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Abstract

Traumatic brain injury (TBI) is a major cause of disability and death among children and 

young adults in the United States, yet there are currently no treatments that improve the long-

term brain health of patients. One promising therapeutic for TBI is brain-derived neurotrophic 

factor (BDNF), a protein that promotes neurogenesis and neuron survival. However, outstanding 

challenges to the systemic delivery of BDNF are its instability in blood, poor transport into 

the brain, and short half-life in circulation and brain tissue. Here, BDNF is encapsulated into 

an engineered, biodegradable porous silicon nanoparticle (pSiNP) in order to deliver bioactive 

BDNF to injured brain tissue after TBI. The pSiNP carrier is modified with the targeting ligand 

CAQK, a peptide that binds to extracellular matrix components upregulated after TBI. The protein 

cargo retains bioactivity after release from the pSiNP carrier, and systemic administration of the 

CAQK-modified pSiNPs results in effective delivery of the protein cargo to injured brain regions 

in a mouse model of TBI. When administered after injury, the CAQK-targeted pSiNP delivery 

system for BDNF reduces lesion volumes compared to free BDNF, supporting the hypothesis that 
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pSiNPs mediate therapeutic protein delivery after systemic administration to improve outcomes in 

TBI.
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INTRODUCTION

Traumatic brain injury (TBI) results in up to 2.8 million injury-related hospitalizations 

and deaths in the United States annually.1 Currently available treatments for TBI are 

palliative and do not address the underlying cause of disease, leading to long-term physical, 

behavioral, and/or psychosocial impairments in the majority of survivors.2,3 After the 

initial injury, a secondary injury progresses over a course of days to weeks and the 

pathophysiology involves a series of biochemical and cellular cascades, including reactive 

oxygen species (ROS) generation, inflammatory response, neurodegeneration, blood-brain 

barrier (BBB) breakdown, and cell death.4 While the primary injury can only be prevented, 

the secondary injury is an opportunity for therapeutic intervention in order to preserve brain 

tissue proximal to the primary injury.

Brain-derived neurotrophic factor (BDNF) is a promising neuroprotective therapeutic to 

mitigate the progressive deterioration of brain tissue that occurs during the secondary injury 

after TBI.5 BDNF is a protein secreted from neurons and glia that promotes neuronal 

survival, neural plasticity, and neurogenesis6,7 and its cognate receptor is tropomyosin 

receptor kinase B (TrkB).8 TrkB activation initiates signaling cascades that regulate 

apoptosis, neuronal plasticity, and neurogenesis.9 The binding of BDNF to TrkB activates 

pro-survival pathways and enhances expression of anti-apoptotic proteins through the 

phosphoinositide 3-kinase and Akt signaling pathway in neurons.5,10 Previous studies have 

demonstrated that sustained BDNF levels in the brain achieved through stem cells,11,12 

genetically engineered cells,13-18 viral gene therapy, and direct brain infusions19 can 
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protect brain tissue in the context of nervous system injury, neurodegenerative disease, and 

psychiatric disorders.5 In a meta-analysis of available clinical data, including cohort studies 

and randomized controlled trials, treatment of TBI patients with cerebrolysin, a porcine-

derived peptide mixture that includes BDNF,20 led to improved outcomes in functional tests 

such as the Glasgow Outcome Scale and modified Rankin Scale.21 The promise of BDNF 

as a potential therapeutic for neurodegenerative diseases is highlighted by the initiation of 

a first-in-human clinical trial to evaluate adeno-associated virus vector (AAV2)-based gene 

therapy of BDNF in Alzheimer’s Disease patients (NCT05040217).22

While elevated BDNF expression, along with other neurotrophic factors, contributes to the 

functional preservation of injured tissue, a major barrier to the development of BDNF as 

a clinical therapeutic for TBI is successful delivery to the injured brain after systemic 

administration. Challenges to intravenous delivery of BDNF include short circulation half-

life and restricted transport into the brain.5,23,24 Nanoscale drug delivery vehicles are 

platform technologies with the potential to increase the bioavailability and stability of 

protein therapeutics; for example, vehicles can be engineered to target specific tissues to 

increase retention and labile cargos can be encapsulated within the interior of vehicles to 

protect against degradation in the biological milieu.24,25 In addition, the pharmacokinetic 

profiles of nanoscale drug delivery vehicles can be tuned independent of their therapeutic 

cargo, allowing for more facile formulation of a variety of cargos. However, previous efforts 

to encapsulate BDNF into nanoparticles have resulted in low mass loading of less than 

1%.26-28

Porous silicon nanoparticles (pSiNPs) are an attractive candidate nano-carrier for 

therapeutics due to their tunable pore sizes and versatile loading chemistries, which 

allow for the accommodation of therapeutic cargo with a wide range of sizes and 

chemical properties, including small molecule drugs,29,30 nucleic acids,31-33 and peptides/

proteins.34,35 In particular, sequestration of protein-based biologics within the porous 

nanostructure of pSiNPs has been shown to protect them from degradation in the blood, 

leading to extended in vivo half-life and bioactivity.29,32,34-44 In addition, pSiNPs have the 

advantage of linear degradation profiles, and thus can achieve linear drug release profiles, 

due to their anisotropic degradation mechanism.45 This strategy has been successfully 

employed to encapsulate nerve growth factor (NGF) into pSiNPs, demonstrating the local 

release of growth factors from a polymeric scaffold.34,38 In addition, Segal and Shefi et al. 

demonstrated neurotrophic factor release from nanoporous silicon microparticles after local 

delivery to the brain, achieved through the implantation of chips or biolistic bombardment 

using a pneumatic gene gun through an opening in the skull.46 However, so far, protein 

delivery from pSiNPs after systemic delivery has yet to be demonstrated.

While a subset of TBI patients may undergo surgical intervention to remove blood clots and 

relieve intracranial pressure,47 the brain is generally not readily accessible to therapeutics. 

Although intravenously delivered materials can accumulate in the injured brain through 

the damaged BBB that is a hallmark of TBI,48-51, 52 access to the brain is transient, 

with a majority of materials excluded from the brain 6 hours after injury as the BBB 

rapidly re-establishes.33,48,49 This highlights the need for active targeting strategies, in order 

to increase penetration and retention of potential therapeutics. We recently identified a 
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peptide ligand, CAQK, that binds to extracellular matrix (ECM) components upregulated 

after brain injury.33 CAQK-modified pSiNPs were able to deliver siRNA to brains in a 

penetrating TBI model after intravenous administration and mediated significant silencing 

of a reporter protein compared to control targeted pSiNPs.33 This approach exploited the 

transient damage to the BBB caused by the injury to allow passive accumulation of the 

nanoparticles into brain tissue where they selectively bound to, and were retained by, 

accessible brain ECM.

This work combines the above two approaches for protein loading and peptide-mediated 

targeting of ECM in the injured brain. Here we load BDNF into pSiNPs with a loading 

efficiency of 13% by mass of the pSiNP-protein construct, a substantial improvement in 

mass loading compared to encapsulation of BDNF by other systems (<1%),26-28 and then 

modify the exterior of the nanoparticles with polyethylene glycol (PEG) and the brain 

injury-targeting peptide CAQK. We confirm that the BDNF retains its bioactivity after 

loading, we track the CAQK-modified pSiNPs into injured brain tissue after systemic 

administration in a mouse model of TBI, and we demonstrate a substantial reduction of 

brain lesion volumes relative to free BDNF or PBS controls. This work therefore represents 

the first time chemically-targeted nanoporous silicon has achieved the delivery of protein 

payloads after systemic administration and improved outcomes in an animal model of TBI.

RESULTS AND DISCUSSION

Loading of pSiNPs with Protein Cargo and Surface Modification with Targeting Peptide.

The pSiNPs used in this study were synthesized by electrochemical etching of mesopores 

into single crystalline silicon wafers, followed by ultrasonic fragmentation to form 

mesoporous nanoparticles. The electrochemical etch parameters (48% hydrofluoric acid, 

46 mA/cm2) were set to achieve a nominal pore size in the range of 10-20 nm in diameter 

and an average size of ~130 nm in hydrodynamic diameter (Figure 1).45 The pore diameter 

was chosen based on previous studies to be sufficient to accommodate protein cargos.45 

The proteins were loaded into the pores of pSiNPs using an oxidative trapping method 

(Figure 1a,S1),34,38 which involves partial conversion of the Si skeleton in pSiNPs to SiO2 

by mild oxidation in deionized water. The SiO2 shell then re-structures in the presence of 

the aqueous protein solution. This combination of conversion of Si to SiO2 and aqueous 

restructuring of SiO2 results in a volume expansion of the skeleton and sealing of the protein 

within a hydrated silicate framework, effectively trapping the protein and protecting it from 

degradation in the blood upon systemic delivery. We studied two protein cargoes in this 

work: the therapeutic protein BDNF, and the model protein lysozyme, which was labeled 

with Rhodamine B. Lysozyme has a molecular weight of 14.5 kDa and an isoelectric point 

of 11.3553 and BDNF has a molecular weight of 13.5 kDa and an isoelectric point between 

9 and 10,54 making their size and charge properties similar at physiologic pH, which are 

important parameters to consider for pSiNP protein loading. Rhodamine B-labeled lysozyme 

provides an established functional readout of protein activity in release assays and allows 

tracking of the payload by image analysis in the biodistribution studies. BDNF was used 

in efficacy studies in SH-SY5Y cultures and the animal model of TBI. The SiO2 shell in 

the pSiNPs is negatively charged at physiologic pH, with a zeta potential ranging from −24 

Waggoner et al. Page 4

Bioconjug Chem. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to −28 mV,32 which enhanced the loading of the positively charged protein cargoes via 
electrostatic interactions (pI of lysozyme = 11.3553 and pI of BDNF ~ 9-1054).

In order to verify surface modification and protein loading, we analyzed the pSiNPs 

by Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and 

transmission electron microscopy (TEM) at each stage of synthesis. After oxidation and 

protein loading, the FTIR spectrum revealed characteristic amide I and II bands (at 1650 

cm−1 and 1530 cm−1, respectively), denoting the presence of protein (Figure 1b).55 Size 

measurements of unloaded pSiNPs and protein-loaded pSiNPs taken by DLS and TEM 

indicated that the loading process resulted in a diameter increase of ~5-10 nm, likely 

due to protein adsorption onto the pSiNP surface (Figure 1c,d,S2). To increase in vivo 
half-life and stability in systemic circulation,56,57 the pSiNP surface was then aminated and 

modified with polyethylene glycol using NHS chemistry. PEG modification stabilized the 

nanoparticles, allowing them to be administered intravenously. To increase the retention of 

nanoparticles in the injured brain tissue, the pendant PEG groups were then conjugated 

to CAQK, a peptide previously discovered to bind upregulated proteoglycan complexes in 

injured brain tissue.33 CAQK was attached to the distal end of PEG by reacting the free thiol 

of CAQK with a maleimide on the PEG. For some of the fluorescence imaging experiments, 

a FAM-labeled CAQK peptide was used. The surface chemistry was confirmed by FTIR; in 

particular, the appearance of a C-H stretching peak (2869 cm−1) confirmed successful PEG 

conjugation.58 The absolute diameter of the nanoparticles increased by ~10-20 nm after PEG 

and CAQK surface modification, while hydrodynamic diameter measurements increased by 

~20-30 nm, likely due to the size increase in the hydrated shell around the nanoparticle after 

PEG modification (Figure 1c,d,S2). This size increase is consistent with the ~10 nm Flory 

radius of 5 kDa PEG and peptide.59 Approximate number of peptides conjugated per pSiNP 

was found to be ~40,000-50,000 peptides per nanoparticle, as evaluated by quantifying 

the amount of FAM-labeled CAQK by absorbance and estimation of nanoparticle number 

by Nanoparticle Tracking Analysis. The zeta potential after surface modification of the 

protein-loaded pSiNPs containing the pendant PEG and CAQK groups was −1 ± 1.5 mV in 

PBS.

Model Protein Cargo is Released Linearly from pSiNPs and Retains Activity.

Due to the high cost of BDNF, protein loading and performance parameters of the 

nanoparticle system were initially optimized using lysozyme as a model protein cargo. 

The degradation of pSiNPs is anisotropic due to the vertical pore orientation created by 

electrochemical etching that results in an increased surface area in the horizontal plane.45 

Silicon dioxide hydrolyses and dissolves in aqueous conditions to form biocompatible 

orthosilicic acid, releasing the protein payload during this process.45 pSiNP-Lysozyme-

PEG-CAQK were degraded in PBS and imaged with TEM over 48 hours, revealing a 

reduction in total nanoparticle size over time (Figure 2a). Lysozyme loading was quantified 

to be 14.5% by mass relative to the pSiNP-protein construct, measured by fully degrading 

pSiNPs in PBS at 37°C and measuring protein content with a BCA assay (Figure 2b). 

Next, we quantified the activity of the protein released from degraded pSiNPs. Lysozyme 

activity after release from pSiNPs was assayed in a Micrococcus lysodeikticus cell 

assay (Figure 2c). Lysozyme hydrolyzes the cell wall of M. lysodeikticus, which can be 
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monitored by decreased absorbance measured at 450 nm.60 The combination of total protein 

measurements (Figure 2b) and protein activity (Figure 2c) confirmed that >95% of the 

protein released maintained its activity.

CAQK Peptide-Targeted pSiNPs Mediate Protein Delivery into the Injured Brain after 
Systemic Administration.

In this work we employed the peptide CAQK as a targeting ligand for the nanoparticles. 

CAQK has been shown to bind to the ECM upregulated in injured brain tissue, and 

to selectively enhance nanoparticle accumulation in the damaged regions of the mouse 

brain.33 We and others have demonstrated that intravenous delivery of targeted pSiNPs 

successfully led to accumulation and retention of cargo in target tissues, such as siRNA 

against STAT3 in breast cancer tumors61 and siRNA against peptidylprolyl isomerase B62 or 

green fluorescence protein in the injured brain.33 Concerning biodegradation of the material, 

prior work has demonstrated that pSiNPs accumulate mostly within the liver and spleen after 

intravenous administration and degrade into orthosilicic acid in organs within 1-4 weeks.29 

Orthosilicic acid is naturally found in many tissues and excreted renally.63 Previous studies 

of in vivo degradation of pSiNPs after intravenous administration found that degradation 

profiles approximate zero-order release,64,65 similar to the linear release profile we observe 

(Figure 2b). Intravenously delivered pSiNPs are well-tolerated in mice up to 20 mg/kg.29 In 

the present studies, the protein-loaded pSiNP formulations were administered at 5 mg/kg of 

pSiNP.

Controlled cortical impact (CCI) is a well-studied model of TBI in mice and the 

injury is created by performing a craniotomy and impacting the exposed dura with an 

electromagnetically-driven piston.66 To determine if the targeted pSiNPs could deliver a 

protein cargo to the injured brain tissue after CCI, pSiNPs were synthesized with the model 

protein, Rhodamine B-labeled lysozyme. CAQK-targeted pSiNPs carrying this payload were 

administered intravenously 2 hours post-injury in mice given a CCI on the right hemisphere 

and brains were harvested 2 hours after injection (Figure 2d). The intrinsic luminescence 

from the quantum-confined silicon domains in the pSiNPs was imaged with time-gated 

imaging, which highlights the long-lived (microseconds) excited state of silicon quantum 

dots while suppressing short-lived (nanoseconds) tissue autofluorescence.67 The time-gated 

images revealed the presence of intact pSiNPs in the injured hemisphere of the brain after 

systemic administration (Figure 2e). Brains were then sectioned and imaged by confocal 

microscopy to determine distribution of injected materials within the tissue (Figure 2f). 

We observe co-localization of fluorescent signal from Rhodamine B-labeled lysozyme and 

FAM-CAQK in the injured brain, surrounded by fluorescent signal from FAM-CAQK in 

adjacent areas. We believe that the FAM-CAQK fluorescent signal not co-localized with 

Rhodamine B-labeled lysozyme is due to surface degradation of pSiNPs, thus liberating 

FAM-CAQK that can subsequently diffuse into the surrounding tissue. These results support 

the hypothesis that CAQK-targeted pSiNPs can accumulate in the injured brain and deliver 

protein cargos after systemic administration. This result is consistent with previous studies 

of CAQK-targeted pSiNPs carrying siRNA cargo in a penetrating brain injury model, where 

CAQK- but not CGGK control-modified pSiNPs mediated gene silencing in the injured 

brain tissue.33
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BDNF is Released Linearly from pSiNPs over 72 Hours and Maintains Activity.

BDNF loading was determined by ELISA to be 13.3 ± 0.7% by mass relative to the total 

construct and complete degradation of the pSiNP-BDNF construct occurred over 72 hours 

in PBS at 37 °C (Figure 3a). To confirm that BDNF released from pSiNPs maintained 

activity, we performed a functional assay of the pSiNP-BDNF constructs in SH-SY5Y 

cultures, a human neuroblastoma cell line, which were differentiated with retinoic acid 

to induce the expression of TrkB, the receptor for BDNF.68,69 Improved cell viability 

and neurite extension are well-established responses to BDNF treatment in SH-SY5Y 

cultures expressing TrkB.69-71 The pSiNP-BDNF and free BDNF-treated cultures exhibited 

significantly increased cell viability with treatment in a dose-dependent manner compared 

to untreated and empty pSiNP-treated cultures, which had no effect on cell viability even 

at their highest dose (Figure 3b). Free BDNF-treated cultures displayed higher cell viability 

at most doses compared to pSiNP-BDNF-treated cultures, likely due to the immediate 

availability of free BDNF in in vitro conditions (Figure 3a,b). Imaging of cultures for 

morphological changes revealed that free BDNF and pSiNP-BDNF treatments increased 

presence of fine and complex neurites, with multiple crossing points, and a lower density 

of cytoskeletal actin surrounding the nucleus compared to control and pSiNP treatments 

(Figure 3c). The similar release profiles of lysozyme and BDNF (Figure 2b, 3a) and the 

preservation of activity observed with the released lysozyme (Figure 2c) and the released 

BDNF (Figure 3b,c) support the hypothesis that the protein cargos retain their biological 

activity in the pSiNP formulations.

BDNF is a growth factor with pleiotropic functions known to improve neuron survival, 

synaptic function, and cell signaling in animal models of injury and neurodegeneration.5 

Previous studies have demonstrated that elevated BDNF concentrations in the brain achieved 

through stem cell engraftment increased the expression of synaptic proteins and improved 

neurological scores in murine models of TBI.11,72-74 Due to the numerous challenges with 

cell therapy, alternative approaches that enable the systemic delivery of recombinant BDNF 

protein are desired.

The half-life of BDNF is reported to be <10 minutes in plasma75,76 and ~3 hours in 

brain tissue.77 This very short time window illustrates the challenge of developing BDNF, 

and protein-based biologics in general, as systemically administered therapeutics. The use 

of a nanoparticle carrier in order to protect and increase bioavailability of BDNF in the 

brain after systemic administration has therefore been considered by several researchers 

as a potential solution to this problem. Of particular relevance to the present work, 

a previous report of nanoparticle-mediated delivery of BDNF employed poly(lactic-co-

glycolic acid) (PLGA) nanoparticles.78 This PLGA nanoparticle formulation of BDNF 

improved neurological behavior scores over free BDNF, supporting the potential benefit of 

BDNF delivered by nanoparticles.78 In this prior work, BDNF was adsorbed onto the surface 

of the PLGA nanoparticles, likely due to the known challenge of maintaining protein activity 

when encapsulating protein drugs into the core of PLGA nanoparticles. In addition to the 

denaturing property of polymers and polymer surfaces, surface adsorption has a limited 

loading capacity, it usually displays burst release kinetics, and it leaves the biologic exposed 

to potential degradation by proteolytic enzymes. By comparison, the present approach 
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preserves protein activity (Figures 2c, 3b,c), can achieve high mass loading (~13 wt%) 

to enhance potency, and it yields zero-order release kinetics (Figures 2b, 3a).

Treatment with pSiNP-BDNF Reduces Lesion Volumes in a Mouse Model of TBI.

After CCI, there is progressive loss of tissue due to secondary injury mechanisms that results 

in a lesion,79-81 including neuronal cell death which peaks 24-72 hours after the primary 

injury.82,83 The volume of this lesion correlates with functional deficits such as motor 

activity and memory.84,85 In order to evaluate the therapeutic potential of pSiNP-BDNF 

after systemic delivery, we administered pSiNPs via the tail-vein in a mouse CCI model 

of TBI and measured lesion volume three days post-injury (Figure 4a). Mice were injured 

on the right hemisphere of the brain with a CCI, and CAQK-targeted pSiNPs carrying 

BDNF were administered through the tail-vein 2 hours post-injury (5 mg/kg pSiNP and 

0.65 mg/kg BDNF). Controls included animals that received PBS, empty pSiNPs with 

PEG-CAQK (5 mg/kg), or free BDNF (1 mg/kg). While our previous work demonstrated the 

improved accumulation of CAQK-targeted pSiNPs compared to control-targeted pSiNPs,33 

a limitation of the current study is that we do not evaluate the impact of CAQK-targeting 

on pSiNP-BDNF accumulation. Three days after injury, brains were harvested and serial 

coronal sections were collected every 0.5 mm across the injury lesion (11-12 sections per 

brain). Lesion area was measured from each section and the lesion volume calculated by 

the trapezoidal rule, as described previously.81,86,87 Nissl staining of neuronal cell bodies 

supported the presence of neurons in the area surrounding the injury in all groups (Figure 

S3), suggesting that any neurons that died during primary or secondary injury were included 

in the lesion area. We observed a 24.0% reduction in lesion volume in pSiNP-BDNF 

treated mice compared to the PBS treated control group (Figure 4b,c). In comparison, lesion 

volumes in free BDNF treated mice were equivalent to lesion volumes in the PBS control. 

We hypothesize that the reduction in lesion volume in pSiNP-BDNF treated mice is due 

to the ability of pSiNPs to localize to injured brain tissue (Figure 2e,f) and release active 

BDNF over a period of time (Figure 3) that is consistent with peak neuronal apoptosis.82,83

Lesion volumes in mice treated with empty pSiNPs (CAQK-targeted without BDNF) were 

reduced by 12.8% compared to the control PBS treatment (p = 0.58). pSiNPs and their 

degradation product silicic acid are known to interact with calcium ions, forming calcium 

silicate,31 and ROS, which catalyzes the oxidation of porous silicon during its degradation 

process.65 Calcium and ROS levels are elevated in the brain microenvironment after TBI as 

part of the damaging biochemical pathways that make up secondary injury.88-90 However, 

more extensive studies on the interaction of pSiNPs with the injured brain microenvironment 

are needed to be able to draw conclusions about the extent or nature of the effect observed in 

animals administered empty pSiNPs.

CONCLUSIONS

While therapeutic proteins are attractive candidates to address the complicated disease 

biology of TBI, the systemic delivery of proteins for treatment of TBI is challenging due to 

the instability of proteins in the blood and limited transport into the brain.5,23,24,91 This work 

demonstrated a peptide-targeted pSiNP platform that addressed these challenges. We found 
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that up to 13% by mass of the BDNF protein could be loaded into the pores of pSiNPs, and 

measurement of cell viability in retinoic acid differentiated SH-SY5Y cultures confirmed 

that BDNF subsequently released from this carrier retained its bioactivity. Accumulation of 

intravenously administered CAQK-targeted pSiNPs and their protein cargo in injured brain 

tissue was confirmed using a fluorescently tagged model protein in a CCI mouse model of 

TBI. When formulated with BDNF and administered systemically 2 hours post-injury, the 

CAQK-modified BDNF-loaded pSiNPs reduced brain lesion volumes by ~24% compared to 

treatment with PBS or free BDNF. This work demonstrates that ligand-targeted pSiNPs can 

be used to deliver a therapeutic protein cargo to injured brains after systemic administration, 

and that this treatment leads to phenotypic improvements in a TBI animal model.

The positive results seen in this study for treatment of TBI suggest that systemic and 

targeted delivery of BDNF using nanoparticles may also have potential in other central 

nervous system injuries. For example, BDNF is a promising therapeutic for stroke92-95 and 

spinal cord injury.17,18,96,97 Additionally, the progressive deterioration that occurs after TBI 

is caused by multiple disease pathways, such as ROS generation, inflammation, and vascular 

dysfunction.4 It has been hypothesized that monotherapies are insufficient to address the 

multi-factor disease pathology of TBI and combination therapy may be a key to overcome 

the decades of failed TBI clinical trials.98 Due to their versatile chemistry and tunable pore 

size, pSiNPs provide a promising platform technology for multiple therapeutic cargos in 

combination therapies that might better address the multi-factorial causes of TBI disease 

pathology.

EXPERIMENTAL PROCEDURES

Materials.

CAQK peptide and fluorescein-conjugated peptide FAM-CAQK were purchased from 

CPC Scientific, Inc. (San Jose, CA). Highly boron-doped p-type silicon wafers, 1.2 

mΩ-cm resistivity, single-side polished on the (100) face, were obtained from Virginia 

Semiconductor (USA). Concentrated hydrofluoric acid (HF, 48% aqueous, ACS grade) 

was obtained from Fisher Scientific (USA). Succinimidyl valerate-polyethylene glycol-

maleimide (SVA-PEG-MAL, MW 5 kDa) was purchased from Laysan Bio (Arab, AL). 

Absolute ethanol, methanol, and 3-(Ethoxydimethylsilyl)propyl-amine (APDMES) were 

obtained from Sigma-Aldrich (St. Louis, MO). BDNF was obtained from R&D Systems 

(USA).

Synthesis of pSiNPs.

The preparation followed a published "perforated etch" procedure.99 Single-crystalline 

highly doped p-type silicon wafers were anodically etched in an electrolyte consisting of 

hydrofluoric acid (48%) and ethanol in a 3:1 ratio by volume. CAUTION: HF is highly toxic 

and corrosive and contact with skin should be avoided. Procedures involving HF should 

always be carried out in a fume hood configured to handle HF and the operator should wear 

appropriate protective gloves, gown, and face shield. Etching was carried out in a Teflon 

etch cell using a platinum coil counter electrode. Prior to preparation of the porous silicon 

layers, the wafer surface was cleaned using a sacrificial etch consisting of electrochemical 
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anodization (60 sec, 46 mA/cm2) in the HF electrolyte, followed by ethanol rinse, then 

dissolution of the resulting porous film with aqueous KOH (1 M). The wafer was then 

rinsed with water (1x) and ethanol (2x). An etching waveform consisting of a square wave 

of 200 cycles, in which a lower value of current density of 46 mA/cm2 was applied for 

1.2 s, followed by an upper value of current density of 365 mA/cm2 applied for 0.363 s 

(Keithley 2651A Sourcemeter power supply). The multilayered porous nanostructure was 

removed from the crystalline silicon substrate by application of current pulse of 3.7 mA/cm2 

for 250 s in an electrolyte consisting of 1:29 (v:v) of 48% aqueous HF:absolute ethanol. The 

freestanding porous silicon sheets were placed in a sealed vial containing 1 mL of deionized 

water per mg of porous silicon and subjected to ultrasonic fracture in an ultrasonic bath 

(model 97043-960, VWR International) operating at a frequency of 35KHz and power of 48 

Watts with a 1.9 L capacity overnight. The resulting ~130 nm-diameter nanoparticles were 

collected using centrifugation (15,000 rpm, 10 min, Eppendorf Centrifuge Model 5424R) 

and washed 3 times with ethanol and then isolated by centrifugation. Nanoparticles prepared 

in this manner are mesoporous, consisting of a crystalline silicon core skeleton coated with a 

surface layer of silicon dioxide.

1 mg of the pSiNPs resulting from the above procedure were washed once with DI water and 

then suspended in 1 mL of a solution consisting of recombinant human BDNF (200 μg/mL) 

dissolved in DI water. The nanoparticles were incubated under constant agitation at room 

temperature for ~18 hours. For the experiments involving the model protein lysozyme with 

conjugated Rhodamine B, the protein was loaded in a similar fashion. Protein mass loading 

was determined by measuring protein concentrations remaining in the supernatant after 

centrifugation by either BCA (lysozyme) or ELISA (BDNF; BDNF DuoSet ELISA, R&D 

Systems). The nanoparticles were washed once in DI water (via centrifugation/resuspension) 

to remove any unloaded protein from the solution, and then subsequently with 70% ethanol 

and finally with 100% ethanol. The loaded nanoparticles were aminated by incubation in an 

ethanol solution containing 12 μL/mL of APDMES for 3 hours under constant agitation. The 

nanoparticles were washed 3 times in 100% ethanol to remove any additional APDMES and 

incubated for 1 hour with 5 kDa SVA-PEG-MAL (500 μg in 1 mL ethanol) with constant 

agitation to achieve a PEGylated surface. After 3 more washes with 100% ethanol to remove 

any additional PEG, the nanoparticles were incubated with CAQK (100 μg/1 mg pSiNPs) 

overnight at room temperature. The nanoparticles were washed with 100% ethanol, 70% 

ethanol, and water and resuspended in water for characterization and use.

Characterization of pSiNPs.

A Malvern Zetasizer Nano (Malvern Panalytical Ltd.) was used to determine the 

hydrodynamic diameter and zeta potential of the nanoparticles. A Thermo Scientific Nicolet 

6700 FTIR instrument fitted with a Smart iTR diamond ATR fixture was used to determine 

the FTIR spectra of the nanoparticles. A Genesys 150 UV/VIS Spectrophotometer (Thermo 

Fisher Scientific, Inc.) was used to evaluate the absorbance of FAM-peptide and a NanoSight 

LM10-HSB/GFT14 (Malvern Panalytical Ltd.) was used to determine the concentration 

of pSiNPs to calculate the number of peptides conjugated per pSiNP. For degradation 

studies, 0.5 mg/mL of lysozyme-loaded pSiNPs surface modified with PEG and CAQK were 

incubated in PBS at 37 °C. At 0, 12, 24, and 48 hours, aliquots of degraded nanoparticles 
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were removed from the stock, pelleted, and resuspended into ethanol and loaded onto 42 μm 

formvar/carbon 400 mesh copper grids (Ted Pella, Inc.) and dried. The stock nanoparticles 

were similarly pelleted at each timepoint and resuspended in fresh PBS to ensure that 

degradation would not be stalled by the solubility of silicic acid in the supernatant.29 TEM 

images were obtained on a JEOL 1400 plus electron microscope (JEOL USA, Inc.) operated 

at 80KeV and equipped with a Gatan Oneview camera (Gatan, Inc.).

Measurement of Protein Release from pSiNPs.

0.5 mg/mL of lysozyme or BDNF-loaded pSiNPs and an equivalent concentration of control 

nanoparticles were incubated in PBS at 37 °C. For release assays, supernatant was collected 

every 24 hours for up to 4 days and evaluated for protein concentration by BCA or ELISA. 

The percent protein release was calculated from the total cumulative release over the 

experiment. Cumulative released BDNF was calculated to be 51 ± 1.3% of BDNF calculated 

during loading. Lysozyme activity was determined by a Microroccus lysodeikticus cell 

assay as previously described with some modification.60 Briefly, 0.5 mg/mL of lysozyme 

loaded pSiNP were incubated within a solution containing M. lysodeikticus cells. Lysozyme 

activity was evaluated by measuring the absorbance of the intact cells at 450 nm using a 

plate reader (Tecan) over 5 minutes.

Bioactivity of BDNF in Retinoic Acid Differentiated SH-SY5Y Cultures.

SH-SY5Y cells (ATCC) were plated at 32,000 cells/cm2 in 96 well plates or at 16,000 

cells/cm2 on cover glasses coated sequentially in 0.05 mg/mL poly-D-lysine overnight and 

0.05 mg/mL rat tail collagen 1 for 2 hours at 37°C. Cells were cultured in Minimum 

Essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin for 24 hours before beginning the differentiation protocol. 10 μM 

retinoic acid in full media was introduced to the cells through a media change starting 

24 hours after plating and exchanged every 48 hours. Cells were differentiated for 5 days 

to induce TrkB expression before beginning BDNF bioactivity studies.68,69 For viability 

studies, doses ranging from 600 ng/mL (equivalent to 4.5 μg/mL pSiNP) to 0 ng/mL of 

free BDNF, pSiNP-BDNF surface modified with PEG, or pSiNP vehicles surface modified 

with PEG in serum-free MEM were introduced to the retinoic acid treated SH-SY5Y cells 

through a media change after washing the cells twice in serum-free MEM. Control wells 

representing 100% cell viability received full media with 10 μM retinoic acid. Cells were 

treated for 2 days and cell viability was evaluated with a CellTiter-Glo® Assay (Promega). 

For morphology studies, cells were cultured with treatments at 300 ng/mL for 3 days before 

being fixed and stained with anti-NF200 (Sigma), FITC-phalloidin (Millipore Sigma), and 

Hoechst with standard protocols. Fluorescent images were obtained on a Nikon Eclipse Ti2 

(Nikon Instruments Inc.) of quadruplicate cover glasses.

Animal Injury Model.

All animal experiments were approved by the University of California, San Diego 

Institutional Animal Care and Use Committee (IACUC). A CCI model of TBI in mice 

was used for this study. 8-week-old C57BL/6J female mice (Jackson Labs) were placed in 

a stereotaxic frame under 2.5% isoflurane anesthesia and a 5 mm diameter craniotomy was 

performed over the right cortex, adjacent to the midline of the skull and midway between 
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lambda and bregma. The right cortex was injured at a 2 mm depth with a 2 mm diameter 

stainless steel piston tip at a rate of 3 m/s using an ImpactOne (Leica Biosystems).

Protein Delivery from pSiNPs Targeting the Injured Brain in vivo.

Lysozyme-loaded pSiNPs surface modified with PEG and CAQK were injected via the tail-

vein 2 hours after CCI (n=3) with control groups receiving pSiNP-Lysozyme-PEG-CAQK 

without injury or receiving an injury with a control PBS injection. Mice were perfused and 

brains were harvested 2 hours after injection. Time gated imaging was performed with an 

iSTAR 334T CCD camera (Andor Technology Ltd.) fitted with a Nikon AF micro lens 

(Nikko 105 mm) with laser excitation at 410 nm and a long-pass filter at 460 nm to quantify 

pSiNP localization. Brains were equilibrated in 30% w/v sucrose overnight and frozen in 

OCT (Tissue-Tek). Coronal sections were taken from the whole brain and counterstained 

with Hoechst to image the presence of Rhodamine B-tagged lysozyme being released from 

the pSiNPs which were tagged by FAM-labeled CAQK.

For BDNF treatments, 28 mice (n=7) were divided into 4 groups; PBS treated control, 

pSiNP-BDNF treatment surface modified with PEG-CAQK (13 μg BDNF equivalent, 

100 μg pSiNPs), free BDNF treatment (20 μg), and a vehicle-only treatment (100 μg 

unloaded pSiNPs surface modified with PEG-CAQK) (Figure 4a).33 2 hours after CCI, 

treatments were administered intravenously through a tail-vein injection. Brains were 

collected 72 hours post-injury after perfusion with 10% formalin and frozen in OCT for 

tissue processing.

Lesion Volume Analysis and Histology.

10-μm thick coronal sections were taken every 0.5 mm from coordinates −4 mm to 1 mm 

from bregma for lesion analysis and processed with H&E staining to clearly visualize the 

lesion area with brightfield microscopy. Images of each section were blindly analyzed for 

lesion size by measuring the outlined lesion area using ImageJ software. Lesion volume was 

calculated with the trapezoidal rule. Sections taken from the center of each injury were Nissl 

stained using conventional protocols. Slides were imaged automatically using a Zeiss Axio 

Scan.Z1 and imaged with a color camera using a Nikon Eclipse Ti2 (Nikon Instruments 

Inc.).

Statistical Analysis.

Statistical analysis was performed on GraphPad Prism 8 software (9.1.2). In Figure 3b, cell 

viability was analyzed with a two-way ANOVA and Dunnett’s post hoc test conducted with 

p<0.05. In Figure 4b, lesion volume was analyzed with a one-way ANOVA with Dunnett’s 

post hoc test conducted with p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AAV2 Adeno-associated Virus Vector

APDMES 3-(Ethoxydimethylsilyl)propyl-amine

BBB Blood-brain Barrier

BDNF Brain-derived Neurotrophic Factor

CCI Controlled Cortical Impact

DLS Dynamic Light Scattering

ECM Extracellular Matrix

FBS Fetal Bovine Serum

FTIR Fourier-transform Infrared Spectroscopy

HF Hydrofluoric Acid

IACUC Institutional Animal Care and Use Committee

MEM Minimum Essential Media

NGF Nerve Growth Factor

PBS Phosphate-buffered Saline

PEG Polyethylene Glycol

PLGA Poly(lactic-co-glycolic Acid)

pSiNP Porous Silicon Nanoparticle

ROS Reactive Oxygen Species

SVA-PEG-MAL Succinimidyl Valerate-Polyethylene glycol-Maleimide

TBI Traumatic Brain Injury

TEM Transmission Electron Microscopy
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TrkB Tropomyosin Receptor Kinase B
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Figure 1: Synthesis and characterization of CAQK-targeted pSiNPs encapsulating a protein 
cargo.
(a) Schematic of protein loading, surface modification, and CAQK-functionalization of 

pSiNPs. (b) FTIR analysis of pSiNPs during synthesis steps. Nanoparticle diameters as 

measured by (c) DLS and (d) TEM (scale bar in inset = 100 nm).
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Figure 2: Loading and biodistribution of model protein in pSiNPs.
(a) Analysis of pSiNP-Lysozyme-PEG-CAQK size by TEM image analysis after degradation 

in PBS at 37 °C after 0, 12, 24, and 48 hours (scale bar = 100 nm). (b) Time-dependent 

release of model protein lysozyme from pSiNPs in PBS at 37 °C, measured by BCA assay. 

The mass percentage loading of lysozyme in the pSiNP constructs was 14.5% by mass 

relative to the pSiNP-protein construct. (c) Activity of lysozyme after release from pSiNPs. 

Lysozyme activity was assayed through the hydrolysis of Micrococcus lysodeikticus, 

measured by loss of absorbance at 450 nm. (d) Schematic depiction of the protocol followed 

in the biodistribution study. The right hemisphere was injured, followed by intravenous 

administration of pSiNP-Lysozyme-PEG-CAQK 2 hours post-CCI, and brains collection for 

downstream imaging and analysis 2 hours post-injection. (e) Time-gated image of pSiNPs in 

whole brains and (f) confocal image of lysozyme model protein (red), CAQK (green), and 

nuclei (blue) from injured brain sections (scale bar = 200 μm).
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Figure 3: BDNF loading and activity in differentiated SH-SY5Y cultures.
(a) Time-dependent release of BDNF from pSiNPs in PBS buffer at 37 °C, quantified 

by ELISA. The loading of BDNF in the pSiNPs was 13.3% by mass relative to the 

pSiNP-protein construct. (b) Cell viability in retinoic acid-differentiated SH-SY5Y cultures 

treated with BDNF, pSiNP, and pSiNP-BDNF. The “pSiNP" control trace corresponds to 

a concentration of pSiNPs that is the same amount of Si by mass as was used in the 

pSiNP-BDNF formulation; i.e., each point in the pSiNP control trace corresponds to a 

mass/volume of empty pSiNPs that is ~7.5x the ng/mL value indicated on the x-axis. (Gray 

line represents untreated cells; n=6, mean ± SD, **** p ≤ 0.0001 Two-way ANOVA with 

Dunnett's post-test compared to pSiNP control). (c) Representative images of SH-SY5Y 

cells treated for 72 hours with matched concentrations of 300 ng/mL BDNF and stained with 

NF200 (red), phalloidin (green), and Hoechst (blue) (scale bar =100 μm).
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Figure 4: Lesion volume decreases after pSiNP-BDNF treatment.
(a) Schematic and timeline of injury, treatment, and lesion volume analysis. (b) Changes 

in lesion volumes relative to PBS-treated controls. (n = 7 per group, mean ± SEM, # p 

= 0.13 One-way ANOVA with Dunnett's post-test compared to PBS control). Both pSiNP 

and pSiNP-BDNF formulations contained PEG-CAQK surface chemistry as described in the 

text. (c) Representative images of H&E-stained coronal brain sections at 1.5 mm caudal 

from bregma for each treatment group with measured lesion area filled in gray (scale bar = 1 

mm).
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