts (Pomata et al. 2014; 
Perrino et al. 2019; Ren et al. 2020).

Living organisms as unexpected 
and unconsidered sources of organic 
contaminants

All living organisms, including humans, are not only the 
target, but also the source of a number of contaminants (Set-
timo et al. 2020b). Microorganisms are exploited to remove 
organic toxicants through aerobic and anaerobic digestion 
(Habib et al. 2022; Priya et al. 2022). On the other hand, 
fungi, spores, bacteria, insects, and indoor plants inhabit our 
environment, leave everywhere traces of their presence, and 
often move people to use repellants, pesticides, and disin-
fectants; meanwhile, pets are the source of allergies, irrita-
tions, and breathing problems (Diaz 2016; Zhai et al. 2018; 
Settimo et al. 2020b; Cui et al. 2022). This phenomenon is 
much more important in building interiors, where humans 
contribute in a twin way, i.e., (i) indirectly, through actions 
related to use of home and personal care products (deodor-
ants, cleaning sprays, soaps, fragrances, plastics), to cooking 
(foods), wearing (fibers, dyes), and heating/air conditioning 
(fuels, freezing liquids); and (ii) directly, through emitting 
vapors, droplets, and particles (e.g., through breath, sweat, 
hair loss, skin abrasion) (Nazzaro-Porro et al. 1979; Bortz 
et al. 1989; Camera et al. 2010; Knox and O’Boyle 2021). 
Chemical composition of man’s skin and hair lipids, sweat, 
and breath is known since long time; however, the concern 
about it seems restricted to industry of cosmetics and related 
production, while at our knowledge no investigations are 
undertaken concerning their occurrence in our life places. 
Hence, the search for specific molecular fingerprints that 
allow indexing their impact on the chemistry of the environ-
ments is still at the start point.

Conclusions

The sources of pollution (both direct emissions and atmos-
pheric reactions leading to presence of toxicants in the 
environment) model the molecular fingerprint of organic 
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contaminants associated to airborne particulates and depo-
sition dusts. This chemical signature is comprised of indi-
vidual markers and, more often, of distribution patterns 
within groups of homologs. Both types of signature provide 
preliminary but useful information about nature of emis-
sions and with regard to their health impact on environment. 
Though studied since long time, the molecular fingerprints 
of emissions are not completely elucidated and further inves-
tigations seem necessary, due to recent detection of new 
distribution models of particulate matter components that 
mess up consolidated behaviors (e.g., alkanes), as well as 
to the novel concern for emission sources neglected until 
now (microorganisms). The progress of knowledge about 
the molecular fingerprints of sources will aid investigators to 
apply more sophisticated approaches (e.g., providing expla-
nation of the crude results of principal component analysis 
or source factorization modeling) and assess the relative 
importance of emissions. Besides, it will favor optimizing 
the strategies aimed at controlling air pollution and mitigat-
ing the impact of toxicants on humans and environment. In 
that perspective, new studies are advisable to do, aimed at 
characterizing chemicals released by humans, pets, and liv-
ing microorganisms, which often prejudice the healthiness 
of the life places.
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