Skip to main content
. 2022 Sep 8;16:1000716. doi: 10.3389/fnins.2022.1000716

Algorithm 2.

Substructural Joint Probability Distribution Adaptation with Bi-Projection Metrix (SSJPDA-BPM)

  Input:
     XS and Xt, source and target domain
     feature matrices;
     YS, source domain one-hot coding label
     matrix;
     μ, trade-off parameter;
     λ, regularization parameter;
     T, number of iterations;
  Output:
     Y^t, estimated target domain labels.
  Begin:
     Use EM for GMM, cluster each class
     data in the source to obtain
     {ZS,YS}={(zs,i,ys,i)}i=1ks, and cluster the
     unlabeled data in target domain
     to obtain Zt={zt,j}j=1kt;
     Compute cost matrix C and coupling
     matrix π using Eq. 3 and Eq. 4
     respectively;
     Compute the weights of source
     substructures ws=π1*1kt and target
     substructures wt=1ktkt
     for n = 1, …, T do
        Construct the joint probability
        matrix R in Eq. 17
        Solve the generalized
        eigen-decomposition problem in
        Eq. 18 and Eq. 19, and select the p
        trailing eigenvectors to construct
        the projection matrix As and At;
        Train a classifier f on AsTZs
        and applied to AtTZt to obtain
        Y^t={yt,j}j=1kt which is the label matrix
        of substructure in target domain
        Zt={zt,j}j=1kt
     End for
     For each substructure zt,j, assign its
     label yt,j to all samples it contains,
     and gets Y^t={yt,j}j=1nt
  End