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Abstract

Medication (drug) use in human pregnancy is prevalent. Determining fetal safety and 

efficacy of drugs is logistically challenging. However, predicting (not measuring) fetal drug 

exposure (systemic and tissue) throughout pregnancy is possible through maternal-fetal (m-f) 

physiologically-based pharmacokinetic (PBPK) modeling and simulation (M&S). Such prediction 

can inform fetal drug safety and efficacy. Fetal drug exposure can be quantified in two 

complementary ways. First, the ratio of the steady-state unbound plasma concentration in 

the fetal plasma (or AUC) to the corresponding maternal plasma concentration (i.e. Kp,uu). 

Second, the maximum unbound peak (Cu,max,ss,f) and trough (Cu,min,ss,f) fetal steady-state plasma 

concentrations. We (and others) have developed a m-f PBPK model that can successfully predict 

maternal drug exposure. To predict fetal drug exposure, the model needs to be populated with drug 

specific parameters, of which transplacental clearances (active and/or passive) and placental/fetal 

metabolism of the drug are critical. Herein, we describe in vitro studies in cells/tissue fractions 

or the perfused human placenta that can be used to determine these drug-specific parameters. In 

addition, we provide examples whereby this approach has successfully predicted systemic fetal 

exposure to drugs that passively or actively cross the placenta. Apart from m-f PBPK models, 

animal studies also have the potential to estimate fetal drug exposure by allometric scaling. 

Whether such scaling will be successful is yet to be determined. Here, we review the above 

approaches to predict fetal drug exposure, outline gaps in our knowledge to make such predictions, 

and map out future research directions that could fill these gaps.
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Introduction

Pregnant women often take medication (drugs) to treat pre-existing conditions (e.g., 
epilepsy, depression, hypertension, bacterial or viral infections) or health complications 

produced by pregnancy (e.g., preeclampsia, nausea, gestational diabetes). In some 

cases, pregnant women are prescribed medication to treat the maternal-fetal dyad (e.g., 
progression/prevention of HIV infection) or just the fetus (e.g., antenatal corticosteroids to 

prevent neonatal morbidity/mortality from preterm labor, digoxin to treat fetal tachycardia). 

Consequently, 80% of pregnant women take medication throughout their pregnancy.1, 2 

Despite prevalent use of medication in pregnancy, more than 90% of clinically approved 

drugs prescribed to pregnant women are used ‘off-label’ and lack appropriate information 

on their pharmacokinetics (PK), safety and efficacy in pregnancy.2 In fact, 98% of the 

industry-sponsored clinical trials in the USA actively excluded pregnant subjects due to legal 

and practical considerations, and only 1% were specifically designed for pregnant women.3 

The above problem is compounded by the fact that determining the safety (especially 

long-term) and efficacy of drugs in pregnancy is logistically challenging. For example, the 

use of diethylstilbestrol in pregnancy was found to result in increased risk of breast cancer 

in mothers and in development of genital tract abnormalities, breast cancer and melanoma in 

the offspring.4 Administration of thalidomide for pregnancy-induced nausea caused severe 

limb deformities (phocomelia) in thousands of offsprings.5 For the purposes of this review, 

the word drug refers to a small molecule and not a large molecule, such as a protein.

Since measuring fetal safety and efficacy of a drug is logistically challenging, measuring a 

surrogate marker of these endpoints, namely fetal drug exposure, can inform assessment of 

fetal drug safety and efficacy. While systemic fetal drug concentration can be determined 

at birth by sampling umbilical vein (UV)/artery (UA) blood, such sampling is impossible 

earlier in pregnancy. And, as we have detailed before6, a single UV sample at the time of 

birth does not provide an estimate of fetal drug exposure. To assess such exposure, one 

must determine the plasma/blood fetal steady-state drug concentration or the area under the 

plasma concentration-time curve (AUC) (at steady-state or after a single dose). Because fetal 

drug concentrations are driven by maternal drug concentrations, to take into account the 

inter-individual variability in the latter, the fetal steady-state plasma concentration (or AUC) 

is best expressed relative to the corresponding maternal value (i.e., Kp). And, since it is 

the unbound drug that produces the pharmacological effect of a drug, it is the average fetal 

steady-state unbound plasma drug concentration (Cu,av,ss,f) relative to the average maternal 

steady-state unbound plasma drug concentration (Cu,av,ss,m), namely, Kp,uu, that should be 

estimated. In addition, where the plasma drug concentrations can fluctuate significantly 

during a dosing interval, it is also important to determine the unbound peak (Cu,max,ss,f) 

and trough (Cu,min,ss,f) fetal steady-state plasma drug concentrations. Ideally, one should 

measure fetal tissue drug concentrations where the drug’s efficacy and toxicity is likely to 

manifest. In practice, neither this nor repeated blood sampling of the fetal circulation (to 

estimate systemic fetal drug exposure) is possible. Therefore, the only recourse to estimate 

fetal drug exposure (systemic or tissue) is by maternal-fetal (m-f) physiologically-based 

pharmacokinetic (PBPK) modeling and simulation (M&S).
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PBPK models are physiologically relevant mathematical models wherein individual 

or grouped organs are depicted as compartments interconnected by relevant blood 

flow. These models are mechanistic in nature and incorporate intrinsic or system 

dependent physiological parameters (such as blood flows, tissue volumes, enzyme/

transporter abundance), and associated population variability which allows prediction 

of disposition of any drug in the population of interest.7 The mechanistic nature of 

PBPK models allows incorporation of the fetus and fetal tissues into the model as 

well as gestational-dependent changes in both maternal and fetal physiology. Thus, such 

models can be used to predict maternal-fetal disposition, throughout pregnancy, of any 

drug administered to the mother provided the models are populated with extrinsic, drug-

specific parameters (physicochemical and absorption, distribution, metabolism, elimination 

(ADME) properties). We8–11, and others12–16 have developed a m-f PBPK model that can 

successfully predict maternal drug exposure. However, to predict fetal drug exposure, the 

model needs to be populated with drug specific transplacental clearances (active and/or 

passive) and placental/fetal metabolism, along with fetal and placental parameters that can 

affect the fetal drug exposure such as fetal fu, pH of blood, placental binding, ion trapping in 

the placenta.

In this review, first we describe factors that determine fetal drug exposure and define PK 

parameters to assess fetal drug exposure. Second, we describe in vitro studies in cells/tissue 

fractions or in the perfused human placenta that can be used to determine drug-specific 

disposition parameters in the placenta and the fetal liver. Third, we provide examples 

whereby these studies, combined with m-f PBPK M&S, have successfully predicted 

systemic fetal exposure to drugs that passively or actively cross the placenta. Apart from m-f 

PBPK models, animal studies also have the potential to estimate human fetal drug exposure 

by allometric scaling. Therefore, we discuss the potential for such scaling to be successful. 

Finally, we close by highlighting gaps in our knowledge to predict fetal drug exposure and 

suggest future directions to fill these gaps.

Placental physiology, abundance and location of placental drug 

transporters and metabolizing enzymes

Any drug administered to the mother will reach the fetus through multiple routes (Fig. 

1a). Among these, transplacental transfer is the most important once blood flow to the 

placenta has been established (late first trimester)17–19. The placenta is of fetal origin and 

separates the maternal and fetal blood. Maternal blood from the uterine artery floods the 

intervillous space which acts like a “bath-tub” and bathes the fetal villi lined with the 

multinucleated syncytiotrophoblast formed by fusion of mononuclear cytotrophoblastic stem 

cells. This cellular arrangement does not allow paracellular diffusion of drugs across the 

syncytiotrophoblast layer (Fig. 1b).20 Therefore, placental drug transfer can occur only 

by transporter-mediated active uptake/efflux and/or passive diffusion. Lipophilic drugs that 

are unionized at physiological pH generally have high passive diffusion clearance across 

the placenta provided they are not substrates of efflux transporters. Many drugs taken by 

pregnant women are substrates of the two most highly expressed efflux transporters in 

the human placenta, namely P-glycoprotein (P-gp), and Breast Cancer Resistance Protein 
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(BCRP).21–24 These ATP-binding cassette transporters serve to prevent entry of drugs into 

the placenta (and therefore the fetal compartment) by acting as gatekeepers. They serve 

this function by effluxing drugs as soon as the drugs attempt to cross the lipid bilayer 

of the syncytiotrophoblast. These transporters can also efflux drugs from the intracellular 

compartment. P-gp transports mostly lipophilic, unionized cationic drugs (e.g. HIV protease 

inhibitors) and some neutral drugs (e.g. digoxin), while BCRP can transport anionic (e.g. 
nitrofurantoin), cationic (e.g. cimetidine) lipophilic and hydrophilic compounds and their 

conjugates.25 A substantial number of drugs available in market have some affinity for P-gp. 

Additionally, both P-gp and BCRP have overlapping substrate selectivity. Therefore, both 

these efflux transporters, act either alone or in tandem, to reduce fetal exposure to drugs. 

This has been demonstrated in in vitro, perfused placenta as well as in in vivo (animals) 

studies. For example, P-gp-mediated transport of calcein-AM and vinblastine was inhibited 

by P-gp inhibitors in Transwell® assays with human placental choriocarcinoma derived 

BeWo cells.26 In the dually perfused placenta, the transplacental clearance of cyclosporin A 

(P-gp substrate) was significantly increased when co-administered with the P-gp inhibitor 

quinidine or chlorpromazine.27 In an in vivo mouse study, the fetal/maternal plasma 

concentration ratios of P-gp substrates digoxin, saquinavir, and paclitaxel was significantly 

greater in Mdr1a/1b(−/−) fetuses than in the Mdr1a/1b(+/+) fetuses of the same dam.28 

Furthermore, the P-gp inhibitor cyclosporin A was found to significantly increase the fetal 

liver distribution of [11C]-verapamil in a PET imaging study in macaques.29 Similarly, 

in membrane vesicles prepared from human term placenta, BCRP was shown to mediate 

transport of mitoxantrone30 and glyburide31. BCRP was observed to significantly limit the 

maternal-to-fetal transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)32 

and glyburide33 in the perfused human placenta. Additionally, increased fetal exposure 

of topotecan34, nitrofurantoin35 and glyburide36 was observed in Bcrp1(−/−) mice as 

compared to the wild-type pregnant mice. Apart from P-gp and BCRP, multidrug resistance 

proteins 1–3 and 5 (MRP1–3 and 5) are also important in transplacental transport, but to 

a lesser extent.23, 25 The placenta also expresses other efflux transporters as well as influx 

transporters (see Table 1). However, studies to demonstrate their functional role in vivo in 

determining fetal drug exposure, through in vitro or perfused human placenta studies, are 

limited. The placental transporters show gestational age-dependent abundance/expression 

e.g. the abundance/expression of P-gp, BCRP, Organic Anion Transporting Polypeptide 

1A2 (OATP1A2), OATP2B1, OATP1B1, Organic Cation/Carnitine Transporter 2 (OCTN2) 

decreases from first trimester to term21, 22, 37–45 while that of Multidrug Resistance Protein 

2 (MRP2), Organic Anion Transporter 4 (OAT4) and Organic Cation Transporter 3 (OCT3) 

increases as gestation progresses.22, 46–49 The abundance/expression of OATP4A1, MRP1, 

MRP3 and Multidrug And Toxin Extrusion 1 (MATE1) shows no change throughout 

pregnancy.37, 43, 46, 48, 49 It is important to note that where the abundance of transporters 

per gram of placental tissue decreases (e.g. P-gp), the overall abundance of the transporters 

in the whole placenta increases with gestational age because the placenta significantly 

increases in size with gestational age. Unfortunately, literature reports are controversial 

regarding the ontogeny of several placental transporters (e.g., P-gp, MRP1, OATP1B1, 

OCT3)21, 37, 46, 48–50 and additional studies are needed to clarify their ontogeny.
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In addition to drug transporters, the placenta also expresses a variety of drug metabolizing 

enzymes including cytochrome P450s (CYPs), UDP-glucuronosyltransferase (UGTs), 

sulfotransferases (SULTs), glutathione-S-transferases (GSTs) (Table 2). Among them, 

CYP19A1 (aromatase) is the predominant CYP.51 It is involved in the metabolism of 

both endogenous compounds (conversion of androgens to estrogens) as well as xenobiotics 

(such as aflatoxin B152, glyburide53, buprenorphine54, and methadone55). Multiple drugs 

such as zidovudine56, glyburide57, methadone55, oxcarbazepine58, warfarin59 undergo 

metabolism in human placental microsomes. Additionally, perfused placental studies have 

demonstrated the metabolism of bupropion60, oxcarbazepine61, buprenorphine62, tenofovir 

and emtricitabine63. However, it is important to note that for placental drug metabolism to 

affect Kp,uu, it must be significant relative to the other clearance pathways in Eq 2 (below). 

Whether this is the case for the drugs cited above has not been determined. Placental 

expression of CYP isozymes is generally higher in the first trimester than term.64 In 

contrast, the expression of UGTs generally remains at about the same levels in the placenta 

throughout pregnancy.65 It is important to reiterate here that though the abundance of an 

enzyme per gram of placental tissue may decrease, its total abundance in the whole placenta 

may increase with gestational age due to the significant gestational age-dependent increase 

in placental weight. Multiple maternal and environmental factors, such as drug abuse, 

smoking, alcohol consumption, polluted air, and contaminated food can affect the activity of 

placental enzymes.66 For example, the activity of UGT and CYP1A is significantly higher 

in placentae of mothers who smoke and is greatest in women who smoke and consume 

alcohol.67 In contrast, the catalytic activity of CYP19A1 decreases in mothers who smoke 

but its protein abundance is not significantly altered.68

The fetal liver also expresses drug metabolizing enzymes such as CYPs, UGTs, SULTs, 

xanthine oxidase (Table 2). The most prominent among them is CYP3A7 which accounts 

for almost 30% of the total fetal CYP content. Its expression increases with gestational age 

and reaches highest at postnatal days 1 and 7.69 All other CYPs have lower expression in the 

fetal liver vs. adult liver.70 Among the SULTs, SULT1A1, SULT1A3, SULT2A1, SULT1E1 

and SULT1A3 are expressed in the fetal liver.71–74 The SULT enzymes are believed to 

play a major role in the metabolism of endogenous substances (such as catecholamines, 

steroids like dehydroepiandrosterone, estrogens) important for fetal development.71–73, 75 

The expression of UGTs has also been detected in the fetal liver (Table 2).

The drug reaches the amniotic fluid through urinary excretion by the fetus and by diffusion 

from the placenta. This drug can be reabsorbed through the intestine when the fetus 

swallows the amniotic fluid.76 The fraction reabsorbed determines the extent of intestinal 

reabsorption. This recycling of the drug is likely the highest for hydrophilic drugs that tend 

to be renally excreted. Irrespective of the extent of drug excretion into the fetal urine, due to 

this drug recycling, this pathway is akin to distribution into a peripheral fetal compartment 

rather than irreversible loss from the fetal compartment. Additionally, the fetal skin is also 

permeable to drugs before keratinization begins at gestational week (GW) 20)77, allowing 

direct entry of the drug from the amniotic fluid into the fetal circulation (Fig. 1a).
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Pharmacokinetic parameters that describe fetal drug exposure

Here we describe four key PK measures that are important to describe fetal drug exposure 

namely, Kp,uu, the unbound steady-state average (Cu,av,ss,f), peak (Cu,max,ss,f) and trough 

(Cu,min,ss,f) fetal plasma concentrations. Each is defined in detail below along with factors 

that determine their value. For the purposes of this discussion, we have assumed that the 

drug is administered to the mother to steady-state.

Kp,uu and fetal Cu,av,ss plasma concentration

Kp,uu is independent of the drug dose or maternal plasma concentration provided the drug 

follows linear transplacental and fetal disposition PK (Eq. 1).

Kp, uu = fu, f × AUCf
fu, m × AUCm

= fu, f × Cav, ss, f
fu, m × Cav, ss, m

(Eq. 1)

Where, fu,f and fu,m are unbound drug fractions in fetal and maternal plasma respectively, 

AUCf and AUCm are area under total plasma concentration-time curves in the fetus and the 

mother respectively, Cav,ss,f and C av,ss,m are the total plasma steady-state concentrations in 

the fetus and the mother, respectively.

While it is important to know the absolute Cu,av,ss,f plasma concentration, in vivo, this 

value is primarily determined by the corresponding maternal concentration. Therefore, 

the ratio of this concentration and the corresponding maternal concentration, Kp,uu, is 

usually predicted. Once Kp,uu is predicted, Cu,av,ss,f can be calculated for any corresponding 

maternal concentration.

Kp,uu is determined by a number of factors (Eq. 2) that determine transplacental and fetal 

clearance of the drug, namely: i) unbound passive placental diffusion clearance (CLPD); 

ii) unbound active placental efflux (CLPM), influx (CLMP), or placental metabolic drug 

clearance (CLp0) and iii) unbound fetal clearance (CLf0) (e.g., fetal hepatic clearance).6

Kp, uu = CLPD + CLMP

CLPD + 2CLf0 + CLp0 + CLPM + CLp0 + CLPM
CLPD

* CLf0
(Eq. 2)

As indicated above, the placenta is not well-endowed with enzymes that can extensively 

metabolize drugs (e.g., CYPs).78 While the placenta expresses influx transporters, to date 

there is no evidence of drugs that are actively transported into the placenta (and therefore the 

fetal compartment) via such transporters. Thus, CLMP and CLp0 can usually be considered 

negligible. But, this is not the case with efflux transporters such as P-gp and BCRP which 

are highly expressed in the apical membrane of the placental syncytiotrophoblast22 and 

prevent entry of drugs into the placenta (and therefore the fetal compartment). In the fetus, 

the drug can be eliminated from the fetal circulation by fetal metabolism in the fetal liver. 

However, due to its size and selective expression of CYPs (primarily CYP3A7), the fetal 

liver is usually not a significant determinant of drug metabolism and therefore fetal drug 

exposure (i.e., CLf0 is usually negligible relative to the transplacental CLPD). Therefore, in 
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general, the fetal Kp,uu is usually dependent on the magnitude of CLPM relative to CLPD 

(note all clearance values in Eq 2 and 3 are the unbound clearance values) (Eq. 3):

Kp, uu = CLPD
CLPD + CLPM

(Eq. 3)

When there is negligible placental efflux (CLPM = 0) or placental/fetal elimination, Kp,uu 

will be 1 because passive transplacental diffusion clearances should be equal in both 

directions. In this event, fetal unbound AUC will approximate maternal unbound AUC and 

can be predicted from the latter.79 But, when a drug is actively effluxed (i.e., CLPM > 0), 

Kp,uu will be less than 1. In that event, the fetal unbound AUC will be less than the maternal 

unbound AUC and cannot be estimated solely based on maternal drug concentration data. 

Instead, to predict Kp,uu, one needs the values of all the transplacental clearances or the 

ratio of the values shown in Eq. 3. Later in this article, we address how these values can be 

determined through in vitro cell or perfused placenta studies.

Although Kp,uu provides an estimate of fetal exposure at steady-state or over a dosing 

interval, its major limitation is that it does not provide information about the dynamic 

variations in fetal unbound plasma concentrations with time. In other words, the value of 

the peak or trough unbound steady-state fetal plasma drug concentration. However, this 

limitation can be overcome by incorporating into a m-f PBPK model the exact magnitude of 

the various transplacental clearances and the volume of distribution of the drug in the fetal 

compartment. The approach is discussed in detail later in this article.

While Kp,uu is independent of protein binding of the drug, Kp is not. Kp changes with 

gestational age because the plasma protein concentration in the maternal-fetal compartments 

change with gestational age.80 For example, fetal α1-acid glycoprotein concentrations 

increase from almost undetectable level at 12 weeks to 0.3–0.4 g/l at >GW 35, while 

maternal α1-acid glycoprotein concentrations fluctuate between 0.38 and 1.05 and show 

no trend with advancing gestational age. These changes lead to an increase in α1-acid 

glycoprotein fetal/maternal serum concentration ratio from 0.057 at week 12 to 0.37 at >GW 

35.80 On the other hand, maternal serum albumin concentration decreases during gestation, 

while that in the fetus increases with gestational age. As a result, the fetal/maternal serum 

albumin concentration ratio gradually rises from 0.38 at 12 weeks to 1.20 at term.80 

Although Eq. 1 may mathematically suggest that Kp,uu is dependent on the total fetal 

drug plasma concentration, that would be incorrect. In fact, it is the other way round. To 

illustrate this point, consider a drug that passively crosses the placenta, is extensively bound 

to albumin, and is not metabolized in the placenta or the fetal liver. The Kp,uu of this drug 

will be unity (as only the unbound drug crossed the placenta) irrespective of the gestational 

age. However, its Kp value will change with gestational age due to changes in albumin 

concentration in the maternal-fetal compartment.
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Fetal and maternal PK parameters that determine fetal unbound peak (Cu,max,ss,f) and 
trough (Cu,min,ss,f) steady-state plasma concentrations

Fetal unbound peak (Cu,max,ss,f) and trough (Cu,min,ss,f) steady-state plasma concentrations 

are determined in manner analogous to factors that determine plasma concentrations in a 

non-pregnant individual after oral absorption of drugs. Thus, when the rates of entry and 

exit of the drug into and from (back to the mother and by fetal elimination) the fetal 

compartment are equal, Cu,max,ss,f will be achieved. For this reason, Cu,max,ss,f usually 

occurs later than the Cu,max,ss,m. However, the greater the transplacental clearance, the faster 

and higher the Cu,max,ss,f is reached. In addition, the magnitude of Cu,max,ss,f will depend on 

the volume of distribution of the fetal compartment and fetal clearance (via the placenta or 

by metabolism). The smaller the fetal volume of distribution, the larger the Cu,max,ss,f and 

vice-versa. Likewise, the smaller the clearance from the fetal compartment the larger the 

Cu,max,ss,f. Similarly, Cu,min,ss,f will be determined by the magnitude of fetal drug clearance 

during the dosing interval. Because maternal concentrations drive fetal concentrations, the 

higher the maternal concentrations, the higher both Cu,max,ss,f and Cu,min,ss,f will be (see 

Zhang et al., 20176 for details). Finally, the corresponding total Cmax,ss,f and Cmin,ss,f will be 

determined by the protein binding of the drug in the fetal compartment.

Predicting fetal systemic and tissue drug concentrations from animal and 

in vitro studies

As indicated above, measuring fetal (systemic or tissue) exposure to drugs is logistically 

challenging, especially before term. However, such exposure could be predicted using 

animal studies or in vitro studies combined with PBPK M&S. Below, we discuss both these 

approaches.

Animal studies

Several animal models ranging from small rodents such as mice, rats, and guinea pigs to 

larger animals like sheep and non-human primates have been used to study the transplacental 

passage and fetal tissue distribution of drugs. The smaller animals (e.g., mice) can be 

genetically modified to study the role of specific transporters in fetal exposure to drugs. For 

example, Zhang et al. demonstrated that presence of murine Bcrp significantly limits fetal 

distribution of nitrofurantoin in pregnant mice while exerting only a minor effect on the 

systemic clearance of the drug.35 However, small animal studies have some limitations. 

Due to the small fetal size, fetal blood samples are difficult or impossible to obtain. 

Thus, both maternal (plasma) and whole fetus and placental tissue drug concentrations 

are obtained only once (at the time of sacrifice) after drug administration. Consequently, 

multiple pregnant dams need to be sacrificed and the data pooled to characterize the entire 

AUC of the drug concentration-time profile. Fortunately, due to inbreeding, inter-animal 

variability tends to be low and this “naive-pooled” approach to data analysis works relatively 

well.35, 36, 81, 82 When interpreting the fetal concentrations data, it is important to keep 

in mind that these concentrations are not in fetal blood or plasma but in the entire fetus. 

Therefore, for those drugs that bind extensively to fetal tissues, the ratio of the whole fetus/

maternal plasma AUC may be greater than unity and should not be interpreted as transport 
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of the drug into the fetal compartment. Also, it is often not possible to determine the drug 

concentrations in individual fetal tissues. In addition, placental/fetal tissue concentrations of 

the drug should be corrected for the amount of blood in the organ, especially for drugs that 

extensively bind to blood components.

In larger animals (sheep and non-human primates), intravascular catheters can be placed 

both in the dam and the fetus to obtain matched fetal and maternal plasma drug 

concentration-time profiles over a period sufficient to characterize the corresponding AUCs. 

The pregnant non-human primates are similar to humans in that they have a discoid placenta 

with multivillous fetal-maternal interdigitation and a hemo-monochorionic barrier.83 These 

animals were used to determine the rate and extent of the placental transfer of anti-HIV 

drugs zidovudine, didanosine, zalcitabine and stavudine.84 These in vivo animal data 

strongly correlated with those from the perfused human placenta. However, these drugs 

cross the placenta by passive diffusion and a corresponding correlation for drugs which are 

actively transported across the placenta or extensively metabolized in the placenta/fetal liver 

has not been investigated.

The major limitation associated with animal models is the large inter-species differences 

in (i) placental anatomy, metabolism, and transport, (ii) fetal metabolism and transport (iii) 

substrate selectivity of drug metabolizing enzymes and transporters and (iv) the abundance 

of placental/fetal transporters and metabolizing enzymes.83, 85–87 These differences may 

lead to variations in fetal drug exposure, thus preventing meaningful extrapolation to 

humans.81, 88 Nevertheless, whether animal data can be used to predict human fetal drug 

exposure is an open question that has yet to be answered.

In vitro cell and perfused human placenta studies combined with PBPK M&S

Over the years, multiple maternal-fetal (m-f) PBPK models have emerged which show 

progressive success in predicting maternal and fetal drug exposure.89 Initial m-f PBPK 

models were focused on estimating variability in maternal drug exposure, with limited 

emphasis on fetal drug exposure. This was due to lack of curation of gestational age-

dependent fetal and placental physiological parameters (e.g., gestational age dependent 

tissue blood flow) and lack of availability of the abundance of drug transporters and 

metabolizing enzymes which determine drug CLMP, CLPM, CLp0, and CLf0. However, 

we6, 22, 79, 90, 91 and others92–98 have begun to fill these gaps in knowledge by 

generating/curating relevant physiological data (e.g. blood flow, organ sizes, plasma protein 

concentrations) and describing their gestational-age dependent changes with models that 

allow interpolation for any gestational age. In addition, we have quantified the abundance 

of placental transporters at various gestational ages.22 To determine the various parameters 

which govern fetal exposure, we need to populate the m-f PBPK models with drug-specific 

CLPD, CLMP, CLPM, CLp0, and CLf0. These parameters can be determined through in vitro 
cell studies and/or ex vivo perfused human placenta studies. As discussed earlier, there is 

no evidence of influx transport of drugs across the human placenta (CLMP), and because 

CLp0 and CLf0 usually contribute minimally to fetal drug exposure, these parameters can 

be discounted. Therefore, as described below, the remaining two parameters namely CLPD 

and CLPM, need to be estimated, to populate the m-f PBPK model. However, if CLMP, CLp0 
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and CLf0 are significant relative to the net transplacental CL, they can be taken into account 

using the approaches described below, in combination with metabolic depletion studies in 

placental and fetal liver homogenates or microsomes99, to predict fetal drug exposure.

Two approaches can be utilized to estimate CLPD and CLPM, namely the efflux ratio-relative 

expression factor (ER-REF) approach using cells (i.e., placental or transporter-transfected 

cells) or the perfused human placenta (Fig. 2). The former can be used only when the 

transporter(s) involved are known. While the latter can be used even when the transporter(s) 

involved are not known. Both these approaches utilize the in vitro to in vivo extrapolation 

(IVIVE) strategy to scale the magnitude of the unbound bi-directional placental clearance 

determined in the respective system to that in vivo. The IVIVE scalar for the ER-REF 

approach is called REF, which accounts for the differences in transporter abundance between 

the in vitro cell model and in vivo (i.e. the entire placenta). In the case of the perfused 

placenta, the bi-directional placental clearance determined in a single perfused cotyledon 

needs to be scaled to the entire placenta (i.e., physiological scaling). This is done by utilizing 

the average number of cotyledons in the placenta or by scaling the cotyledon weight or 

volume to the total placental weight or volume. We would like to emphasize here that the 

data generated by both approaches (cell and perfused placenta studies) can be used to predict 

Kp,uu, as detailed below, independent of m-f PBPK models provided placental transporter 

and/or metabolism (and not fetal metabolism) is the major determinant of fetal exposure to 

drugs. However, the dynamic changes in fetal exposure can be predicted ONLY if these two 

approaches are combined with the m-f PBPK models.

ER-REF combined with the m-f PBPK approach—This approach requires 

determination of two parameters, ER and REF (Fig 2, left panel). REF is the ratio of the 

abundance of the transporter of interest in the placenta and the cell line. The magnitude 

of drug efflux (or influx) by placental transporters is measured as ER in the Transwell® 

assay using either placental cell lines or transporter overexpressing cell lines (see below for 

details). Since the transporter expression in these cell lines is likely to differ from that in 

the human placenta, the ER measured in these cells needs to be corrected for this difference 

in abundance using the REF. Unless the abundance on the cell membrane is measured 

using a method such as biotinylation, combined with quantitative targeted proteomic100, the 

REF approach assumes that the total abundance of the transporter measured is that on the 

cell membrane and the transporters that are present there are functional. The advantage of 

the REF approach (over that of the perfused placenta approach) is that the abundance of 

various placental transporters in the human placenta of different gestational ages is available. 

Therefore, the ER-REF approach can be used to predict fetal exposure to drugs once blood 

flow to the placenta has been established.91

ER determination:

In the Transwell® assay, the polarized cells over-expressing the transporter of interest, are 

seeded onto a Transwell® insert to create the apical and basal compartments corresponding 

to the maternal and fetal blood, respectively (Fig. 2, left panel). Then, the drug is added 

either to the apical or basal chamber (i.e., the donor chamber) and drug concentration in the 

contralateral receiver chamber is sampled at various times points. The ratio of the apparent 
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drug permeability from the basal-to-apical (B→A) (Papp(B→A)) and apical-to-basal (A→B) 

(Papp(A→B)) chambers is the ER that represents the magnitude of in vitro transport by the 

overexpressed transporters across the cell monolayer (Eq. 4).91

ER = Papp B A
Papp A B

≡ CLint B A
CLint A B

= cAA R × AUCA D
cAB R × AUCB D

(Eq. 4)

Assuming that the surface area is the same in both directions, the Papp’s can be set 

equivalent to CLint(B→A) and CLint(A→B), the intrinsic clearances of drug in the B→A 

and the A→B directions, respectively; cAA(R) and cAB(R) are cumulative amounts of drug 

in corresponding receiver compartment; AUCA(D) and AUCB(D) are AUC of the drug in 

corresponding donor compartment. AUC, rather than initial donor drug concentration, is 

used to compensate for any depletion of drug in the donor compartment. Proteins are usually 

not included in the donor chamber. If included, the Papp needs to be determined for the 

unbound drug.

Then, to predict the in vivo Kp,uu (i.e. Kp,uu,IVIVE), the ER determined in the cell line is 

scaled (Eq 5)91 by REF as follows:

Kp, uu, IV IV E = 1
ERInℎ − − ERInℎ + * REF + 1 (Eq. 5)

where ERInh(−) and ERInh(+) is the efflux ratio in the absence and presence of complete 

inhibition of the transporter of interest, respectively. The difference in ER in absence and 

presence of complete inhibition of transporters provides the magnitude of ER associated 

with active transport. Alternatively stated, the bi-directional passive diffusion clearance of 

the drug cancels out when estimating the net active transport ER. In the absence of transport, 

the ER in the absence and presence of the transporter inhibitor will be identical. Therefore, 

as predicted, Kp,uu,IVIVE will be 1. For efflux transporter drug substrates, the difference 

in the ERs will be >1 and Kp,uu,IVIVE, as expected, will be <1. Thus, when Kp,uu,IVIVE 

is estimated using Eq. 5, it is independent of the absolute magnitude of passive diffusion 

clearance across the placenta. This is because in this equation only the relative value of 

the active and passive clearance is taken into consideration. We would like to emphasize 

again that the Kp,uu,IVIVE can be estimated independent of any m-f PBPK model. However, 

this value does not provide an estimate of the dynamic exposure of fetal exposure to a 

drug (i.e. Cu,max,ss,f and Cu,min,ss,f). To do so, one must estimate the absolute value of each 

bi-directional clearance pathway (active and passive) of the drug, as discussed below under 

the subheading Transporter-transfected cell lines. Parenthetically, the fraction of a drug 

transported (e.g., ftP-gp), in vivo, can be estimated as:

ftP − gp = 1 − Kp, uu, IV IV E (Eq. 6)

The choice of the cell line to be used in the Transwell® assay should be one that expresses 

the transport of interest for the drug in question. Although other transporters are also present 

in placenta, P-gp and BCRP are the most abundant and many drugs are substrates of one 
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or both these transporters. However, of these two transporters, P-gp plays a more prominent 

role in governing fetal exposure to drugs that are taken by pregnant women. Hence, the 

choice of the cells to use in the Transwell® assay could be either a human placental cell 

line or one that is engineered to overexpress the transporter of interest (e.g., MDCKII cells 

overexpressing P-gp). These two options are discussed below.

Placental cell lines:

The human placental choriocarcinoma trophoblast cell lines (BeWo, Jar, Jeg-3 and ACH-3P) 

have been used to address transplacental transport of drugs.101, 102 While BeWo, Jar, and 

Jeg-3 cells are derived from a trophoblastic tumor, the ACH-3P cell line was derived 

by fusing primary trophoblast cells from week 12 placenta with human choriocarcinoma 

cells.103 The BeWo, Jar and Jeg-3 cell lines express relevant efflux drug transporters (P-gp, 

BCRP, MRP1, etc.) at the mRNA and protein level.46, 104, 105 However, P-gp activity in 

BeWo cells is low. Jar cells lines have low activity of both P-gp and BCRP.104, 106–108 Of the 

cell lines, several can form tight junctions109, including a subclone of BeWo cells, a property 

necessary for use in Transwell® assays to determine drug transport.110 However, the BeWo 

b30 cell monolayer tight junctions are not easy to establish and maintain for an extended 

period of time.110 While xenobiotic transport has been shown in these cells, their ability to 

predict placental transport accurately has not been demonstrated. Therefore, they could be 

used to identify potential transporters relevant for in vivo transport of drugs.102 However, 

there are multiple limitations associated with the placental cell lines (Table 3). Due to 

these limitations, they have not been used for IVIVE of fetal exposure to drugs. Instead, 

non-placental cell lines, such as Madin-Darby Canine Kidney (MDCKII) cells, transfected 

with human transporters, have been used as a surrogate.

Transporter-transfected cell lines:

MDCKII cells can overcome the major limitations of trophoblast-derived cell lines in 

that they can form tight junctions and therefore limit paracellular drug transfer which 

should be absent in the syncytiotrophoblast (a single cell barrier). Additionally, these cells, 

after transfection, can overexpress the major human placental transporters (e.g., P-gp and 

BCRP), and thus, allows easy detection of transporter activity in vitro. If a drug is a 

substrate of both P-gp and BCRP, cells expressing these transporters individually can be 

used to predict the Kp,uu,IVIVE of such a drug. And, the ft via each transporter can be 

estimated to allow prediction of possible drug-drug interactions or polymorphisms that could 

modulate fetal drug exposure. Furthermore, it is also possible to remove any confounding 

contribution from endogenous transporter by knocking it out (e.g., canine P-gp is knocked 

out in hMDR1-MDCKcP-gpKO). However, the MDCK cell monolayer does not represent the 

complex physiology of the placenta and lacks secondary cell populations (e.g., endothelial 

cells) where transport (though minor contribution) can occur.23

As indicated before, the ER-REF approach considers ONLY the transport-mediated ER or 

clearance and is independent of the absolute magnitude of CLPD of the drug. Also, it does 

not provide the absolute value of the maternal-fetal or the fetal-maternal drug clearance. But, 

to dynamically predict fetal drug exposure, an estimate of the active transport vs. passive 
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clearance is needed. Therefore, we have proposed an approach to estimate the CLPD of any 

drug by using the in vivo midazolam CLPD as a calibrator (Eq. 7).

CLPD of test drug = Papp of test drug
Papp of midazolam* CLPD of midazolam (Eq. 7)

Where, Papp represents the apparent permeability in MDCKII or another mammalian cell 

line where the drug is not transported. Once the absolute value of the CLPD has been 

estimated, the magnitude of the transport clearance, as a fraction of the CLPD, can be 

obtained from Kp,uu,IVIVE.91

Validation of the ER-REF plus the m-f PBPK model approach:

Any approach or model needs to be validated prior to applying it to prospectively predict 

fetal drug exposure to a drug for which such data are not available. Therefore, it is logical 

to ask if this ER-REF approach, combined with the m-f PBPK model, has been validated? 

It has for P-gp transported drugs91 but needs to be validated for placental transport mediated 

by BCRP or other transporters. For validation, rich in vivo UV and simultaneously obtained 

MP concentrations in multiple maternal-fetal dyads that span the AUC profile of the drug 

are required to assess model prediction performance. But such in vivo data are limited 

and available for only a limited number of drugs for which the transporters involved (or 

the lack thereof) have been definitively identified. Using these inclusion criteria, we have 

successfully validated the ER-REF plus m-f PBPK model approach for four P-gp substate 

drugs namely dexamethasone DEX, betamethasone BET, darunavir DRV and lopinavir 

LPV.91 Such validation for BCRP substrates and dual P-gp/BCRP substates is ongoing in 

our laboratory.

Now that our ER-REF/m-f PBPK model approach has been validated, it can be used to 

predict fetal drug exposure to other drugs that are P-gp substrates. Moreover, this approach 

is versatile in that it can be used to predict fetal exposure to P-gp substrate drugs at 

earlier gestational ages as we have done before.91 The m-f PBPK model purposed by us6, 

and others (Simcyp version 19 onwards), incorporates multiple fetal organs allowing us to 

dynamically predict fetal tissue drug concentration such as fetal brain. To do so successfully, 

one would have to have information (currently lacking) on transporter abundance at the 

fetal tissue:blood barrier. Plus, the approach would have to be validated for a select number 

of transporter-selective substrate drugs. The former is possible, but the latter is logistically 

challenging. Future research should be directed to accomplishing these goals.

Ex-vivo perfused human placenta combined with the m-f PBPK model 
approach—This model was initially developed by Maurice Panigel and Henning 

Schneider111, 112 The placental perfusion model allows for the study of multiple 

pharmacokinetic factors such as passive diffusion, active transport, metabolism, and tissue 

binding. Unlabored placentas are preferred for this approach since placental cell death and 

other complications (e.g. infection with exposure to meconium and increased prostaglandin 

concentrations with inflammation and hypoxia) increase with labor duration.113 In this 

model, a single cotyledon of the placenta is dually perfused through both the intervillous 

space and a cannulated fetal artery to represent the maternal and fetal blood flow, 
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respectively. The outflow perfusate is then collected from the intervillous space and the 

cannulated fetal vein to represent circulating blood returning to the maternal and fetal 

circulation, respectively. Perfusate buffers are commonly oxygenated with a 95% oxygen 

and 5% carbon dioxide gas to increase duration of placentae viability. Additionally, proteins 

(e.g., 2.0 g/L bovine serum albumin) are added to the buffer to allow binding to plasma 

proteins and to increase drug solubility. In a given cotyledon, the drug is included in the 

donor perfusate (i.e., either the maternal or the fetal perfusate) and drug concentration is 

sampled in both the donor and the receiver outflow. The drug perfusion can be set up in 

two ways: 1) recirculating or 2) single-pass. For the recirculating approach, any outflow 

from the vein that is not collected for determination of drug concentration is re-circulated. 

However, for the single-pass approach, the outflow that is not collected for determination 

of drug concentration goes to waste and the cotyledon is continuously perfused with fresh 

buffer (with the drug contained in only in the donor perfusate).

Both approaches can be used to evaluate placental drug transfer, but the major difference 

between them is that the single-pass approach reaches steady-state quicker than the 

recirculating approach, however the difference in time to steady state is reduced for higher 

permeability compounds and smaller reservoirs.114 Also, potentially toxic cellular metabolic 

waste products build up in the re-circulated perfusate while they do not in the singe-pass 

perfusate. For the re-circulation approach (but not the single-pass approach), the ex vivo 

fetal/maternal concentration ratio (provided steady-state has been reached) can be directly 

compared to the in vivo Kp,uu. If steady-state has not been reached or if the single-pass 

approach is used, the unbound drug clearance ratio (maternal-fetal/fetal-maternal) needs to 

be estimated to translate to in vivo Kp,uu,IVIVE (see below). Thus, the single-pass method 

requires both maternal-fetal and fetal-maternal perfusions to estimate in vivo Kp,uu while the 

re-circulation approach needs perfusion in only one direction, but to steady state. To apply 

the above approaches to estimate the in vivo Kp,uu, fetal CL would have to be negligible.

Maternal-fetal drug clearance can be estimated when drug is introduced into the maternal 

perfusate and collected from the fetal venous outflow, and vice versa for the fetal-maternal 

clearance estimation (i.e. drug is introduced into the fetal perfusate and collected from 

maternal venous outflow).115 To estimate clearance in both directions, two individual 

cotyledons must be perfused, one for each clearance estimation. The clearance values 

estimated from the model can be scaled to the whole placenta, either by scaling the average 

number of cotyledons in the placenta or by scaling the cotyledon weight or volume to 

the total placental weight or volume. However, in using this scaling approach, several 

assumptions are made: 1) the abundance and activity of the transporters and enzymes in the 

perfused placentae are identical to that in vivo; 2) the entire cotyledon is perfused ex vivo 
as it is in vivo. The latter assumption is doubtful because in placental perfusion experiments 

this is usually not the case; part of the cotyledon is not perfused to prevent leakage. 

Also, because only one fetal artery is cannulated, it is unlikely that the perfused surface 

area is the same in both directions, maternal-to-fetal and fetal-to-maternal. There will also 

be inter-cotyledon variability in the surface area perfused. All these factors will likely 

result in mis-prediction of the in vivo drug placental CL. To determine the contribution of 

transporters or enzymes in drug transfer, the perfusions can be conducted in the absence and 

presence of a selective inhibitor of the transporter or enzyme.
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It is important to note that perfused placenta can provide an estimate of Kp,uu (provided fetal 

clearance of drug is negligible) but to predict the dynamic fetal drug exposure, it needs to 

be combined with a m-f PBPK model which must be populated with the CLMP, CLp0 and 

CLPM. This combined approach has been employed to dynamically predict fetal exposure to 

drugs that passively cross the placenta (e.g. acetaminophen116, dolutegravir117, sildenafil118) 

and are possibly metabolized in the placenta (e.g. tenofovir and emtricitabine)63. This 

approach has also been used to successfully predict fetal exposure to a drug (darunavir) 

that is actively transported by the placenta.119 While the authors attributed the higher fetal 

to maternal clearance vs. maternal to fetal clearance of darunavir to a difference in the 

physiological blood flows, we believe the difference is due to active P-gp efflux of the 

drug. As to whether the perfused placenta, combined with PBPK M&S, can predict fetal 

drug exposure to a wider array of drugs that are transported by the placenta is yet to be 

determined. It should be noted here that it is not necessary to conduct perfused placenta 

studies to predict fetal exposure to drugs that passively cross the placenta as such dynamic 

predictions can be made without conducting these costly and challenging studies (see Zhang 

et al. 2017)6.

The overall merits and limitations of the above two approaches (ER-REF and perfused 

placenta) combined with m-f PBPK M&S are provided in Table 3.

Expert opinion on future directions and overall conclusions

There are multiple knowledge gaps in our ability to predict fetal exposure to drugs. First, 

fetal physiological data for early gestation (<GW9) are incomplete and therefore the present 

m-f PBPK models cannot be used to predict fetal exposure to drugs prior to GW9. Second, 

it is impossible to validate fetal drug exposure (systemic or tissue) predictions earlier in 

gestation because prenatal fetal sampling is not ethical or logistically possible. Third, there 

is limited information about the ontogeny of non-CYP enzymes in the placenta and the 

fetal liver. Likewise, for the ontogeny of enzymes and transporters in fetal tissues. Fourth, 

the ER-REF-PBPK approach is validated for only for P-gp substrates and has yet to be 

validated for other placental transporters. Fifth, fetal drug exposure estimated by m-f PBPK 

models at term has been validated for only a limited number of P-gp substate drugs due to 

paucity of the necessary UV/MP data for such drugs. For the same reasons, fetal tissue drug 

concentration prediction by the m-f PBPK models cannot be validated. Sixth, the current 

m-f PBPK models do not incorporate potential absorption of drugs from the amniotic fluid 

through the skin, which could be important earlier in gestation when the fetal skin is highly 

permeable.120

It is important to emphasize that, besides factors listed above, fetal drug exposure is also 

driven by maternal exposure. Therefore, the absolute magnitude of fetal drug exposure 

cannot be predicted without accurately predicting maternal drug exposure. This can be done 

using our m-f PBPK model as we have previously shown6, 8–11, 79, 90, 91, if relevant data 

on transporter and enzyme abundance are available for both healthy pregnant women and 

those with diseases (e.g. hepatic impairment). In this regard, the impact of pregnancy on 

the abundance and activity of non-CYP enzymes (such as UGTs, SULTs, carboxylesterases) 

and hepatic transporters (such as SLC and ABC transporters) are lacking for both healthy 
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pregnant women and those with diseases. Moreover, such data for CYPs are limited to a few 

isoforms (e.g., CYP1A2, CYP2D6 and CYP3A4) and, where available, they are available 

mostly for the 3rd trimester (healthy pregnant women only).121, 122 The effect of pregnancy 

on activity or abundance of metabolic enzymes and transporters in non-hepatic tissues of 

pregnant women such as intestine, are not available. Such data are particularly important 

for drugs that are metabolized or transported in the intestine such as CYP3A and BCRP. In 

contrast, data are available about the effect of pregnancy on renal transporters.123–125 Thus, 

targeted enzyme and transporter probe drug studies in pregnant women (at all gestational 

ages) are needed to fill these knowledge gaps to predict both maternal and fetal drug 

exposure without conducting in vivo studies for every drug administered to pregnant women.

Despite the above gaps, there has been enormous progress in predicting maternal-fetal drug 

exposure. Mechanistic m-f PBPK models have been developed, populated with much of the 

relevant physiological data. These model, together with newly devised or refined approaches 

(e.g. ER-REF), have successfully predicted dynamic fetal exposure to drugs that cross the 

placenta passively79 and actively90, 91. The next frontier in this area of research is to predict 

and validate fetal tissue drug exposure. We have already shown that the ER-REF approach 

is successful in predicting human adult brain and liver drug concentrations where the drugs 

are actively transported across the tissue:blood barrier.126, 127 Thus, there is every reason to 

believe that this approach will be successful in predicting fetal tissue drug exposure provided 

the relevant data on the ontogeny of transporters and enzymes in these tissues are available.

Data Sharing

Since this is a review paper, there are no original data to share.
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Figure 1: 
(a) Routes by which drugs distribute into or are cleared from the fetal compartment. 

(b) Expanded view of the placenta with magnification of the syncytiotrophoblast 

layer and examples of transporters and enzyme expressed there. Abbreviations: 

CLPD: passive bi-directional placental clearance; CLMP: transporter-mediated influx 

clearance; CLPM: transporter-mediated efflux clearance; CLp0: placental metabolic 

clearance; CLf0: fetal metabolic clearance; CYPs: cytochrome P450s (CYPs); UGTs: 

UDP-glucuronosyltransferases; SULTs: sulfotransferases, GSTs: glutathione-S-transferases; 

MAO: monoamine oxidase; XO: xanthine oxidase; EH: epoxide hydrolase. Details of other 

transporters and enzymes present in the placenta are provided in Table 1.
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Figure 2: 
Prediction of fetal drug exposure using the m-f-PBPK approach combined with data from 

(a) the ER-REF studies (left panel) or (b) the perfused placenta studies (right panel). 

Although the perfused placenta approach is shown in a single-pass mode, the re-circulation 

mode could also be used. CLu - unbound clearance; CLint(B→A) and CLint(A→B) - intrinsic 

drug clearance in the B→A and the A→B direction, respectively; ER - efflux ratio; 

Papp(B→A) and Papp(A→B) - apparent drug permeability in the B→A and the A→B 

direction, respectively; F→M - fetal to maternal; M→F - maternal to fetal; REF - relative 

expression factor.
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