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Abstract

Medication (drug) use in human pregnancy is prevalent. Determining fetal safety and

efficacy of drugs is logistically challenging. However, predicting (not measuring) fetal drug
exposure (systemic and tissue) throughout pregnancy is possible through maternal-fetal (m-f)
physiologically-based pharmacokinetic (PBPK) modeling and simulation (M&S). Such prediction
can inform fetal drug safety and efficacy. Fetal drug exposure can be quantified in two
complementary ways. First, the ratio of the steady-state unbound plasma concentration in

the fetal plasma (or AUC) to the corresponding maternal plasma concentration (/.e. Ky yy)-
Second, the maximum unbound peak (Cy maxssf) and trough (Cy, min ss 1) fetal steady-state plasma
concentrations. We (and others) have developed a m-f PBPK model that can successfully predict
maternal drug exposure. To predict fetal drug exposure, the model needs to be populated with drug
specific parameters, of which transplacental clearances (active and/or passive) and placental/fetal
metabolism of the drug are critical. Herein, we describe /n vitro studies in cells/tissue fractions

or the perfused human placenta that can be used to determine these drug-specific parameters. In
addition, we provide examples whereby this approach has successfully predicted systemic fetal
exposure to drugs that passively or actively cross the placenta. Apart from m-f PBPK models,
animal studies also have the potential to estimate fetal drug exposure by allometric scaling.
Whether such scaling will be successful is yet to be determined. Here, we review the above
approaches to predict fetal drug exposure, outline gaps in our knowledge to make such predictions,
and map out future research directions that could fill these gaps.
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Introduction

Pregnant women often take medication (drugs) to treat pre-existing conditions (e.g.,
epilepsy, depression, hypertension, bacterial or viral infections) or health complications
produced by pregnancy (e.g., preeclampsia, nausea, gestational diabetes). In some

cases, pregnant women are prescribed medication to treat the maternal-fetal dyad (e.g.,
progression/prevention of HIV infection) or just the fetus (e.g., antenatal corticosteroids to
prevent neonatal morbidity/mortality from preterm labor, digoxin to treat fetal tachycardia).
Consequently, 80% of pregnant women take medication throughout their pregnancy.® 2
Despite prevalent use of medication in pregnancy, more than 90% of clinically approved
drugs prescribed to pregnant women are used ‘off-label” and lack appropriate information
on their pharmacokinetics (PK), safety and efficacy in pregnancy.? In fact, 98% of the
industry-sponsored clinical trials in the USA actively excluded pregnant subjects due to legal
and practical considerations, and only 1% were specifically designed for pregnant women.3
The above problem is compounded by the fact that determining the safety (especially
long-term) and efficacy of drugs in pregnancy is logistically challenging. For example, the
use of diethylstilbestrol in pregnancy was found to result in increased risk of breast cancer
in mothers and in development of genital tract abnormalities, breast cancer and melanoma in
the offspring.* Administration of thalidomide for pregnancy-induced nausea caused severe
limb deformities (phocomelia) in thousands of offsprings.® For the purposes of this review,
the word drug refers to a small molecule and not a large molecule, such as a protein.

Since measuring fetal safety and efficacy of a drug is logistically challenging, measuring a
surrogate marker of these endpoints, namely fetal drug exposure, can inform assessment of
fetal drug safety and efficacy. While systemic fetal drug concentration can be determined
at birth by sampling umbilical vein (UV)/artery (UA) blood, such sampling is impossible
earlier in pregnancy. And, as we have detailed before8, a single UV sample at the time of
birth does not provide an estimate of fetal drug exposure. To assess such exposure, one
must determine the plasma/blood fetal steady-state drug concentration or the area under the
plasma concentration-time curve (AUC) (at steady-state or after a single dose). Because fetal
drug concentrations are driven by maternal drug concentrations, to take into account the
inter-individual variability in the latter, the fetal steady-state plasma concentration (or AUC)
is best expressed relative to the corresponding maternal value (/.e., Kp). And, since it is

the unbound drug that produces the pharmacological effect of a drug, it is the average fetal
steady-state unbound plasma drug concentration (Cy ay,ss f) relative to the average maternal
steady-state unbound plasma drug concentration (Cy ay,ss,m), hamely, Ky, that should be
estimated. In addition, where the plasma drug concentrations can fluctuate significantly
during a dosing interval, it is also important to determine the unbound peak (Cy max ss )
and trough (Cy min ss ) fetal steady-state plasma drug concentrations. Ideally, one should
measure fetal tissue drug concentrations where the drug’s efficacy and toxicity is likely to
manifest. In practice, neither this nor repeated blood sampling of the fetal circulation (to
estimate systemic fetal drug exposure) is possible. Therefore, the only recourse to estimate
fetal drug exposure (systemic or tissue) is by maternal-fetal (m-f) physiologically-based
pharmacokinetic (PBPK) modeling and simulation (M&S).
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PBPK models are physiologically relevant mathematical models wherein individual

or grouped organs are depicted as compartments interconnected by relevant blood

flow. These models are mechanistic in nature and incorporate intrinsic or system
dependent physiological parameters (such as blood flows, tissue volumes, enzyme/
transporter abundance), and associated population variability which allows prediction

of disposition of any drug in the population of interest.” The mechanistic nature of

PBPK models allows incorporation of the fetus and fetal tissues into the model as

well as gestational-dependent changes in both maternal and fetal physiology. Thus, such
models can be used to predict maternal-fetal disposition, throughout pregnancy, of any
drug administered to the mother provided the models are populated with extrinsic, drug-
specific parameters (physicochemical and absorption, distribution, metabolism, elimination
(ADME) properties). We8-11 and others2-16 have developed a m-f PBPK model that can
successfully predict maternal drug exposure. However, to predict fetal drug exposure, the
model needs to be populated with drug specific transplacental clearances (active and/or
passive) and placental/fetal metabolism, along with fetal and placental parameters that can
affect the fetal drug exposure such as fetal fu, pH of blood, placental binding, ion trapping in
the placenta.

In this review, first we describe factors that determine fetal drug exposure and define PK
parameters to assess fetal drug exposure. Second, we describe /n vitro studies in cells/tissue
fractions or in the perfused human placenta that can be used to determine drug-specific
disposition parameters in the placenta and the fetal liver. Third, we provide examples
whereby these studies, combined with m-f PBPK M&S, have successfully predicted
systemic fetal exposure to drugs that passively or actively cross the placenta. Apart from m-f
PBPK models, animal studies also have the potential to estimate human fetal drug exposure
by allometric scaling. Therefore, we discuss the potential for such scaling to be successful.
Finally, we close by highlighting gaps in our knowledge to predict fetal drug exposure and
suggest future directions to fill these gaps.

Placental physiology, abundance and location of placental drug

transporters and metabolizing enzymes

Any drug administered to the mother will reach the fetus through multiple routes (Fig.

1a). Among these, transplacental transfer is the most important once blood flow to the
placenta has been established (late first trimester)17-1°. The placenta is of fetal origin and
separates the maternal and fetal blood. Maternal blood from the uterine artery floods the
intervillous space which acts like a “bath-tub” and bathes the fetal villi lined with the
multinucleated syncytiotrophoblast formed by fusion of mononuclear cytotrophoblastic stem
cells. This cellular arrangement does not allow paracellular diffusion of drugs across the
syncytiotrophoblast layer (Fig. 1b).20 Therefore, placental drug transfer can occur only

by transporter-mediated active uptake/efflux and/or passive diffusion. Lipophilic drugs that
are unionized at physiological pH generally have high passive diffusion clearance across
the placenta provided they are not substrates of efflux transporters. Many drugs taken by
preghant women are substrates of the two most highly expressed efflux transporters in

the human placenta, namely P-glycoprotein (P-gp), and Breast Cancer Resistance Protein
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(BCRP).21-24 These ATP-binding cassette transporters serve to prevent entry of drugs into
the placenta (and therefore the fetal compartment) by acting as gatekeepers. They serve
this function by effluxing drugs as soon as the drugs attempt to cross the lipid bilayer

of the syncytiotrophoblast. These transporters can also efflux drugs from the intracellular
compartment. P-gp transports mostly lipophilic, unionized cationic drugs (e.g. HIV protease
inhibitors) and some neutral drugs (e.g. digoxin), while BCRP can transport anionic (e.g.
nitrofurantoin), cationic (e.g. cimetidine) lipophilic and hydrophilic compounds and their
conjugates.2> A substantial number of drugs available in market have some affinity for P-gp.
Additionally, both P-gp and BCRP have overlapping substrate selectivity. Therefore, both
these efflux transporters, act either alone or in tandem, to reduce fetal exposure to drugs.
This has been demonstrated in /n vitro, perfused placenta as well as in /n vivo (animals)
studies. For example, P-gp-mediated transport of calcein-AM and vinblastine was inhibited
by P-gp inhibitors in Transwell® assays with human placental choriocarcinoma derived
BeWo cells.26 In the dually perfused placenta, the transplacental clearance of cyclosporin A
(P-gp substrate) was significantly increased when co-administered with the P-gp inhibitor
quinidine or chlorpromazine.2’ In an /n vivo mouse study, the fetal/maternal plasma
concentration ratios of P-gp substrates digoxin, saquinavir, and paclitaxel was significantly
greater in Mdrla/16(—/-) fetuses than in the Mdria/1b(+/+) fetuses of the same dam.28
Furthermore, the P-gp inhibitor cyclosporin A was found to significantly increase the fetal
liver distribution of [11C]-verapamil in a PET imaging study in macaques.2® Similarly,

in membrane vesicles prepared from human term placenta, BCRP was shown to mediate
transport of mitoxantrone30 and glyburide31. BCRP was observed to significantly limit the
maternal-to-fetal transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (Ph1P)32
and glyburide33 in the perfused human placenta. Additionally, increased fetal exposure

of topotecan34, nitrofurantoin3® and glyburide3® was observed in Berp1(-/-) mice as
compared to the wild-type pregnant mice. Apart from P-gp and BCRP, multidrug resistance
proteins 1-3 and 5 (MRP1-3 and 5) are also important in transplacental transport, but to

a lesser extent.23: 25 The placenta also expresses other efflux transporters as well as influx
transporters (see Table 1). However, studies to demonstrate their functional role /n vivoin
determining fetal drug exposure, through /n vitro or perfused human placenta studies, are
limited. The placental transporters show gestational age-dependent abundance/expression
e.g. the abundance/expression of P-gp, BCRP, Organic Anion Transporting Polypeptide
1A2 (OATP1A2), OATP2B1, OATP1B1, Organic Cation/Carnitine Transporter 2 (OCTN2)
decreases from first trimester to term2%: 22: 37-45 while that of Multidrug Resistance Protein
2 (MRP2), Organic Anion Transporter 4 (OAT4) and Organic Cation Transporter 3 (OCT3)
increases as gestation progresses.22 46-49 The abundance/expression of OATP4A1, MRP1,
MRP3 and Multidrug And Toxin Extrusion 1 (MATEZ1) shows no change throughout
pregnancy.37: 43,46, 48,49 |t js important to note that where the abundance of transporters
per gram of placental tissue decreases (e.g. P-gp), the overall abundance of the transporters
in the whole placenta increases with gestational age because the placenta significantly
increases in size with gestational age. Unfortunately, literature reports are controversial
regarding the ontogeny of several placental transporters (e.g., P-gp, MRP1, OATP1B1,
OCT3)2L 37,46, 48-50 an( additional studies are needed to clarify their ontogeny.
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In addition to drug transporters, the placenta also expresses a variety of drug metabolizing
enzymes including cytochrome P450s (CYPs), UDP-glucuronosyltransferase (UGTS),
sulfotransferases (SULTS), glutathione-S-transferases (GSTs) (Table 2). Among them,
CYP19A1 (aromatase) is the predominant CYP.5! It is involved in the metabolism of

both endogenous compounds (conversion of androgens to estrogens) as well as xenobiotics
(such as aflatoxin B1°2, glyburide®3, buprenorphine>4, and methadone®®). Multiple drugs
such as zidovudine®®, glyburide®’, methadone®®, oxcarbazepine®8, warfarin®® undergo
metabolism in human placental microsomes. Additionally, perfused placental studies have
demonstrated the metabolism of bupropion80, oxcarbazepine®?, buprenorphine®?, tenofovir
and emtricitabine®3. However, it is important to note that for placental drug metabolism to
affect Ky yy, it must be significant relative to the other clearance pathways in Eq 2 (below).
Whether this is the case for the drugs cited above has not been determined. Placental
expression of CYP isozymes is generally higher in the first trimester than term.54 In
contrast, the expression of UGTs generally remains at about the same levels in the placenta
throughout pregnancy.5® It is important to reiterate here that though the abundance of an
enzyme per gram of placental tissue may decrease, its total abundance in the whole placenta
may increase with gestational age due to the significant gestational age-dependent increase
in placental weight. Multiple maternal and environmental factors, such as drug abuse,
smoking, alcohol consumption, polluted air, and contaminated food can affect the activity of
placental enzymes.56 For example, the activity of UGT and CYP1A is significantly higher
in placentae of mothers who smoke and is greatest in women who smoke and consume
alcohol.®7 In contrast, the catalytic activity of CYP19A1 decreases in mothers who smoke
but its protein abundance is not significantly altered.5®

The fetal liver also expresses drug metabolizing enzymes such as CYPs, UGTs, SULTS,
xanthine oxidase (Table 2). The most prominent among them is CYP3A7 which accounts
for almost 30% of the total fetal CYP content. Its expression increases with gestational age
and reaches highest at postnatal days 1 and 7.8 All other CYPs have lower expression in the
fetal liver vs. adult liver.”® Among the SULTs, SULT1A1, SULT1A3, SULT2A1, SULT1E1
and SULT1A3 are expressed in the fetal liver.”1~74 The SULT enzymes are believed to

play a major role in the metabolism of endogenous substances (such as catecholamines,
steroids like dehydroepiandrosterone, estrogens) important for fetal development.’1-73. 75
The expression of UGTSs has also been detected in the fetal liver (Table 2).

The drug reaches the amniotic fluid through urinary excretion by the fetus and by diffusion
from the placenta. This drug can be reabsorbed through the intestine when the fetus
swallows the amniotic fluid.”® The fraction reabsorbed determines the extent of intestinal
reabsorption. This recycling of the drug is likely the highest for hydrophilic drugs that tend
to be renally excreted. Irrespective of the extent of drug excretion into the fetal urine, due to
this drug recycling, this pathway is akin to distribution into a peripheral fetal compartment
rather than irreversible loss from the fetal compartment. Additionally, the fetal skin is also
permeable to drugs before keratinization begins at gestational week (GW) 20)77, allowing
direct entry of the drug from the amniotic fluid into the fetal circulation (Fig. 1a).

J Clin Pharmacol. Author manuscript; available in PMC 2023 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Balhara et al. Page 6

Pharmacokinetic parameters that describe fetal drug exposure

Here we describe four key PK measures that are important to describe fetal drug exposure
namely, Kp yu, the unbound steady-state average (Cyay,ss ), Peak (Cy max,ss,f) and trough
(Cu,min,ss,f) fetal plasma concentrations. Each is defined in detail below along with factors
that determine their value. For the purposes of this discussion, we have assumed that the
drug is administered to the mother to steady-state.

Kp,uu @nd fetal Cy av,ss Plasma concentration

Kp,uu is independent of the drug dose or maternal plasma concentration provided the drug
follows linear transplacental and fetal disposition PK (Eq. 1).

fu,f X AUCf _ fu,f X Cau,ss,f

K = =
prut fu,m X AUC,, fu,m X Cav,ss,m

(Ea. 1)

Where, f,, ¢ and f, ,, are unbound drug fractions in fetal and maternal plasma respectively,
AUC: and AUC, are area under total plasma concentration-time curves in the fetus and the
mother respectively, C,y s s and C 555 m are the total plasma steady-state concentrations in
the fetus and the mother, respectively.

While it is important to know the absolute C,, oy 55 £ Plasma concentration, /7 vivo, this
value is primarily determined by the corresponding maternal concentration. Therefore,

the ratio of this concentration and the corresponding maternal concentration, Ky yy, is
usually predicted. Once K,y is predicted, Cy ayss f Can be calculated for any corresponding
maternal concentration.

Kp,uu is determined by a number of factors (Eq. 2) that determine transplacental and fetal
clearance of the drug, namely: i) unbound passive placental diffusion clearance (CLpp);
ii) unbound active placental efflux (CLppy), influx (CLyp), or placental metabolic drug
clearance (CLpo) and iii) unbound fetal clearance (CL¢o) (e.g., fetal hepatic clearance).b

CLPD + CLMP

Kp,uu =

CLyy + CLppy (Eq. 2)

CLpp + 2CLgy + CLyy + CLpp + Cipp

As indicated above, the placenta is not well-endowed with enzymes that can extensively
metabolize drugs (e.g., CYPs).’”8 While the placenta expresses influx transporters, to date
there is no evidence of drugs that are actively transported into the placenta (and therefore the
fetal compartment) via such transporters. Thus, CLyp and CLpg can usually be considered
negligible. But, this is not the case with efflux transporters such as P-gp and BCRP which
are highly expressed in the apical membrane of the placental syncytiotrophoblast?2 and
prevent entry of drugs into the placenta (and therefore the fetal compartment). In the fetus,
the drug can be eliminated from the fetal circulation by fetal metabolism in the fetal liver.
However, due to its size and selective expression of CYPs (primarily CYP3A7), the fetal
liver is usually not a significant determinant of drug metabolism and therefore fetal drug
exposure (7.e., CLgg is usually negligible relative to the transplacental CLpp). Therefore, in
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general, the fetal Kp ,, is usually dependent on the magnitude of CLpy, relative to CLpp
(note all clearance values in Eq 2 and 3 are the unbound clearance values) (Eq. 3):

CLpp

Kp’uuz CLpp + CLppy

(Ea.3)

When there is negligible placental efflux (CLpy = 0) or placental/fetal elimination, Ky yy
will be 1 because passive transplacental diffusion clearances should be equal in both
directions. In this event, fetal unbound AUC will approximate maternal unbound AUC and
can be predicted from the latter.”® But, when a drug is actively effluxed (i.e., CLpp > 0),
Kp,uu Will be less than 1. In that event, the fetal unbound AUC will be less than the maternal
unbound AUC and cannot be estimated solely based on maternal drug concentration data.
Instead, to predict Kp ,, 0ne needs the values of all the transplacental clearances or the
ratio of the values shown in Eq. 3. Later in this article, we address how these values can be
determined through /n vitro cell or perfused placenta studies.

Although Ky, yy provides an estimate of fetal exposure at steady-state or over a dosing
interval, its major limitation is that it does not provide information about the dynamic
variations in fetal unbound plasma concentrations with time. In other words, the value of
the peak or trough unbound steady-state fetal plasma drug concentration. However, this
limitation can be overcome by incorporating into a m-f PBPK model the exact magnitude of
the various transplacental clearances and the volume of distribution of the drug in the fetal
compartment. The approach is discussed in detail later in this article.

While K,y is independent of protein binding of the drug, Kp, is not. K, changes with
gestational age because the plasma protein concentration in the maternal-fetal compartments
change with gestational age.8% For example, fetal a1-acid glycoprotein concentrations
increase from almost undetectable level at 12 weeks to 0.3-0.4 g/l at >GW 35, while
maternal al-acid glycoprotein concentrations fluctuate between 0.38 and 1.05 and show

no trend with advancing gestational age. These changes lead to an increase in al-acid
glycoprotein fetal/maternal serum concentration ratio from 0.057 at week 12 to 0.37 at >GW
35.80 On the other hand, maternal serum albumin concentration decreases during gestation,
while that in the fetus increases with gestational age. As a result, the fetal/maternal serum
albumin concentration ratio gradually rises from 0.38 at 12 weeks to 1.20 at term.80
Although Eqg. 1 may mathematically suggest that K, ,, is dependent on the total fetal

drug plasma concentration, that would be incorrect. In fact, it is the other way round. To
illustrate this point, consider a drug that passively crosses the placenta, is extensively bound
to albumin, and is not metabolized in the placenta or the fetal liver. The K, , of this drug
will be unity (as only the unbound drug crossed the placenta) irrespective of the gestational
age. However, its K, value will change with gestational age due to changes in albumin
concentration in the maternal-fetal compartment.
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Fetal and maternal PK parameters that determine fetal unbound peak (Cy max ss,f) and
trough (Cy min,ss,f) Steady-state plasma concentrations

Fetal unbound peak (Cy max ss,f) and trough (Cy min s f) Steady-state plasma concentrations
are determined in manner analogous to factors that determine plasma concentrations in a
non-pregnant individual after oral absorption of drugs. Thus, when the rates of entry and
exit of the drug into and from (back to the mother and by fetal elimination) the fetal
compartment are equal, C max ss,f Will be achieved. For this reason, Cy may ss £ usually
occurs later than the C,; max ss m- However, the greater the transplacental clearance, the faster
and higher the Cy, max ss.f IS reached. In addition, the magnitude of C; max ss ¢ Will depend on
the volume of distribution of the fetal compartment and fetal clearance (via the placenta or
by metabolism). The smaller the fetal volume of distribution, the larger the C,; max ss.f and
vice-versa. Likewise, the smaller the clearance from the fetal compartment the larger the
Cu,maxss f- Similarly, Cy min ss f Will be determined by the magnitude of fetal drug clearance
during the dosing interval. Because maternal concentrations drive fetal concentrations, the
higher the maternal concentrations, the higher both Cy, max ss.f and Cy min,ss,f Will be (see
Zhang et al., 20176 for details). Finally, the corresponding total Crax.ss,f and Cpin ss £ Will be
determined by the protein binding of the drug in the fetal compartment.

Predicting fetal systemic and tissue drug concentrations from animal and

in vitro studies

As indicated above, measuring fetal (systemic or tissue) exposure to drugs is logistically
challenging, especially before term. However, such exposure could be predicted using
animal studies or /in vitro studies combined with PBPK M&S. Below, we discuss both these
approaches.

Animal studies

Several animal models ranging from small rodents such as mice, rats, and guinea pigs to
larger animals like sheep and non-human primates have been used to study the transplacental
passage and fetal tissue distribution of drugs. The smaller animals (e.g., mice) can be
genetically modified to study the role of specific transporters in fetal exposure to drugs. For
example, Zhang et al. demonstrated that presence of murine Bcrp significantly limits fetal
distribution of nitrofurantoin in pregnant mice while exerting only a minor effect on the
systemic clearance of the drug.3®> However, small animal studies have some limitations.

Due to the small fetal size, fetal blood samples are difficult or impossible to obtain.

Thus, both maternal (plasma) and whole fetus and placental tissue drug concentrations

are obtained only once (at the time of sacrifice) after drug administration. Consequently,
multiple pregnant dams need to be sacrificed and the data pooled to characterize the entire
AUC of the drug concentration-time profile. Fortunately, due to inbreeding, inter-animal
variability tends to be low and this “naive-pooled” approach to data analysis works relatively
well.35: 36,81, 82 \When interpreting the fetal concentrations data, it is important to keep

in mind that these concentrations are not in fetal blood or plasma but in the entire fetus.
Therefore, for those drugs that bind extensively to fetal tissues, the ratio of the whole fetus/
maternal plasma AUC may be greater than unity and should not be interpreted as transport
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of the drug into the fetal compartment. Also, it is often not possible to determine the drug
concentrations in individual fetal tissues. In addition, placental/fetal tissue concentrations of
the drug should be corrected for the amount of blood in the organ, especially for drugs that
extensively bind to blood components.

In larger animals (sheep and non-human primates), intravascular catheters can be placed
both in the dam and the fetus to obtain matched fetal and maternal plasma drug
concentration-time profiles over a period sufficient to characterize the corresponding AUCs.
The pregnant non-human primates are similar to humans in that they have a discoid placenta
with multivillous fetal-maternal interdigitation and a hemo-monochorionic barrier.83 These
animals were used to determine the rate and extent of the placental transfer of anti-HIV
drugs zidovudine, didanosine, zalcitabine and stavudine.84 These /7 vivo animal data
strongly correlated with those from the perfused human placenta. However, these drugs
cross the placenta by passive diffusion and a corresponding correlation for drugs which are
actively transported across the placenta or extensively metabolized in the placenta/fetal liver
has not been investigated.

The major limitation associated with animal models is the large inter-species differences
in (i) placental anatomy, metabolism, and transport, (ii) fetal metabolism and transport (iii)
substrate selectivity of drug metabolizing enzymes and transporters and (iv) the abundance
of placental/fetal transporters and metabolizing enzymes.83: 85-87 These differences may
lead to variations in fetal drug exposure, thus preventing meaningful extrapolation to
humans.81 88 Nevertheless, whether animal data can be used to predict human fetal drug
exposure is an open question that has yet to be answered.

In vitro cell and perfused human placenta studies combined with PBPK M&S

Over the years, multiple maternal-fetal (m-f) PBPK models have emerged which show
progressive success in predicting maternal and fetal drug exposure.8? Initial m-f PBPK
models were focused on estimating variability in maternal drug exposure, with limited
emphasis on fetal drug exposure. This was due to lack of curation of gestational age-
dependent fetal and placental physiological parameters (e.g., gestational age dependent
tissue blood flow) and lack of availability of the abundance of drug transporters and
metabolizing enzymes which determine drug CLyp, CLppm, CLpg, and CLygg. However,
web: 22,79, 90, 91 and others92-98 have begun to fill these gaps in knowledge by
generating/curating relevant physiological data (e.g. blood flow, organ sizes, plasma protein
concentrations) and describing their gestational-age dependent changes with models that
allow interpolation for any gestational age. In addition, we have quantified the abundance
of placental transporters at various gestational ages.22 To determine the various parameters
which govern fetal exposure, we need to populate the m-f PBPK models with drug-specific
CLpp, CLmp, CLpm, Clpo, and CLyo. These parameters can be determined through /n vitro
cell studies and/or ex vivo perfused human placenta studies. As discussed earlier, there is
no evidence of influx transport of drugs across the human placenta (CLyp), and because
CLpo and CLyg usually contribute minimally to fetal drug exposure, these parameters can
be discounted. Therefore, as described below, the remaining two parameters namely CLpp
and CLpy, need to be estimated, to populate the m-f PBPK model. However, if CLyp, CLpg
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and CLgg are significant relative to the net transplacental CL, they can be taken into account
using the approaches described below, in combination with metabolic depletion studies in
placental and fetal liver homogenates or microsomes®?, to predict fetal drug exposure.

Two approaches can be utilized to estimate CLpp and CLpy, namely the efflux ratio-relative
expression factor (ER-REF) approach using cells (/.e., placental or transporter-transfected
cells) or the perfused human placenta (Fig. 2). The former can be used only when the
transporter(s) involved are known. While the latter can be used even when the transporter(s)
involved are not known. Both these approaches utilize the in vitroto in vivo extrapolation
(IVIVE) strategy to scale the magnitude of the unbound bi-directional placental clearance
determined in the respective system to that /n vivo. The IVIVE scalar for the ER-REF
approach is called REF, which accounts for the differences in transporter abundance between
the Jin vitro cell model and /n vivo (i.e. the entire placenta). In the case of the perfused
placenta, the bi-directional placental clearance determined in a single perfused cotyledon
needs to be scaled to the entire placenta (/.e., physiological scaling). This is done by utilizing
the average number of cotyledons in the placenta or by scaling the cotyledon weight or
volume to the total placental weight or volume. We would like to emphasize here that the
data generated by both approaches (cell and perfused placenta studies) can be used to predict
Kp,uu» as detailed below, independent of m-f PBPK models provided placental transporter
and/or metabolism (and not fetal metabolism) is the major determinant of fetal exposure to
drugs. However, the dynamic changes in fetal exposure can be predicted ONLY if these two
approaches are combined with the m-f PBPK models.

ER-REF combined with the m-f PBPK approach—This approach requires
determination of two parameters, ER and REF (Fig 2, left panel). REF is the ratio of the
abundance of the transporter of interest in the placenta and the cell line. The magnitude

of drug efflux (or influx) by placental transporters is measured as ER in the Transwell®
assay using either placental cell lines or transporter overexpressing cell lines (see below for
details). Since the transporter expression in these cell lines is likely to differ from that in
the human placenta, the ER measured in these cells needs to be corrected for this difference
in abundance using the REF. Unless the abundance on the cell membrane is measured

using a method such as biotinylation, combined with quantitative targeted proteomicl, the
REF approach assumes that the total abundance of the transporter measured is that on the
cell membrane and the transporters that are present there are functional. The advantage of
the REF approach (over that of the perfused placenta approach) is that the abundance of
various placental transporters in the human placenta of different gestational ages is available.
Therefore, the ER-REF approach can be used to predict fetal exposure to drugs once blood
flow to the placenta has been established.?!

ER determination:

In the Transwell® assay, the polarized cells over-expressing the transporter of interest, are
seeded onto a Transwell® insert to create the apical and basal compartments corresponding
to the maternal and fetal blood, respectively (Fig. 2, left panel). Then, the drug is added
either to the apical or basal chamber (/.e., the donor chamber) and drug concentration in the
contralateral receiver chamber is sampled at various times points. The ratio of the apparent
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drug permeability from the basal-to-apical (B—A) (Pappa—a)) and apical-to-basal (A—B)
(Papp(a—B)) chambers is the ER that represents the magnitude of /n vitro transport by the
overexpressed transporters across the cell monolayer (Eq. 4).91

Papp(B— 4) — CLini(B— A) _ cAaR) X AUCy(p)
Poppa—B)  CLina—B) cApr) X AUCp(p)

ER = (Eg. 4)

Assuming that the surface area is the same in both directions, the P4pp’s can be set
equivalent to CLin¢g—a) and CLjnya—p), the intrinsic clearances of drug in the B—A

and the A—B directions, respectively; cAa(r) and cAg(r) are cumulative amounts of drug

in corresponding receiver compartment; AUCpy and AUCg p) are AUC of the drug in
corresponding donor compartment. AUC, rather than initial donor drug concentration, is
used to compensate for any depletion of drug in the donor compartment. Proteins are usually
not included in the donor chamber. If included, the P,y needs to be determined for the
unbound drug.

Then, to predict the /7 vivo Ky (7.6. K yy,ivive), the ER determined in the cell line is
scaled (Eq 5)%! by REF as follows:

1
ERpup(—y — ERpup(+)) * REF + 1

Kp,uu,lVlVE = ( (Eq. 5)
where ER|pn(-) and ERnn(+) is the efflux ratio in the absence and presence of complete
inhibition of the transporter of interest, respectively. The difference in ER in absence and
presence of complete inhibition of transporters provides the magnitude of ER associated
with active transport. Alternatively stated, the bi-directional passive diffusion clearance of
the drug cancels out when estimating the net active transport ER. In the absence of transport,
the ER in the absence and presence of the transporter inhibitor will be identical. Therefore,
as predicted, Kp yy,1vive Will be 1. For efflux transporter drug substrates, the difference

in the ERs will be >1 and Kp yy 1vive, as expected, will be <1. Thus, when Ky ivive

is estimated using Eq. 5, it is independent of the absolute magnitude of passive diffusion
clearance across the placenta. This is because in this equation only the relative value of

the active and passive clearance is taken into consideration. We would like to emphasize
again that the Kp yy 1vive can be estimated independent of any m-f PBPK model. However,
this value does not provide an estimate of the dynamic exposure of fetal exposure to a

drug (i.e. Cy maxss,f and Cy min ss.£)- To do so, one must estimate the absolute value of each
bi-directional clearance pathway (active and passive) of the drug, as discussed below under
the subheading Transporter-transfected cell lines. Parenthetically, the fraction of a drug
transported (e.g., ftp_gp), in vivo, can be estimated as:

ftp_gp=1 — Ky wu, IVIVE (Eq. 6)

The choice of the cell line to be used in the Transwell® assay should be one that expresses
the transport of interest for the drug in question. Although other transporters are also present
in placenta, P-gp and BCRP are the most abundant and many drugs are substrates of one
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or both these transporters. However, of these two transporters, P-gp plays a more prominent
role in governing fetal exposure to drugs that are taken by pregnant women. Hence, the
choice of the cells to use in the Transwell® assay could be either a human placental cell
line or one that is engineered to overexpress the transporter of interest (e.g.,, MDCKII cells
overexpressing P-gp). These two options are discussed below.

Placental cell lines:

The human placental choriocarcinoma trophoblast cell lines (BeWo, Jar, Jeg-3 and ACH-3P)
have been used to address transplacental transport of drugs.101: 102 \While BeWo, Jar, and
Jeg-3 cells are derived from a trophoblastic tumor, the ACH-3P cell line was derived

by fusing primary trophoblast cells from week 12 placenta with human choriocarcinoma
cells.193 The BeWo, Jar and Jeg-3 cell lines express relevant efflux drug transporters (P-gp,
BCRP, MRP1, etc.) at the mRNA and protein level .46 104. 105 However, P-gp activity in
BeWo cells is low. Jar cells lines have low activity of both P-gp and BCRP.104. 106-108 Of the
cell lines, several can form tight junctions1?, including a subclone of BeWo cells, a property
necessary for use in Transwell® assays to determine drug transport.210 However, the BeWo
b30 cell monolayer tight junctions are not easy to establish and maintain for an extended
period of time.119 While xenobiotic transport has been shown in these cells, their ability to
predict placental transport accurately has not been demonstrated. Therefore, they could be
used to identify potential transporters relevant for in vivo transport of drugs.192 However,
there are multiple limitations associated with the placental cell lines (Table 3). Due to

these limitations, they have not been used for IVIVE of fetal exposure to drugs. Instead,
non-placental cell lines, such as Madin-Darby Canine Kidney (MDCKII) cells, transfected
with human transporters, have been used as a surrogate.

Transporter-transfected cell lines:

MDCKII cells can overcome the major limitations of trophoblast-derived cell lines in

that they can form tight junctions and therefore limit paracellular drug transfer which
should be absent in the syncytiotrophoblast (a single cell barrier). Additionally, these cells,
after transfection, can overexpress the major human placental transporters (e.g., P-gp and
BCRP), and thus, allows easy detection of transporter activity /n vitro. If a drug is a
substrate of both P-gp and BCRP, cells expressing these transporters individually can be
used to predict the Ky, yy jvive Of such a drug. And, the ft via each transporter can be
estimated to allow prediction of possible drug-drug interactions or polymorphisms that could
modulate fetal drug exposure. Furthermore, it is also possible to remove any confounding
contribution from endogenous transporter by knocking it out (e.g., canine P-gp is knocked
out in hAMDR1-MDCKC®P-9PKO) 'However, the MDCK cell monolayer does not represent the
complex physiology of the placenta and lacks secondary cell populations (e.g., endothelial
cells) where transport (though minor contribution) can occur.23

As indicated before, the ER-REF approach considers ONLY the transport-mediated ER or
clearance and is independent of the absolute magnitude of CLpp of the drug. Also, it does
not provide the absolute value of the maternal-fetal or the fetal-maternal drug clearance. But,
to dynamically predict fetal drug exposure, an estimate of the active transport vs. passive
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clearance is needed. Therefore, we have proposed an approach to estimate the CLpp of any
drug by using the /n vivo midazolam CLpp as a calibrator (Eq. 7).

Pgpp of test drug

CLpp of test drug = P, of midazolam

* CLpp of midazolam (Eq. 7)

Where, Papp represents the apparent permeability in MDCKII or another mammalian cell
line where the drug is not transported. Once the absolute value of the CLpp has been
estimated, the magnitude of the transport clearance, as a fraction of the CLpp, can be
obtained from Ky, ivive- >

Validation of the ER-REF plus the m-f PBPK model approach:

Any approach or model needs to be validated prior to applying it to prospectively predict
fetal drug exposure to a drug for which such data are not available. Therefore, it is logical
to ask if this ER-REF approach, combined with the m-f PBPK model, has been validated?
It has for P-gp transported drugs®! but needs to be validated for placental transport mediated
by BCRP or other transporters. For validation, rich /n vivo UV and simultaneously obtained
MP concentrations in multiple maternal-fetal dyads that span the AUC profile of the drug
are required to assess model prediction performance. But such in vivo data are limited

and available for only a limited number of drugs for which the transporters involved (or

the lack thereof) have been definitively identified. Using these inclusion criteria, we have
successfully validated the ER-REF plus m-f PBPK model approach for four P-gp substate
drugs namely dexamethasone DEX, betamethasone BET, darunavir DRV and lopinavir
LPV.?1 Such validation for BCRP substrates and dual P-gp/BCRP substates is ongoing in
our laboratory.

Now that our ER-REF/m-f PBPK model approach has been validated, it can be used to
predict fetal drug exposure to other drugs that are P-gp substrates. Moreover, this approach
is versatile in that it can be used to predict fetal exposure to P-gp substrate drugs at

earlier gestational ages as we have done before.9 The m-f PBPK model purposed by us®,
and others (Simcyp version 19 onwards), incorporates multiple fetal organs allowing us to
dynamically predict fetal tissue drug concentration such as fetal brain. To do so successfully,
one would have to have information (currently lacking) on transporter abundance at the

fetal tissue:blood barrier. Plus, the approach would have to be validated for a select number
of transporter-selective substrate drugs. The former is possible, but the latter is logistically
challenging. Future research should be directed to accomplishing these goals.

Ex-vivo perfused human placenta combined with the m-f PBPK model
approach—This model was initially developed by Maurice Panigel and Henning
Schneider!1: 112 The placental perfusion model allows for the study of multiple
pharmacokinetic factors such as passive diffusion, active transport, metabolism, and tissue
binding. Unlabored placentas are preferred for this approach since placental cell death and
other complications (e.g. infection with exposure to meconium and increased prostaglandin
concentrations with inflammation and hypoxia) increase with labor duration.13 In this
model, a single cotyledon of the placenta is dually perfused through both the intervillous
space and a cannulated fetal artery to represent the maternal and fetal blood flow,

J Clin Pharmacol. Author manuscript; available in PMC 2023 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Balhara et al.

Page 14

respectively. The outflow perfusate is then collected from the intervillous space and the
cannulated fetal vein to represent circulating blood returning to the maternal and fetal
circulation, respectively. Perfusate buffers are commonly oxygenated with a 95% oxygen
and 5% carbon dioxide gas to increase duration of placentae viability. Additionally, proteins
(e.g., 2.0 g/L bovine serum albumin) are added to the buffer to allow binding to plasma
proteins and to increase drug solubility. In a given cotyledon, the drug is included in the
donor perfusate (7.e., either the maternal or the fetal perfusate) and drug concentration is
sampled in both the donor and the receiver outflow. The drug perfusion can be set up in
two ways: 1) recirculating or 2) single-pass. For the recirculating approach, any outflow
from the vein that is not collected for determination of drug concentration is re-circulated.
However, for the single-pass approach, the outflow that is not collected for determination
of drug concentration goes to waste and the cotyledon is continuously perfused with fresh
buffer (with the drug contained in only in the donor perfusate).

Both approaches can be used to evaluate placental drug transfer, but the major difference
between them is that the single-pass approach reaches steady-state quicker than the
recirculating approach, however the difference in time to steady state is reduced for higher
permeability compounds and smaller reservoirs.11# Also, potentially toxic cellular metabolic
waste products build up in the re-circulated perfusate while they do not in the singe-pass
perfusate. For the re-circulation approach (but not the single-pass approach), the ex vivo
fetal/maternal concentration ratio (provided steady-state has been reached) can be directly
compared to the /n vivo K, . If steady-state has not been reached or if the single-pass
approach is used, the unbound drug clearance ratio (maternal-fetal/fetal-maternal) needs to
be estimated to translate to /7 vivo Ky, yy 1vive (see below). Thus, the single-pass method
requires both maternal-fetal and fetal-maternal perfusions to estimate /n7 vivo K,y while the
re-circulation approach needs perfusion in only one direction, but to steady state. To apply
the above approaches to estimate the /n vivo Kp ,, fetal CL would have to be negligible.

Maternal-fetal drug clearance can be estimated when drug is introduced into the maternal
perfusate and collected from the fetal venous outflow, and vice versa for the fetal-maternal
clearance estimation (/.¢e. drug is introduced into the fetal perfusate and collected from
maternal venous outflow).115 To estimate clearance in both directions, two individual
cotyledons must be perfused, one for each clearance estimation. The clearance values
estimated from the model can be scaled to the whole placenta, either by scaling the average
number of cotyledons in the placenta or by scaling the cotyledon weight or volume to

the total placental weight or volume. However, in using this scaling approach, several
assumptions are made: 1) the abundance and activity of the transporters and enzymes in the
perfused placentae are identical to that /n7 vivo, 2) the entire cotyledon is perfused ex vivo
as it is /n vivo. The latter assumption is doubtful because in placental perfusion experiments
this is usually not the case; part of the cotyledon is not perfused to prevent leakage.

Also, because only one fetal artery is cannulated, it is unlikely that the perfused surface
area is the same in both directions, maternal-to-fetal and fetal-to-maternal. There will also
be inter-cotyledon variability in the surface area perfused. All these factors will likely

result in mis-prediction of the in vivo drug placental CL. To determine the contribution of
transporters or enzymes in drug transfer, the perfusions can be conducted in the absence and
presence of a selective inhibitor of the transporter or enzyme.
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It is important to note that perfused placenta can provide an estimate of Kp, ,, (provided fetal
clearance of drug is negligible) but to predict the dynamic fetal drug exposure, it needs to

be combined with a m-f PBPK model which must be populated with the CLyp, CLpg and
CLpp. This combined approach has been employed to dynamically predict fetal exposure to
drugs that passively cross the placenta (e.g. acetaminophen16, dolutegravirll?, sildenafil118)
and are possibly metabolized in the placenta (e.g. tenofovir and emtricitabine)83. This
approach has also been used to successfully predict fetal exposure to a drug (darunavir)

that is actively transported by the placenta.11® While the authors attributed the higher fetal
to maternal clearance vs. maternal to fetal clearance of darunavir to a difference in the
physiological blood flows, we believe the difference is due to active P-gp efflux of the

drug. As to whether the perfused placenta, combined with PBPK M&S, can predict fetal
drug exposure to a wider array of drugs that are transported by the placenta is yet to be
determined. It should be noted here that it is not necessary to conduct perfused placenta
studies to predict fetal exposure to drugs that passively cross the placenta as such dynamic
predictions can be made without conducting these costly and challenging studies (see Zhang
et al. 2017)8.

The overall merits and limitations of the above two approaches (ER-REF and perfused
placenta) combined with m-f PBPK M&S are provided in Table 3.

Expert opinion on future directions and overall conclusions

There are multiple knowledge gaps in our ability to predict fetal exposure to drugs. First,
fetal physiological data for early gestation (<GW9) are incomplete and therefore the present
m-f PBPK models cannot be used to predict fetal exposure to drugs prior to GW9. Second,
it is impossible to validate fetal drug exposure (systemic or tissue) predictions earlier in
gestation because prenatal fetal sampling is not ethical or logistically possible. Third, there
is limited information about the ontogeny of non-CYP enzymes in the placenta and the
fetal liver. Likewise, for the ontogeny of enzymes and transporters in fetal tissues. Fourth,
the ER-REF-PBPK approach is validated for only for P-gp substrates and has yet to be
validated for other placental transporters. Fifth, fetal drug exposure estimated by m-f PBPK
models at term has been validated for only a limited number of P-gp substate drugs due to
paucity of the necessary UV/MP data for such drugs. For the same reasons, fetal tissue drug
concentration prediction by the m-f PBPK models cannot be validated. Sixth, the current
m-f PBPK models do not incorporate potential absorption of drugs from the amniotic fluid
through the skin, which could be important earlier in gestation when the fetal skin is highly
permeable.120

It is important to emphasize that, besides factors listed above, fetal drug exposure is also
driven by maternal exposure. Therefore, the absolute magnitude of fetal drug exposure
cannot be predicted without accurately predicting maternal drug exposure. This can be done
using our m-f PBPK model as we have previously shown®: 8-11. 79,90, 91 'if relevant data

on transporter and enzyme abundance are available for both healthy pregnant women and
those with diseases (e.g. hepatic impairment). In this regard, the impact of pregnancy on

the abundance and activity of non-CYP enzymes (such as UGTs, SULTSs, carboxylesterases)
and hepatic transporters (such as SLC and ABC transporters) are lacking for both healthy
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pregnant women and those with diseases. Moreover, such data for CYPs are limited to a few
isoforms (e.g., CYP1A2, CYP2D6 and CYP3A4) and, where available, they are available
mostly for the 3 trimester (healthy pregnant women only).121. 122 The effect of pregnancy
on activity or abundance of metabolic enzymes and transporters in non-hepatic tissues of
pregnant women such as intestine, are not available. Such data are particularly important

for drugs that are metabolized or transported in the intestine such as CYP3A and BCRP. In
contrast, data are available about the effect of pregnancy on renal transporters.123-125 Thus,
targeted enzyme and transporter probe drug studies in pregnant women (at all gestational
ages) are needed to fill these knowledge gaps to predict both maternal and fetal drug
exposure without conducting /7 vivo studies for every drug administered to pregnant women.

Despite the above gaps, there has been enormous progress in predicting maternal-fetal drug
exposure. Mechanistic m-f PBPK models have been developed, populated with much of the
relevant physiological data. These model, together with newly devised or refined approaches
(e.9. ER-REF), have successfully predicted dynamic fetal exposure to drugs that cross the
placenta passively’® and actively®%: 91, The next frontier in this area of research is to predict
and validate fetal tissue drug exposure. We have already shown that the ER-REF approach

is successful in predicting human adult brain and liver drug concentrations where the drugs
are actively transported across the tissue:blood barrier.126. 127 Thys, there is every reason to
believe that this approach will be successful in predicting fetal tissue drug exposure provided
the relevant data on the ontogeny of transporters and enzymes in these tissues are available.
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Figure 1:
(a) Routes by which drugs distribute into or are cleared from the fetal compartment.

(b) Expanded view of the placenta with magnification of the syncytiotrophoblast

layer and examples of transporters and enzyme expressed there. Abbreviations:

CLpp: passive bi-directional placental clearance; CLyp: transporter-mediated influx
clearance; CLpp: transporter-mediated efflux clearance; CLo: placental metabolic
clearance; CLyg: fetal metabolic clearance; CYPs: cytochrome P450s (CYPs); UGTs:
UDP-glucuronosyltransferases; SULTS: sulfotransferases, GSTs: glutathione-S-transferases;
MAO: monoamine oxidase; XO: xanthine oxidase; EH: epoxide hydrolase. Details of other
transporters and enzymes present in the placenta are provided in Table 1.
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Figure 2:

Prediction of fetal drug exposure using the m-f-PBPK approach combined with data from
(a) the ER-REF studies (left panel) or (b) the perfused placenta studies (right panel).
Although the perfused placenta approach is shown in a single-pass mode, the re-circulation
mode could also be used. CL,, - unbound clearance; CLjntg—a) and CLjntya—g) - intrinsic
drug clearance in the B—A and the A—B direction, respectively; ER - efflux ratio;
Papp—A) and Pappa—B) - apparent drug permeability in the B—A and the A—B
direction, respectively; F—M - fetal to maternal; M—F - maternal to fetal; REF - relative

expression factor.
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