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COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a 
post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 
severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host 
inflammatory responses appear to be a key driver of COVID-19 severity.
We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), 
glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody produc-
tion and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza.
During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity- 
dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers 
were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number 
of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins 
such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort.
A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to 
be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL 
and GFAP.
These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is there-
fore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation 
of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.
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Introduction
COVID-19 has been associated with several neurological complica-

tions including stroke and immune-mediated disorders such as 

Guillain-Barré syndrome and autoimmune encephalitis.1

Furthermore, up to a third of infected individuals experience a pro-

tracted post-viral syndrome following COVID-19, which is likely of 

CNS origin given the dominance of neuropsychiatric symptoms 

such as fatigue and subjective cognitive difficulties.2–4 While 

the occurrence of physical brain injury is overt in some 

COVID-19-associated neurological syndromes such as stroke and en-

cephalitis, a number of studies have suggested that brain injury can 

occur in the context of COVID-19 even in the absence of a clear con-

comitant neurological diagnosis. However, the mechanism that might 

drive this process requires further attention. 5–16 In COVID-19 disease, 

exaggerated host inflammatory responses appear to be a key driver of 
severe disease, and the most effective established therapies for sys-
temic COVID-19 aim to attenuate this response.17,18 Initial attention 
focused on the innate immune system as a key driver, but emerging 
evidence also suggests a role for dysregulated adaptive immune re-
sponses.19 This combined maladaptive response is reminiscent of 
that seen in a spectrum of immune-mediated diseases—which extend 
from autoinflammatory to autoimmune in nature.20 Well established, 
clinically-relevant neuronal surface or intracellular autoantibodies 
have only rarely been found in the serum of patients with 
COVID-19,21,22 but indirect immunofluorescence studies on brain sec-
tions suggest other autoantibodies may be relevant.21 Standard auto-
antibody assays are optimized to detect specific, high-affinity 
antibodies, but a significant proportion of the immunoglobulin reper-
toire consists of low-affinity autoantibodies, such as natural 

4098 | BRAIN 2022: 145; 4097–4107                                                                                                                     E. J. Needham et al.

mailto:Edneedham@doctors.org.uk


autoantibodies, which have less well-defined biological roles in infec-
tion, homeostasis and autoimmunity.23

Here, we investigated markers of a dysregulated host immune 
response, including surrogates of maladaptive innate (proinflam-
matory cytokines) and adaptive (autoantibodies) inflammation, 
and how they correlated with biomarkers of brain injury.

Materials and methods
Study populations

Patients admitted to Cambridge University Hospital, UK with 
PCR-proven COVID-19 were identified between March 2020 and 
March 2021. Providing research personnel were available, all pa-
tients admitted to Cambridge were approached for consent, either 
in the acute phase, or at follow-up visit. The cohort of patients re-
cruited from Cambridge were supplemented by a convenience 
sample of PCR-proven COVID-19 patients from Sahlgrenska 
University Hospital, Sweden (February–March 2020); previously in-
cluded in a prospective sampling study.24 Written consent was 
gained from either patients themselves, or from their legal repre-
sentatives where they lacked capacity to consent. Where written 
consent could not be gained due to restrictions on hospital visiting, 
legal representatives were consulted by telephone. This study was 
approved by the Swedish Ethical Review Authority (2020–01771) 
and the East of England—Cambridge Central Research Ethics 
Committee (17/EE/0025); via the Cambridge Biomedical Research 
Centre. Healthy controls were recruited through the Cambridge 
Biomedical Research Centre (prior to the COVID-19 pandemic) 
and all provided written consent (17/EE/0025). Data from a small 
positive control group consisting of patients with acute severe trau-
matic brain injury were included as a reference for the magnitude 
of brain injury biomarker elevations (REC 97/290). Stored plasma 
and clinical data from patients with influenza infection who were 
recruited to the MOSAIC trial 25 (REC 09/H0709/52, 09/MRE00/67) 
were used as a further control cohort.

Procedures

Serum samples were collected at up to three time points from ad-
mission [acute (0–14 days), subacute (15–70 days) and convalescent 
(at outpatient follow-up; >80 days)]. The samples were aliquoted, 
labelled with pseudoanonymized identifiers, and frozen immedi-
ately at −70°C. Samples from Sweden were then shipped on dry 
ice to the University of Cambridge.

Demographic and clinical information

Demographic, clinical and laboratory information was recorded by 
the clinical team at the time of admission; Short Form Health 
Survey 36 (SF36)26 was completed in patients recruited to 
Cambridge University Hospital who returned for follow-up after 
their attendance to hospital. Patients with COVID-19 or influenza 
were stratified into three groups of severity based on the treatment 
needed in the acute phase (mild: no supplemental oxygen was re-
quired; moderate: supplemental oxygen was required; severe: inva-
sive mechanical ventilation was required).

Brain injury biomarker measurement

Neurofilament light (NfL), glial fibrillary acidic protein (GFAP), total 
tau and ubiquitin C-terminal hydrolase L1 concentrations were 
quantified in serum (COVID-19 patients and relevant control group) 

or plasma (influenza patients and relevant control group) at the 
University of Cambridge using the Neurology 4-PLEX A assay run 
on an HD-X Analyser (Quanterix). As per previous experience, 
UCH-L1 levels were predominantly below the functional lower level 
of quantification (with only 12% all samples demonstrating concen-
trations above this level), with high coefficients of variance be-
tween replicates, and therefore were excluded from analysis (data 
are displayed for completeness in Supplementary Fig. 1). Five ser-
um samples taken from patients within 3 days of severe traumatic 
brain injury were also assayed to provide a frame of reference for 
magnitude of changes seen.

Protein microarray autoantibody profiling

Autoantibody screening was performed using a custom CNS pro-
tein microarray based on the HuProt™ (version 4.0) platform.27,28

The microarray was devised in collaboration with Cambridge 
Protein Arrays Ltd. and CDI laboratories to detect autoantibodies 
predominantly directed against CNS antigens (n = 51), but also to 
a number of blood–brain barrier (n = 5) and other tissue-specific 
(n = 94, covering organ systems including lung, heart and coagula-
tion) antigens, as well as spike and nucleocapsid antigens (full anti-
gen list detailed in Supplementary Fig. 2). The microarrays consist 
of a glass microscope slide with a thin nitrocellulose coating, 
printed with quadruplicate spots of recombinant yeast-expressed 
whole proteins. Each slide accommodates up to 12 individual ser-
um samples. Samples from healthy controls and patients with 
COVID-19 were randomly distributed across the slides to mitigate 
against experimental variation.

The slides were blocked in 2% bovine serum albumin (BSA)/0.1% 
PBS-Tween overnight at 4°C, washed, and then incubated with 200 
μl of 1:1000 diluted serum at room temperature for 2 h. The slides 
were washed again, incubated at room temperature for 2 h with 
fluorophore-conjugated goat anti-human IgM-μ chain-Alexa488 
(Invitrogen, Cat. No. A21215) and goat anti-human 
IgG-Fc-DyLight550 (Invitrogen Cat. No. SA5–10135) secondary anti-
bodies, washed, and then scanned using a Tecan LS400 scanner and 
GenePix Pro v4 software, with the output being median fluores-
cence value of the quadruplicate spots for each protein.

Cytokine profiling

Serum concentrations of TNFα, IL-1β, IL-6, IL-10 and IFN-γ were 
quantified using by multiplexed particle-based flow cytometry on 
a Luminex 200 analyser using xPonent Software (R&D Systems/ 
Luminex) according to manufacturer’s recommendations. The 
population reference ranges derived for clinical use with this assay 
were utilized. Sensitivities/minimum detectable doses as indicated 
by the manufacturer are: IFN-γ (0.04 pg/ml); IL-1β (0.08 pg/ml); IL-6 
(0.14 pg/ml); IL10 (0.21 pg/ml); TNFα (0.29 pg/ml).

Plasma concentrations of cytokines in the influenza cohort were 
determined using the MSD SECTOR instrument, as described in the 
MOSAIC study.25

Statistical analysis

Continuous descriptive data are presented using median and inter-
quartile range (IQR), and categorical variables using number and 
percentage. Unpaired two-group comparisons were assessed using 
Mann-Whitney U-tests, paired two-group comparisons with 
Wilcoxon Matched-Pairs Signed Rank tests and categorical compar-
isons with the Chi-squared statistic. Multiple t-tests were used to 
generate volcano-plots, with a false-discovery rate (FDR) set to 
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1%. Comparisons between more than two groups were undertaken 
using Kruskal-Wallis test with post hoc Dunn’s multiple comparison 
test. Correlations between continuous variables were assessed 
using Spearman’s rank correlation co-efficient, and where multiple 
correlations were assessed within an experiment, Bonferroni cor-
rection was used to determine the appropriate level of significance. 
Principal component analysis was used as a dimension reduction 
technique to identify inflammatory cytokine profiles. All analyses 
were performed using GraphPad Prism Version 9.2.0.

Protein microarray data analysis

As previously described,28 antibody binding was determined by 
measuring the median fluorescence intensity (MFI) of the four 
quadruplicate spots of each antigen; this value was then normal-
ized by dividing it by the median MFI value of all antigens for that 
sample. These normalized values were then transformed into 
Z-scores based on the distribution derived for each antigen from 
the healthy control cohort. A positive autoantibody ‘hit’ was de-
fined as an antigen where Z ≥ 3.

Data availability

All data are available from the corresponding author on request.

Results
Study populations

For brain injury biomarker analysis, 250 samples [from 175 patients 
(122 from Cambridge University Hospital, Cambridge, UK and 53 
from Sahlgrenska University Hospital, Gothenburg, Sweden) at up 
to three time points], and control samples from 59 age-matched 
healthy individuals and 45 patients admitted with influenza were 
obtained (all prior to the pandemic). The 122 patients from 
Cambridge represented ∼7% of a total of 1666 patients admitted 
over the recruitment period, and the 53 patients from Gothenburg 
represented ∼39% of a total of 137 patients admitted over the re-
cruitment period. Comparisons of the study populations with the 
overall admitted populations are shown in Supplementary Fig. 3. 
Overall, there was no difference in age between patients and 
healthy controls [51 (35–61) versus 50 (32–62)], but a larger propor-
tion of males in the patient group [93 (53%) versus 21 (35%); P = 
0.02]. Of the COVID-19 patients, 70 (40%) had mild disease, 72 
(41%) moderate disease and 33 (19%) severe disease. The median 
(IQR) timings of the samples post-admission were: acute = 7 (3–10) 
days, subacute = 31 (26–35) days, and convalescent = 122 (109–136). 
A subset of these patients underwent autoantibody (n = 122) and 
cytokine profiling (n = 82). Descriptions of all cohorts and samples 
are shown in Supplementary Fig. 3.

Acute brain injury increases with COVID-19 severity, 
but late tau elevation is severity-independent

To quantify the magnitude of brain injury, we measured serum 
concentrations of blood brain-injury biomarkers using the 
Quanterix Simoa Neuro 4-PLEX B assay; concentrations of NfL, 
GFAP and total tau above the functional lower limit of quantifica-
tion of the assays were detectable in most health control serum 
samples (NfL 99%, GFAP 69% and total tau 51%) and COVID-19 ser-
um samples (NfL 97%, GFAP 73% and total tau 77%). In patients 
with COVID-19, serum concentrations of NfL and GFAP rose in a 
severity-dependant manner at both the acute and subacute 

time points, with a magnitude equal to the levels seen following se-
vere traumatic brain injury in some patients; there was no consist-
ent difference between serum total tau concentrations between 
patients and controls (Fig. 1A and B and Supplementary Table 1).

The temporal dynamics, in 67 patients who provided longitu-
dinal samples, showed that both GFAP and NfL tended to fall with 
time, although NfL rose in some patients between the acute and 
subacute time points, presumably as a result of its longer half-life 
(Fig. 1D and Supplementary Fig. 4A). Unusually, serum total tau 
concentrations were significantly higher than controls at the con-
valescent time point [0.95 (0.75–1.15) versus 0.72 (0.60–1.04) pg/ml, 
P = 0.003; Fig. 1D and E].

At the convalescent time point, serum GFAP concentrations 
were no higher than controls irrespective of disease severity, but 
serum NfL concentrations persisted at levels that were higher in 
patients who had developed moderate and severe COVID-19 com-
pared with controls (Fig. 1C and Supplementary Table 1). The eleva-
tion of serum total tau concentration did not vary with severity, and 
indeed after correction for multiple comparisons only patients who 
had developed mild disease remained significantly higher than 
controls (Fig. 1C and Supplementary Table 1). Convalescent levels 
of both NfL and GFAP concentrations correlated with paired sam-
ples taken at the 15–42 day time point (ρ = 0.69, P = 0.0008 and ρ = 
0.82, P < 0.0001, respectively), but total tau did not (ρ = 0.27, P = 
0.02), suggesting that the residual elevations of NfL and GFAP are re-
flective of events occurring during the acute illness, whereas the 
subsequent elevation of total tau appears to be independent from 
any acute effects.

Given the multiple comparisons above, we performed a sensi-
tivity analysis using a mixed effects model which confirmed that 
both severity and time point significantly affected both GFAP (P = 
0.0017 and P < 0.0001) and NfL (P = 0.003 and P < 0.0001), but not total 
tau (P = 0.81 and P = 0.71) concentrations in the serum of COVID-19 
patients. There was no significant interaction between severity and 
time point for either GFAP (P = 0.06) or NfL (P = 0.13).

To explore the relationship between elevations of convalescent 
brain injury biomarkers and clinical outcomes, we studied correla-
tions with the eight components of the SF-36. High convalescent 
serum NfL concentrations appeared to correlate most strongly 
with worse scores [notably: physical functioning (ρ = −0.52, 
P = 0.03), general health (ρ = −0.48, P = 0.05) and role functioning– 
emotional (ρ = −0.53, P = 0.02)]. The relationship between serum to-
tal tau concentrations and SF-36 domains, however, was very dif-
ferent, with higher concentrations seemingly associating with 
better scores, particularly in the emotional components [emotional 
wellbeing (ρ = 0.56, P = 0.02) and energy/vitality (ρ = 0.56, P = 0.02); 
Supplementary Fig. 4B]. However, none of the above comparisons 
withstood adjustments for multiple comparisons.

While the number of patients in this cohort with specific neuro-
logical syndromic diagnoses were small (mononeuritis multiplex 
n = 3, opsoclonus myoclonus n = 1, and peripheral neuropathy 
with concurrent encephalopathy n = 1), these patients did not ap-
pear to have higher brain injury biomarker levels, with only one pa-
tient showing biomarker levels an order of magnitude higher than 
the non-neurological patients (Supplementary Fig. 4C).

To determine whether elevations in brain-injury biomarkers 
were specific to COVID-19, we measured them in the subacute plas-
ma of 45 patients admitted with influenza [age: 44 (30–50) years; 
sex: 51% male; sample time point: 34 (29–41) days post-admission; 
severity: mild 49%, moderate 33%, severe 18%] and 16 healthy con-
trols. Whilst the absolute concentrations are not directly compar-
able with the COVID-19 cohort (as the samples were plasma 
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rather than serum), GFAP and NfL were elevated in patients with se-
vere disease to a similar magnitude as the COVID-19 cohort 
(Supplementary Fig. 4D).

Diverse autoantibodies are seen in COVID-19 
and associate with proinflammatory cytokine 
profiles

To assess whether autoantibodies were detected in patients with 
COVID-19, we screened serum for autoantibodies using a custom- 
designed protein microarray (see ‘Methods and methods’ section 
for details).28 The data were first assessed for any group-wise differ-
ences in reactivity to self-antigens between patients with COVID-19 
and controls; volcano plots showed that not only did COVID-19 pa-
tients demonstrate clear IgG reactivity to SARS-CoV-2 spike protein 
and nucleocapsid, but also to surfactant protein A (SFTPA1), a lung 
surfactant protein, mutations of which result in pulmonary fibrosis 
(Fig. 2A).29 This increased reactivity was seen in both subacute and 
convalescent samples (Fig. 2B); reactivity to SFTPA1 in the subacute 
samples was stronger in patients with moderate and severe disease 
than in either those with mild disease or healthy controls (Fig. 2C). 
The presence of this autoantibody has not been previously de-
scribed in COVID-19; furthermore, we have not detected it in co-
horts of patients with traumatic brain injury (unpublished data), 
suggesting that it is not a common finding in critically ill patients 
more generally. No increased IgM reactivities were seen to any anti-
gen in subacute COVID-19 samples compared with controls, but 

there was higher IgM reactivity to both spike protein and 
HLA-DRA in the convalescent samples.

While the group level comparisons provided information about 
pervasive autoantibody responses that were common across pa-
tients, this approach was less useful in identifying autoantibody re-
sponses which were found in a minority of patients but were still 
biologically interesting. Autoantibody profiles of the groups were 
therefore compared by assessing the number and targets of posi-
tive autoantibody hits to specific target antigens. COVID-19 pa-
tients had higher numbers of both IgG and IgM autoantibody hits 
than healthy controls, which peaked at the subacute time point, 
but remained elevated in the convalescent samples (Fig. 2D 
and E). Patients with moderate or severe disease had higher num-
bers of autoantibody hits than those with mild disease at the sub-
acute time point (Fig. 2F and G), and the number of IgM and IgG 
autoantibodies in an individual were related (ρ = 0.32, P = 0.01).

Autoantibodies to many different antigens were seen, but some 
were seen more frequently (Fig. 2H). Anti-myelin associated glyco-
protein (MAG) was the most commonly detected IgG autoantibody, 
seen in 9.6% COVID-19 samples but not seen in any healthy controls, 
followed by surfactant protein A (SFTPA1), which was detected in 
8.8% patients, and again not seen in healthy controls (frequency of 
positive autoantibody hits in control and COVID-19 cohorts shown 
in Supplementary Table 2). Most of these responses were of low signal 
strength, but very high strength signal was seen in those demonstrat-
ing anti-interferon alpha antibodies (Supplementary Fig. 5). No spe-
cifically characteristic autoantibody was seen in the five patients 
with syndromic neurological diagnoses.

Figure 1 Serum brain injury biomarker concentrations in patients with COVID-19. (A–C) Dot plots showing the effect of COVID-19 disease severity on 
brain injury biomarkers at the acute, subacute and convalescent time points; representative levels from five patients with acute severe traumatic brain 
injury (TBI) included as a reference for magnitude of elevation. Maroon dashed line denotes the functional lower limit of quantification. (D) Temporal 
changes in serum GFAP, NfL and tau concentrations. (E) Elevated serum total tau concentrations at the convalescent time point in COVID-19. HC = 
healthy controls; nCOV = COVID-19; TBI = traumatic brain injury; CNS = central nervous system complication; PNS = peripheral nervous system com-
plication. Multiple group comparisons are by Kruskal-Wallis test with post hoc Dunn’s multiple comparison test; two-group unpaired comparisons are 
by Mann-Whitney U-test, and paired by Wilcoxon matched-pairs signed rank test; correlations are by Spearman’s rank.
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Serum cytokine profiling was undertaken by Luminex®. 
Elevations in serum cytokine concentrations were seen in the sub-
acute samples, particularly IL-6, TNFα and IL-10, but many patients 
demonstrated concentrations persisting above the normal range in 
the convalescent samples. (Fig. 2I). There was substantial covari-
ance between all cytokines other than interferon gamma (Fig. 2J), 
but principal component analysis demonstrated three canonical 
pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) driving PC1 
(Fig. 2K). Given the negative direction of the pro-inflammatory 
eigenvector of PC1, a ‘pro-inflammatory load’ score was generated 
by simply inverting the PC1 eigenvalue to aid clarity of communica-
tion (so that higher concentrations of pro-inflammatory cytokines 
were represented by a higher ‘pro-inflammatory load’ score). 
Patients with moderate and severe disease demonstrated higher 
concentrations of proinflammatory cytokines (Fig. 2L). The number 
of both IgG and IgM hits correlated with an elevated proinflamma-
tory cytokine response (pro-inflammatory load score versus IgG: 
ρ = 0.33, P = 0.01, versus IgM: ρ = 0.30, P = 0.02).

Magnitude of autoantibody and pro-inflammatory 
cytokine response correlate with brain injury

To understand whether there was a relationship between inflam-
matory profiles and brain injury biomarkers, we compared brain in-
jury biomarker levels with cytokines and autoantibody responses. 
At the subacute time point, serum GFAP and NfL concentrations 
positively correlated with both the number of IgG hits [GFAP and 

NfL versus IgG hits: ρ = 0.26, P = 0.03 and ρ = 0.38, P = 0.001, respect-

ively (Fig. 3A and B)] and increased proinflammatory cytokine re-

sponses (GFAP and NfL versus pro-inflammatory load score ρ = 
0.53, P < 0.0001 and ρ = 0.65, P < 0.0001, respectively), but there was 

no such relationship between serum total tau concentration and 

number of IgG hits or cytokine response (ρ = −0.02, P = 0.90 and ρ = 
−0.17, P = 0.2). The number of IgM hits also correlated with serum 

NfL concentration (ρ = 0.33, P = 0.006), but not with GFAP or total 

tau (ρ = 0.20, P = 0.10, and ρ = 0.07, P = 0.57, respectively). The rela-

tionship between brain injury biomarkers and the top 10 most fre-

quently detected autoantibodies was investigated; after Bonferroni 

correction, serum NfL concentrations were associated with the 

Z-score of IgG autoantibodies against NfL, SFTPA1 and MYBPHL 

(ρ = 0.35, P = 0.002, ρ = 0.38, P = 0.001 and ρ = 0.41, P = 0.0005, respect-

ively), but none of the top 10 autoantibodies retained significance 

against serum GFAP or total tau concentrations after correcting 

for multiple comparisons. Importantly, there was no suggestion 

that autoantibodies against brain antigens associated more strong-

ly with brain injury biomarker concentrations than those targeting 

non-brain antigens. There was no association between serum bio-

marker concentrations and autoantibody profiles in the healthy 

control group.
In the convalescent period, the number of IgG hits once again 

correlated with serum NfL concentrations (ρ = 0.48, P = 0.002; 
Fig. 3C), but not GFAP or total tau (ρ = 0.12, P = 0.46, ρ = −0.08, P = 
0.63, respectively). The relationship between brain injury 

Figure 2 Immune profiling in COVID-19. (A and B) Volcano plots of groupwise comparisons in autoantibody profiles between COVID-19 patients and 
controls. (C) Relationship between disease severity and anti-SFTPA1 IgG autoantibodies. (D and E) Temporal profiles of IgG and IgM autoantibody re-
sponses. (F and G) Effect of disease severity on number of IgG and IgM autoantibody ‘hits’. (H) Top 10 most frequently detected autoantibodies across all 
samples. (I) Comparison of cytokine profiles at the subacute and convalescent time points, with normal range shown by hatching. (J) Correlation matrix 
between measured subacute cytokines. (K) Loadings plot from principal component analysis demonstrating the contributions of proinflammatory cy-
tokines to PC1. (L) Comparison in subacute proinflammatory cytokine response between mild and moderate/severe disease (‘Inflammatory Load’ = the 
inverse of cytokine PC1). Volcano plots use multiple Mann-Whitney U-tests with an FDR rate set to 1%; multiple group comparisons are by 
Kruskal-Wallis test with post hoc Dunn’s multiple comparison test; two-group unpaired comparisons are by Mann-Whitney U-test, correlation matrix 
is by Spearman’s rank.
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biomarkers and cytokine profiles seen in the acute phase was repli-
cated in convalescent patients, with elevations in proinflammatory 
cytokines (IL-1β, IL-6 and TNFα as described by pro-inflammatory 
load score) associating with raised NfL and GFAP, but not total tau 
(pro-inflammatory load score versus NfL: ρ = 0.55, P < 0.0001; 
GFAP: ρ = 0.26, P = 0.05; total tau ρ = 0.1, P = 0.43).

A comparable relationship between subacute brain injury bio-
markers and pro-inflammatory cytokine concentrations was seen 
in the influenza cohort (e.g. TNFa versus NfL and GFAP: ρ = 0.56, 
P = 0.0001 and ρ = 0.60, P < 0.0001, respectively, and IL-6 versus NfL 
and GFAP: ρ = 0.35, P = 0.02 and ρ = 0.36, P = 0.02, respectively).

IgM autoantibodies at convalescence are associated 
with brain injury biomarker elevation, notably tau

At the convalescent time point, however, there was an association 
between number of IgM hits and all brain injury biomarkers, par-
ticularly total tau (GFAP: ρ = 0.45, P = 0.004; NfL: ρ = 0.50, P = 0.001; to-
tal tau: ρ = 0.51, P = 0.0007; Fig. 3D). To investigate this relationship 
further, patients were dichotomized into either high IgM responder 
(≥3 IgM hits) versus low IgM responder (<3 IgM hits) groups, and the 
levels of brain-injury biomarkers compared. Serum concentrations 
of all three biomarkers were higher in the high IgM responder 
group, but again total tau was the most highly significant difference 
[GFAP: 58.2 (32.6–87.05) versus 37.8 (23.8–43.1), P = 0.03; NfL: 7.5 (5.2– 
16.5) versus 4.6 (3.0–8.1), P = 0.026; total tau: 1.1 (0.9–1.3) versus 0.8 
(0.7–0.9), P = 0.001; Fig. 3E].

Discussion
The aim of this study was to examine how frequently brain injury 
occurred in COVID-19, both acutely and in convalescence, and 

whether elevated brain injury biomarkers were associated with a 
dysregulated host inflammatory response. We demonstrated that 
brain injury biomarkers are elevated in a severity-dependent man-
ner in the acute phase, and that these elevations are associated 
with both raised pro-inflammatory cytokines and the presence of 
autoantibodies. When patients were followed-up (∼4 months post- 
admission), there was evidence that this immunological dysregula-
tion had not fully resolved and was associated with serum markers 
of ongoing active brain injury (namely NfL), albeit to a lesser degree 
than in the acute illness. In addition, in convalescent patients, 
there appeared to be a second, separate, process, which was char-
acterized by a different pattern of serum brain injury biomarkers 
(more specifically elevation of total tau), which was not related to 
initial COVID-19 severity or pro-inflammatory cytokine levels but 
was associated with the presence of IgM autoantibodies. We ob-
served autoantibody responses to many different targets (most 
commonly lung surfactant protein A1 and myelin associated glyco-
protein), but the particular target of the autoantibody did not seem 
to relate to the presence of brain injury; rather, it seemed that the 
more diverse the autoantibody repertoire generated (reflecting a 
more generalized immune response), the more significant the de-
gree of brain injury. It was notable that the presence of autoanti-
bodies against brain antigens was no stronger predictor of brain 
injury than those targeting non-brain antigens, suggesting that 
the brain injury occurred in the setting of a general dysregulated 
immune response rather than as a result of directly pathogenic 
autoantibodies; this is further supported by the fact that the 
strength of signal generated by the autoantibodies was often 
significantly lower than that generated by the anti-spike and anti- 
nucleocapsid antibodies, which may suggest that the autoanti-
bodies detected are low-affinity species, less likely to be directly 
pathogenic.

Figure 3 Relationship between serum brain injury biomarkers and autoantibody profiles. (A and B) Correlation between number of IgG hits and serum 
GFAP and NfL concentrations at the subacute time point. (C) Correlation between number of IgG hits and serum NfL concentrations at the convalescent 
time point. (D) Correlation between number of IgM hits and serum total tau concentrations at the convalescent time point. (E) Comparison of conva-
lescent serum brain injury biomarker concentrations between patients with high IgM responses (>3 IgM hits Z > 3) versus those with low IgM responses 
(<3 IgM hits Z > 3). Two-group unpaired comparisons are by Mann-Whitney U-test, correlations are by Spearman’s rank.
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Our data confirm and extend previous studies investigating 
brain injury biomarkers in COVID-19, which have suggested that 
blood NfL concentrations are elevated in acute COVID-19 infection, 
and associate with severity of illness and therefore poor outcome.5–15

Whilst NfL and GFAP can be found in non-CNS tissue (peripheral 
nerve and gut, respectively), contemporaneously elevated concen-
trations of both is an established marker of CNS injury, with the 
brain representing the dominant source.30,31 A longitudinal cohort 
study by members in our collaboration, demonstrated that serum 
NfL and GFAP levels had returned to baseline by 6 months follow-
ing admission,7 suggesting that the persistent elevation in NfL at 4 
months in our cohort is capturing the end of this period of active 
brain injury. The late elevations in total tau seen in our cohort, 
however, are novel, as there is no precedent in the COVID-19 litera-
ture for this. Elevated serum total tau concentrations have been de-
scribed in patients with tauopathies such as Alzheimer’s disease 
and frontotemporal dementia,32 and are associated with trajectory 
of cognitive decline in these conditions.33,34 Larger cohorts will be 
required to replicate our COVID-19 finding and accurately delineate 
the association between late elevated total tau and clinical out-
come, however the lack of association between initial disease se-
verity and subsequent total tau elevation is tantalizing given the 
neuropsychological sequelae that occurs in a substantial minority 
of people with even mild COVID-19.

It is well recognized that viral infections can trigger autoanti-
body production, both low-affinity polyreactive species, as well as 
higher affinity-specific species such as anti-cardiolipin anti-
bodies.35,36 This phenomenon has been replicated in COVID-19, 
with a number of studies describing the presence of autoantibodies 
to a plethora of targets including ‘traditional’ rheumatological 
autoantibodies as well as less clinically established autoantibodies 
such as those targeting type 1 interferons.37–42 The role of these 
autoantibodies is largely unknown. Although they appear to occur 
more commonly in severe illness, they may simply represent an 
epiphenomenon of tissue damage (perhaps even a useful mechan-
ism for debris clearance, a putative role of natural autoantibodies). 
However, it has been suggested that autoantibodies to certain tar-
gets (such as interferons) may predispose to severe disease,43 and 
it appears that immune-complex formation is a potent driver of 
secondary immune cell activation in COVID-19.44

The associations seen in our data between brain injury biomar-
kers and dysregulation of both innate and adaptive immune re-
sponses may represent inflammatory mechanisms that drive 
neurological injury. The well documented impact of immune mod-
ulatory treatments in preventing severe COVID-19 provides strong 
evidence that a substantial component of the acute pathophysi-
ology of COVID-19 relates to a dysregulated host response, rather 
than damage caused directly by the virus. Our data suggest that 
brain injury occurring during acute COVID-19 may also result 
from similar mechanisms, and provide a plausible mechanistic ba-
sis for these manifestations, given the scant evidence to support 
direct viral invasion of the brain by SARS-CoV-2.1

Our data do not define causality between the immunological 
parameters and the presence of brain injury. In the acute phase, 
both may be influenced by additional factors that drive severe dis-
ease. Indeed, the immunological changes may be occurring in re-
sponse to tissue injury, rather than causing it. However, given the 
growing evidence of the detrimental effects of excess inflammation 
in COVID-19 more broadly, it is plausible that the elevation of brain 
injury biomarkers is driven by a maladaptive host response.45 This 
may be the result of neuroinflammation per se,46–49 or inflammatory 
injury to the cerebrovascular bed, which subsequently results in 

microvascular ischaemic brain injury.50–53 Similar considerations 
may apply to the convalescent phase of illness, where the associ-
ation of IgM autoantibodies with serum tau could represent a per-
sisting immunological dyscrasia driving brain injury. The relative 
specificity of tau at this phase of the illness may represent tissue 
specificity of the process (tau is a dendritic and axonal marker).

Importantly, the data from our influenza control group sug-
gest that the occurrence of brain injury in the acute phase of 
COVID-19 is not unique to this infection. In fact, a single small 
study also suggested that patients with bacterial pneumonia dis-
played higher blood markers of brain injury than patients with 
COVID-19,9 and therefore the processes described in our paper 
are likely to be relevant to severe infective illnesses more broadly. 
This being the case, data from COVID-19 studies may serve to 
help mitigate against the neurological sequelae of severe illness 
in the future.54

In conclusion, we have demonstrated that markers of brain in-
jury are associated with dysregulated immunological responses 
in COVID-19, and that there may be a separate late process irre-
spective of initial disease severity which is characterized by ele-
vated serum total tau concentrations and the presence of IgM 
autoantibodies.
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