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The lower-limb robotic prostheses can provide assistance for amputees’ daily activities by restoring the biomechanical functions of
missing limb(s). To set proper control strategies and develop the corresponding controller for robotic prosthesis, a prosthesis user’s
intent must be acquired in time, which is still a major challenge and has attracted intensive attentions. This work focuses on the
robotic prosthesis user’s locomotion intent recognition based on the noninvasive sensing methods from the recognition task
perspective (locomotion mode recognition, gait event detection, and continuous gait phase estimation) and reviews the state-of-
the-art intent recognition techniques in a lower-limb prosthesis scope. The current research status, including recognition
approach, progress, challenges, and future prospects in the human’s intent recognition, has been reviewed. In particular for the
recognition approach, the paper analyzes the recent studies and discusses the role of each element in locomotion intent
recognition. This work summarizes the existing research results and problems and contributes a general framework for the

intent recognition based on lower-limb prosthesis.

1. Introduction

Lower-limb robotic prostheses, mainly including knee-ankle
and ankle-foot prostheses, have achieved a fast development
within these years, since it can provide the functional com-
pensation for amputees by mimicking the biomechanical fea-
tures of joints [1-5]. By adopting a proper control strategy,
the prosthesis can assist an amputee’s daily walking activities,
such as walking on level ground or ramps, with low metabolic
cost, good gait symmetry, and so on [6-8].

Researchers have investigated the biomechanics and
motor coordination in humans during different locomotion
modes, such as walking on different stairs, level ground,
and inclined surfaces [9, 10]. The kinematics and dynamics
of different joints vary a lot in these locomotion modes, and
the prostheses need to mimic the biomechanics of missing
joints. Therefore, to set control strategies for prosthesis, it is
very important to recognize the human’s locomotion intent.
The human’s locomotion intent recognition refers to the
interaction among human, prosthesis, and environment.
Based on the gait phase (stance or swing phase) and environ-

ment (ramps, stairs, etc.) that amputees are in, the recogni-
tion, by processing the signals deriving from the human’s
residual limb and the mechanical sensors of prosthesis, can
instruct the behavior of prosthesis. Some lower-limb’s move-
ments can be viewed as periodical or quasi-periodical in
structured environment, and these common periodical activ-
ities include level ground walking (LG), stair ascending (SA),
stair descending (SD), ramp ascending (RA), and ramp
descending (RD). Apart from these periodical movements,
there are some nonperiodical movements, such as sitting,
standing, stepping over an obstacle, turning around, and
walking on uneven terrains or between different terrains.
Taking the level ground walking as an example, each gait
cycle includes the stance phase and swing phase. The gait
phase can be set generally according to the detected gait
events (heel strike, heel off, push off, toe off, etc.). Currently,
the most used finite-state machine control method for
robotic prostheses is based on these states (detected gait
phase and events) [6, 7], as the set function of prosthesis in
each state is different. For example, during the swing phase,
the prosthesis needs to achieve foot clearance and reset to a
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desired equilibrium position [6, 7]. During the stance phase,
the prosthesis needs to propel the body upward and forward
[6, 7]. In addition to the finite-state machine control method,
some alternatives are developed based on the estimation of
the continuous gait phase that increases monotonically in
each gait cycle.

The human’s intent recognition, including locomotion
mode recognition, gait event detection, and continuous gait
phase estimation, is the necessary prerequisite to set a control
strategy. Thus, it has attracted a multitude of groups to con-
duct related studies and got some good results [11-18]. Sev-
eral research groups have given reviews about the human’s
intent recognition for a control perspective [19, 20].
Tschiedel et al. have reviewed the sense for enhancing
lower-limb prosthesis control and introduced the different
types of sensors in locomotion recognition [21]. Novak and
Riener have conducted the survey of sensor fusion methods
for the human’s intent recognition in wearable robotics
[22]. Windrich et al. have also presented a review on design
issues and solutions found in active lower-limb prostheses
[23]. This paper presents a review of the human’s intent rec-
ognition based on lower-limb robotic prostheses from the
recognition task perspective: locomotion mode recognition,
gait event detection, and continuous gait phase estimation.

The paper is aimed primarily at the approach and
research progress, challenges, and future prospects in loco-
motion intent recognition of lower-limb robotic prosthesis.
The approach includes the raw signals’ preprocess, classifier
training, and validation method and recognition test perfor-
mance. Based on this review of the recognition approach, the
current research progress and results are listed by summariz-
ing the studies. The challenges of the approach and research
are also discussed in the paper.

2. Recognition Tasks

This work focus on the prosthesis users’ intent recognition
research. Most studies concerning intent recognition are
conducted in structured environment, such as stairs, ramps,
and level ground, as shown in Figure 1. The main intent rec-
ognition tasks of lower-limb prosthesis can be summarily
divided into locomotion mode recognition, gait event detec-
tion, and continuous gait phase estimation, as shown in
Figures 2(a)-2(c). The daily activities of lower-limb prosthe-
sis include but not limited to these modes: St, LG, SA, SD,
RA, and RD. These locomotion modes (each gait cycle of
prostheses does not include more than one mode) can be
defined as steady modes. Sometimes, one gait cycle may
include more than one mode. Namely, there is locomotion
mode transition during this stride period. Nowadays, more
and more researchers focus their studies on the continuous
locomotion mode recognition (i.e., combining steady modes
with transitions between different steady modes) [12, 15, 25,
26]. These transitions are corresponding to the two-way
arrows in Figure 2(a). For the given six locomotion modes,
there mainly exist ten transitions in daily activities: from
LG to St/RA/RD/SA/SD and from St/RA/RD/SA/SD to LG,
as seen in Figure 2(a). For the healthy people, they can trans-
fer to one new locomotion mode naturally. But for the pros-
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thesis users, when they transfer their prosthesis leg to a new
mode, the prosthesis needs to know the transitions in
advance in order to make the corresponding responses [16].
Besides, the lower-limb recognition tasks also include step-
ping over an obstacle [12, 27] and turning around [28]. The
gait event plays an important role in prosthetic finite state
machine control [7, 29, 30], which relies on the detected gait
events 19 to trigger the transitions of control strategies.
Figure 2(b) describes some gait events in each gait cycle,
and one gait cycle starts from the heel strike to heel off and
toe off and then ends at the next heel strike. The gait phases
are generally divided into the stance phase (from heel strike
to toe off) and swing phase (from toe off to next heel strike).
In addition, more sub phases can be set and divided accord-
ing to the need to realize more elaborate control [7, 31, 32].
Finite state machine has limitations in the smoothness and
robustness of control [33]. Another alternative control
method is based on the estimation of the continuous gait
phase, usually defined as a number that increases monotoni-
cally from 0 to 2mrad in each gait cycle, as shown in
Figure 2(c).

3. Locomotion Mode Recognition Method

For the locomotion mode recognition, one important step is
to build classifiers based on the sensing signal data to realize
modes’ classification. The process of building classifiers is
customarily called as classifier training. Based on the trained
classifiers, the recognition test is conducted next. The recog-
nition performance is the critical target, and the performance
metrics of the recognition test are generally the accuracy and
the time performances (decision time [15] (the time required
by the classifier to reach a decision [19]) and delay between
gait transitions). The different types of classifiers [29, 34,
35], signal sources [13, 15, 36-38], algorithms [13, 39, 40],
optimization methods (sliding window), feature extraction
and feature selection [16, 26, 41], training and validation,
and recognition test will be discussed in this work.

3.1. Heuristic Rule-Based Classification. The types of classi-
fiers can be divided into two types: heuristic rule-based clas-
sification based on a set of rules and automated pattern
recognition based on machine learning and statistics [19].
Heuristic rule-based classification is an effective method in
locomotion mode recognition and can be easily understand-
able [29, 34]. For most conditions, the establishment of rules
is to find the boundary or division surface between two loco-
motion modes or gait events. It is not hard to build the rules
based on some collected sensing data in advance. The criteria
to make a set of rules are unfixed, and they can be made
according the tasks’ features and the experimenter’s experi-
ence by analyzing the mathematical features of signals. Trial
and error or feedback can also provide instruction to make
and improve rules.

For locomotion mode recognition, some studies have
achieved quite good performances based on this method.
Yuan et al. adopted the fuzzy logic-based threshold rules to
identify the terrains for transtibial amputees [29]. Li and
Hsiao-Wecksler also adopted the rule-based method to
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F1GURE 2: The recognition tasks for lower-limb prosthesis. (a) Some locomotion modes and transitions between them. The blue parts denote
the robotic transtibial prostheses, and the two-way arrows denote transitions between the two locomotion modes. (b) Several gait events in
one gait cycle: heel strike, heel off, toe off and, next heel strike. (c) The continuous gait phase (from 0 to 27 rad) in one gait cycle.

recognize the level walking, stair ascent/descent, and ramp
ascent/descent by evaluating the slope of the flat surface
and elevation of the foot in one gait cycle [34].

Though the rule-based classification method is simple
and effective, sometimes the establishment of rules may be
complicated as the gait modes increase. More gait modes will
bring more parameters to tune for the establishment of rules,
so performance will deteriorate. Besides, the adaptations of
rules are also a notable question over time, as well as users.
The accuracy may be assured since there are relatively dis-
tinct signal features between different modes; however, the
noise and smoothness of signals will cause some errors. The
decision time is sometimes very small, since there are just
several judgement rules. But for terrain or locomotion mode
recognition, there is at most a one-stride delay based on the
set rules, since the rules work at several discrete points of
the gait cycle [29, 34].

3.2. Pattern Recognition. Pattern recognition is widely used in
lower-limb locomotion mode recognition, which is rooted in
the fields of machine learning and statistics [19]. Pattern rec-
ognition not only is used to identify several fixed gait modes
by building map relationships [12, 15, 16] but also can be
used to detect the continuous gait phase by regression fitting

[42, 43]. In this section, we focus mainly on the locomotion
mode recognition based on pattern recognition. Supervised
learning is adopted for locomotion mode recognition, which
includes classifier training and validation and recognition
test, as shown in Figures 3(a) and 3(b). The collected data
set (training data with corresponding labels) are input to
the classification algorithm to build classifiers, as shown in
Figure 3(a). The classifiers will output recognition result
when signals are input to the classifiers, as shown in
Figure 3(b). Tucker et al. have depicted the benefits and the
shortcomings of pattern recognition as follows. The clear
benefit of using an automated classifier over one based on
heuristic rules is that data from a multitude of sensors can
be input to the classifier, from which additional features
may be computed and used to make classification decisions
that are less biased and potentially more accurate due to the
high-dimensional input [19]. The biggest shortcoming of this
approach is the necessity of properly classified training data
for all of the desired activities and the transitions between
them, preferably incorporating sufficient variability such that
the classifier will perform well in real-world scenarios [19].
Furthermore, optimal classifier performance often requires
training data from the user himself, which may be some-
where difficult, impractical, and impossible to obtain [39, 44].
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FIGURE 3: The locomotion mode recognition process: (a) the training and validation process; (b) recognition test process.

For locomotion mode recognition in a robotic prosthesis
scope, what needs to be noted first is the input sensing sig-
nals. Different sensing signals can record different functional
and physical information of the lower limb’s movement. For
rule-based classification, raw signals may show distinct
differences between gait modes and can be used for classifica-
tion. However, for pattern recognition, the raw signals need
to be preprocessed by extracting time- or frequency-
domain features in sliding windows [12, 15, 35]. In addition
to the raw signal preprocessing, the other related problems
about pattern recognition can be summarized from training,
validation, and recognition test. The types of input signals,
sliding window, feature extraction and selection, label
method, and classification algorithms can all affect recogni-
tion performances. Besides, the corresponding subproblems
are also summarized and reviewed, including training tech-
niques, online or offline recognition, the optimization
method of recognition accuracy, and time performance.

3.2.1. Sensing Signals. The sensing signals in the lower-limb
prosthesis scope can be divided into two kinds: invasive sens-
ing signal and noninvasive sensing signal. The invasive sens-
ing is not the scope of this work. The noninvasive sensing
signals derive from the prosthesis itself and the muscle of
the residual limb. As is known, muscles behave as the actua-
tors of the sensory motor system and they contain abundant
motion information [19, 45, 46]. Muscle signals could
directly and deeply reflect the human’s locomotion intent.
Surface electromyography (sEMG) sensors can record the
electrical potential of muscle which is generated by muscle
cells and is widely used in locomotion mode recognition in
lower-limb prosthesis research [12, 47-51]. The electrodes

of sSEMG sensors provide a noninvasive technique for mea-
surement and detection of electromyography signal. The the-
ory behind these electrodes is that they form a chemical
equilibrium between the detecting surface and the skin of
the body through electrolytic conduction, so that current
can flow into the electrode [52]. Therefore, in practical mea-
surement, the electrodes must be attached to the limb’s skin
tightly. The SEMG sensing method has some problems and
limitations. The measured sEMG signal is weak and nonsta-
tionary [53]; besides, it is easy to be contaminated by motion
artifacts and muscle fatigue, shift of the electrodes, and cross-
talk between nearby muscles [54, 55]. A new noncontact
capacitive sensing method has been proposed to measure
the relaxation and contraction of muscle [35]. The human’s
limb and the metal electrode could be viewed as the two elec-
trodes of one capacitor. The dielectric layer (for example, the
silica gel layer) is placed between the metal electrode and
human limb, which consists of one equivalent capacitor.
During limbs’ locomotion, the contraction and relaxation
will cause the change of the relative area and the distance
between two electrodes. By measuring the cycle time of
charging and discharging, the capacitive signals are recorded
[35]. The capacitive sensing method has its specific advan-
tages, since it does not need to be attached to the skin and
can void some contacted affection relative to SEMG. Besides,
it has good and obvious signal repeatability and stability [42].
The capacitive sensing method has been applied to recognize
the locomotion mode and proven feasible [13, 36]. In addi-
tion to the muscles’ signals of the residual limb, the robotic
prostheses are integrated with different kinds of mechanical
sensors: goniometers, accelerometers, gyroscopes, magne-
tometers, inertial measurement units (IMUs), load cell, strain
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gauge, and so on. All these mechanical signals can be used for
locomotion mode recognition or gait phase detection [14, 15,
56-60]. Mechanical sensors are easy to be integrated with
prosthesis than sEMG. However, compared with sEMG,
what the mechanical sensor measures is the already hap-
pened movement information, so there exists delay com-
pared with sSEMG [61].

In addition to the mentioned sensing method based on
the residual limb and prosthesis, electroencephalography
(EEG) signals of the brain can illustrate the locomotion infor-
mation. The EEG method can monitor electrical activity
across the brain with high information content [62]. Now,
there are quite a few studies in lower-limb prosthesis based
on the EEG method [63]. The EEG-based approach has
shown some effects in locomotion intent recognition of
lower-limb prosthesis [64]. Compared with sEMG, the EEG
signal is a nonstationary signal and has low resolution in
lower-limb locomotion intent recognition. Besides the men-
tioned sensing signal types, others sensing signal can also
be used for locomotion mode recognition. Tschiedel et al.
have summarized the different sensors in lower-limb pros-
thesis locomotion recognition and control [21], including
distance and depth sensors, kinematic sensors, and others.
Different types of sensing signals can provide different phys-
ical information corresponding to the same locomotion
mode. In wearable robotics for locomotion recognition, sen-
sor fusion methods have been proven to be an effective way
to improve recognition performance [22, 65], such as the
fusion of capacitive sensors and IMUs [13] and the fusion
of SEMG and mechanical sensors [12, 16, 66]. In this work,
the sensor fusion denotes multitype sensor fusion not the
multisensor of one type.

3.2.2. Preprocessing of Sensing Signals. Raw sensing signals
need to be preprocessed to remove the noise and provide
more effective information before it is used for locomotion
mode recognition. For different signals, especially for SEMG
and capacitive sensing signals, which are easily contaminated
by artifact and noise [13, 35, 52, 67-69], they need signal fil-
ter operation first. For some other signals, especially mechan-
ical sensors, whose signals are quite robust than those of
SEMG, their filter process is operated easily. Therefore, this
part pays more attention to the filter of the limb’s signals
(i.e., SEMG and capacitive sensing signals). SEMG signals
are weak and need to be amplified first [52, 53]. Noise plays
a major role in hampering the recording of the EMG signal.
For this purpose, the signal has to be properly filtered, even
after differential amplification [70]. The study [52] has
depicted the different filter designs based on the noise fre-
quencies. Low-frequency noise derives from amplifier DC
offsets, sensor drift on the skin, and temperature change,
and it can be removed using a high-pass filter. High-
frequency noise is caused by nerve conduction and high-
frequency interference from radio broadcasts, computers,
cellular phones, etc., and it can be deleted using a low-pass fil-
ter [52]. Some groups have developed the prosthesis studies
based on filtered sEMG [12, 47, 71]. Huang et al. have
adopted the filter from 20 to 420 Hz in the locomotion mode
recognition of the prosthetic leg [12]. The design of low- and

high-pass filters can also refer to the study of the European
SENIAM project, which suggests that the lower cutoff fre-
quency of the filter is generally 10 or 20 Hz and the upper cut-
off is between 400 and 500 Hz [69]. Capacitive sensing signals
do not need to be amplified for its relative strong and robust
signals compared with sSEMG signals [35, 42]. The noises
of raw capacitive sensing signals are comprised of low-
frequency drifts (lower than 0.1 Hz), random impulses, and
high-frequency noise [35]. Accordingly, the studies [13, 35]
have used three filters in series (a median filter, a first-order
DC-notch filter, and a second-order 10 Hz low-pass Butter-
worth filter) to regulate the capacitive sensing signals by
removing the baseline shifting and the high-frequency noises.

The filtered sSEMG signals, capacitive sensing signals, and
mechanical signals (more studies tend to fuse the two or all of
them) are sampled at individual frequency and then packed
together to form data streams. For each frame of signals, it
contains quite small information, making it hard to reflect
the signals’ dynamic features. Therefore, a sliding window
is adopted to extract the signal features, as shown in
Figure 4. The data in the window is refreshed continuously
as data sampling goes, which also can be viewed as the win-
dow is sliding. The length of the sliding window is the num-
ber of its contained data frames. Here comes one question:
how to decide the length of the sliding window. In locomo-
tion mode recognition of robotic prosthesis, several studies
have validated the relationship between the length of the slid-
ing window and recognition accuracy [35, 37, 72]. Besides the
length of the sliding window, the sliding increment from one
window to the next window is also an interesting index [37].
If the sliding window is smaller or bigger than the length of
the window, it means that there is an overlap or no-overlap
area of two adjacent windows, as shown in Figures 4(a) and
4(b). Now, more studies choose the small sliding increment
to make the current window overlapped with the previous
window [12, 26, 73], which allows more frequent commands
to the robot and fewer sudden changes in sensor fusion out-
put [22]. Xu et al. have adopted a sliding window in locomo-
tion mode recognition of transtibial prosthesis whose length
is 250 ms and increment is 10ms [15]. Huang et al. have
developed the locomotion mode recognition for prosthetic
legs, and the length and increment of the sliding windows
are 150 and 12 ms, respectively [12].

Most studies about locomotion mode recognition have
attempted to extract features from raw signals rather than
using raw signals directly to the recognition studies. The
aim of conducting feature extraction is to acquire more useful
information to distinguish one locomotion mode from
another. Elhoushi et al. have reviewed the feature types in
their survey [74], which are listed as follows: (1) statistical
features, (2) time-domain features, (3) energy, power, and
magnitude features, (4) frequency-domain features, and (5)
other features. As the types of input signals vary, therefore
the features of different input signals are different [12, 15,
35, 75]. For sSEMG signals, there are some well-established
feature types for EMG signals: autoregression coefficients,
time domain, frequency domain, or time-frequency domain
[12, 75-77]. Tkach et al. have adopted some time-domain
features in their study, and the main features of the time
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FIGURE 4: The sliding window for signal preprocessing in locomotion mode recognition: (a) sliding 20 windows with overlaps; (b) sliding
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domain are mean absolute value, zero crossings, slope sign
changes, waveform length, Willison amplitude, variance, v
-order, log-detector, EMG histogram, autoregression coefhi-
cient, and cepstrum coefficients (the detailed means of each
features can be gotten in the study) [78]. Huang et al. have
used the different feature types of SEMG (the mean absolute
value, number of slope sign changes, waveform length, and
number of zero crossings) and mechanical signals (the max-
imum value, minimum value, and mean value) in their study
[12, 79]. For capacitive sensing signals, as it is a new sensing
method, the selection of statistical or time-domain feature
types is introduced and tried. Chen et al. have selected eight
features (the mean, root mean square, standard deviation,
maximum, minimum, interquartile range, mean absolute
deviation, and first derivatives) in their locomotion recogni-
tion research based on the capacitive sensing method [36].
Zheng et al. have developed statistical and time-domain fea-
tures for capacitive signals: mean value, maximum, mini-
mum, standard deviation, several differential features, and
correlation coefficient. For mechanical signals, their statisti-
cal features and time-domain features are commonly used
in recognition. Xu et al. have extracted the five features (the
mean value, maximum, minimum, standard deviation, and
the differential signals) of two IMU signals in their recogni-
tion of continuous locomotion modes for robotic transtibial
prosthesis users [15]. For signal fusion (e.g., capacitive signals
and mechanical signals), Zheng et al. have calculated six fea-
tures (the mean, standard deviation, maximum, minimum,
sum of signals’ absolute value, and differential value of sig-
nals) for capacitive signals and four features (mean, standard
deviation, maximum, and minimum) for mechanical signals
of prosthesis [13]. The feature types are not fixed, and there
are no clear criteria for that. Therefore, the researchers can
try different types of features (trial and error), only if they
are helpful for specific research tasks. As to locomotion rec-
ognition, the accuracy should be one critical target to con-
sider when some types of feature are chosen to be candidates.

For the supervised pattern recognition, one importance
part is to label the training data to their corresponding modes
to form a training data set [80]. In fact, label is critical but not
difficult in locomotion recognition research. Labeling data
must be unmistakable for training classifiers. The labeling
method can be manual or with assistance according to the
experimental tasks [35, 39]. Classification algorithms play
an important role in locomotion mode recognition, and a
plenty of algorithms have been unitized, including Dynamic
Bayesian Networks (DBN) [81, 82], linear discriminant anal-
ysis (LDA) [35, 37, 41], Quadratic Discriminant Analysis
(QDA) [41, 83], Gaussian Mixture Models (GMM) [35, 39],
Support Vector Machines (SVM) [12, 15], Artificial Neural
Networks (ANN) [37, 40], and Convolutional Neural Net-
work (CNN) [56]. The advantages and disadvantages of these
classifiers and the mechanics of the classification algorithm
can refer to some works about machine learning and statis-
tics. Some studies have conducted the recognition accuracy
comparisons of different classification algorithms [13, 15,
41]. As the complexities and classification principles of algo-
rithms vary greatly, the selection of the algorithm will bring
improvements for some specific performances at the cost of
deteriorating other performances. For example, when choos-
ing the complicated classification algorithm to improve rec-
ognition accuracy, it may bring more time cost to train
classifiers. With the benefit of integrated circuits, a hardware
device can process the data with a complicated algorithm
with high speed, big storage, and low power consumption
performances [84, 85].

The sliding window’s length and increment and the fea-
ture types can also be optimized to improve locomotion rec-
ognition accuracy [37], as they have been mentioned above.
As is known, signal feature extraction will form a feature vec-
tor with big dimension. We take the one study as an example.
In the study [13], capacitive sensors (six channels’ capacitive
signals) and mechanical (ten channels’ mechanical signals)
sensors are adopted. After raw data are preprocessed, they
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form one feature vector with 76 elements. In the recognition,
if more sensors (SEMG, capacitive sensors, accelerometers,
gyroscopes, and so on) are fused, they will form feature vec-
tors with bigger dimensions. In addition to the dimension of
the feature vector, each value in one feature vector contrib-
utes to recognition differently. The invalid feature values
may contribute little and even harm the recognition. There-
fore, feature selection is essential and important for improv-
ing recognition performance and reducing computation time
since it can reduce the feature vector’s dimension by remov-
ing some invalid feature values. The selection of the classifier
is generally considered to be less important than the selection
of features [86, 87], where the effect of the classifier type on
accuracy is generally small in some prosthetic hand studies
[88, 89] and lower-limb movement [41]. Feature selection is
aimed at choosing the more suitable subset of features which
shall result in the better recognition accuracy [90]. One
widely used method for feature selection is sequential feature
selection (SFS) [91, 92]. SES can be divided into sequential
forward feature selection (SFES) and sequential backward
feature selection (SBFS). SBFS is an opposite operation to
SFFS. SFES, aimed at improving the recognition accuracy
continuously, starts with an empty feature set and iteratively
retrains the classifier by adding a new feature which can
increase the recognition accuracy best to the feature set.
When the accuracy can get obvious improvement that meets
requirement or starts to increase very slowly or even decline,
SFES stops retraining and the selected subset of the feature
vector is the new feature vector with smaller dimensions than
the previous feature vector. SFFS has been applied in the
lower limb’s locomotion mode recognition on healthy people
[41] and amputees who wear prosthesis [13, 15]. Feature
transformation is also a dimension reduction method and
can be viewed as another feature selection method, which
can create a new feature vector by a mathematical transforma-
tion [93] and is helpful to improve recognition performance.
Feature transformation methods consist of linear discriminant
analysis (LDA) [94, 95] and principal component analysis
(PCA) [94, 96, 97], factor analysis, and nonnegative matrix
factorization [74]. LDA and PCA are two commonly used
methods in the locomotion mode recognition [16].

3.2.3. Training and Validation. Locomotion mode recogni-
tion is aimed at the final recognition test, which is on the
basis of training and validation. Different from the signal pre-
processing, training techniques are sometimes dependent on
experimental tasks. One main technique of training is how to
build the training data set, especially for some data represent-
ing the transition process from one locomotion mode to
another locomotion mode [26]. For example, from level
ground to ramp or stair, there are several transitions among
locomotion modes. In building the training data set, the data
belonging to the transitions must be treated carefully, since
they can result in big influence on recognition performance
[26]. It must be taken into consideration whether to choose
these data or remove these data. If the data corresponding
to transitions are treated as two locomotion modes, the con-
cern is how to decide the two modes’ labels of these data.
These studies have adopted reasonable divisions to the train-

ing data set and get quite good performances in the test of a
steady mode (level ground, ramps, and stairs) and transitions
(level ground to ramps or stairs, etc.) [12, 13]. Young et al.
have conducted the training method research in more detail
and concluded that the training data set containing data cor-
responding to transition will result in better recognition per-
formance [26]. In addition to that, Young et al. have also
concluded that recognition at several critical moments of
each gait cycle would get accuracy improvement than contin-
uous recognition at each moment of the gait cycle.

A phase-dependent classifier is an effective design in
improving lower-limb locomotion mode recognition perfor-
mance [12, 13, 15]. As is known, one gait cycle can be divided
into the stance phase and swing phase (as shown in
Figure 1(b)) or more phases: early stance, middle stance, late
stance, swing phase 1 (knee flexion), and swing phase 2 (knee
extension) [19]. As some movements of the lower-limb are
periodic or quasi-periodic, the sensing signals vary periodi-
cally or quasi-periodically. Huang et al. have studied the
EMG signals; although time-varying but quasi-cyclic, the
muscle activation patterns for the same locomotion mode
are similar at the same gait phase [37]. They have assumed
that the pattern of EMG signals had small variation in a short
time window. Hereby, they have designed phase-dependent
EMG pattern classifiers to recognize prosthesis users’ loco-
motion modes [37]. The phase-dependent method provides
researchers a lot of benefits to design different classifiers cor-
responding to different phases. Different phases have their
specific classifiers with better performance than fixed classi-
fiers in the whole gait cycle, which contributes to the lower-
limb locomotion mode recognition [12, 13, 15, 73].

Based on the training data set and phase-dependent
method, the classifier must be trained and validated by set-
ting aside an independent validation set from the initial
training data set for the last purpose (generalization test).
Cross-validation can be an effective way to estimate general-
ization error. Choosing what fraction of the data should be
used for training and for validation is an open problem. For
the relatively small training data set, leave-one-out cross-
validation (LOOCYV) has been used in each phase for more
precise estimation of the classification error [98]. Huang
et al. have adopted the LOOCYV in their studies for locomo-
tion mode recognition [37]. Zheng et al. have conducted
the fraction research of training and validation for locomo-
tion mode recognition and got the conclusion that using
the leave-one-out cross-validation procedure can achieve
the best performance.

3.2.4. Adaptation of the Classifier. The adaptation of the clas-
sifier means whether the classifier can maintain its recogni-
tion performance as conditions change, such as each
donning and doffing of the prosthesis, long time wearing,
and new participants joining. All these problems are related
to the classifier’s adaptation. The simplest and most used rec-
ognition approach is utilizing the nonadaptive classifier with
time-invariant property for locomotion mode recognition.
The time-invariant classifier can achieve good performance
with limited conditions: subject-dependent, short-interval,
and fixed experimental protocol. For most recognition



studies of lower-limb locomotion mode, the subject-
dependent classifier can achieve good performance for spe-
cific subject and it cannot fit another one well generally,
because of the subject’s individual difference in physical
functions, body conditions, and so on. As the zero and tem-
perature drift exist, sensing signals will show some time-
variant property even with periodical rectification. In addi-
tion, for the sEMG sensor, its signals are easily affected by
muscle’s morphology: electrode shift, sweat, muscle fatigue,
etc. [54, 55]. Furthermore, when the experimental protocol
changes, such as speed, inclination degree of ramp, and
height of stairs, sensing signals also show different signal fea-
tures. All these factors can cause the decline of the classifier’s
performance. One solution to these problems is to design one
adaptive classifier.

Adaptive classifiers are first proposed in the upper-limb
field based on sEMG signals in the studies [99-101].
Recently, researchers have adopted the adaptive design to
the lower-limb prosthesis scope to adapt to sEMG pattern
variations over time, caused by physical and physiological
changes [73, 102]. Du et al. have developed an adaptive loco-
motion mode recognition framework in dealing with gradual
sEMG magnitude change [102]. The kernel of their adaptive
algorithm is to add test data into the training data set to
retrain the classifier as time goes, and the retrained classifier
(i.e., updated classifier) is then applied to test the new data
[102]. Therefore, the correct label of the added data into the
training data set is very critical since they will be used to
retrain the classifier. Spanias et al. have proposed a strategy
for labeling data by identifying the mode of the users’ most
recent stride and then providing a label for the corresponding
data [103]. They have conducted a preliminary study with an
adaptive recognition system for novel users using a powered
lower-limb prosthesis and achieved good effects: compared
to a nonadaptive system, the adaptive system can reduce
the number of errors by 32.9% [104]. Researchers have also
developed the user-independent research by pooling data
from a large subject group and got high accuracies of gait
mode identification for a novel subject [24]. Spanias et al.
have compared the classification types (user-independent,
partially dependent, and user-dependent) and get some
results. Subsequently, Spanias et al. have developed the
across-user adaptation for a powered lower-limb prosthesis
[105]. Up to now, Spanias et al. have combined the adaptive
intent recognition algorithm with prosthesis control and
enabled incorporation of neural information over long
periods of use, allowing assistive robotic devices to accurately
respond to the users’ intent with low error rates by updating
(retraining) classifiers. The research about the adaptive clas-
sifier for lower-limb prosthesis is still at an early stage, which
needs researchers’ continuous efforts.

3.2.5. Recognition Test. The recognition test is the new pre-
processed test data as input flows to the classifier and then
it outputs the recognition result, as shown in Figure 2(b).
For most lower-limb locomotion mode recognition,
researchers have developed the offline and real-time recogni-
tion tests based on offline trained classifiers. Offline analysis
can reflect the performances of the classifier, but the real-
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time test has more practical values, which need more atten-
tion to be paid. The decision time of the real-time recognition
process must be shorter than the sliding window’s increment,
so as to leave enough time for the following control response
and avoid the time collision with the next recognition deci-
sion [72], which makes demand of the processing capacity
of computing systems. Currently, Zhang et al. have devel-
oped the design and implementation of the neural-machine
interface for artificial legs to identify users’ intent in real time
very early [106], and they have also conducted the real-time
recognition in MATLAB [73]. Real-time recognition on
board may be more valuable and practical to the control of
prosthesis than it is in MATLAB. Some latest studies have
developed the on-board recognition study to recognize the
user’s intents [15, 16]. Of course, no matter how the rec-
ognition test is performed (online or offline), the tested
performance is decided by the training and validation funda-
mentally. No matter what the adopted recognition algorithm
is, there may always exist some recognition error. Still, we can
adopt some approaches to conduct postprocessing of recog-
nition result. Majority voting (MV) is a widely used postpro-
cessing approach in locomotion mode recognition [12, 72,
107]. The MV approach utilizes recognition results of multi-
ple adjacent analysis windows to produce more accurate rec-
ognition decisions. Huang et al. have utilized the MV
approach and proposed an enhanced MV by increasing the
number of voting decisions each time rather than using the
fixed-point majority voting in continuous locomotion mode
recognition for prosthetic legs based on neuromuscular-
mechanical fusion [12]. However, one study points out that
MYV does not have a practical effect on real-time task perfor-
mance [108]. Chen et al. have adopted some ideas to improve
the MV approach by adding weight value for each decision,
which is determined by the posterior probability of the recog-
nized decision with the LDA classifier, and have gotten good
performance in their real-time locomotion recognition [109].
Simon et al. have proposed a new postprocessing approach
(i.e., decision-based velocity ramp) to reduce error of recog-
nition in the research of the prosthesis hand, which is related
to speed with which the speed wearable robot moves [108].
Their research has shown significant performance advan-
tages over the majority vote, improving task completion
speed in amputees with powered prostheses.

For some steady modes, such as level-ground walking
and ramp ascending, the main metric to evaluate the recogni-
tion performance is the recognition accuracy. For the users,
they often face the transitions between different locomotion
modes. The recognition of continuous locomotion mode is
more meaningful since it can provide the transition informa-
tion to instruct the robotic prosthesis to adjust the corre-
sponding control automatically. To evaluate the recognition
performance of continuous locomotion, the accuracy in the
steady mode and the delay or accuracy in the transition
period are adopted [12, 15]. Hargrove et al. have acquired
low error rates for transitions between different locomotion
modes based on adaptive classifiers. Xu et al. have conducted
one real-time test for eight transitions and got both advanced
and behindhand recognition before the defined critical gait
events in transition periods [15]. Huang et al. have conducted
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an offline test and analyzed the five transitions, and their
research has achieved at least advanced 150 ms before the
defined critical gait events [12].

4. Gait Event Detection

The finite-state machine method for prosthesis control needs
to know the current state (i.e., the gait phase or gait event)
that the prosthesis is in [6, 7, 30]. The detection methods
for the gait phase or gait event can be classified into two
types: pattern recognition and threshold decision, and the
characteristics of each method can be seen in Table 1.

The pattern recognition method can realize gait phase or
event detection using alternative sensing signals. For exam-
ple, recognizing the swing and stance phases and using the
pattern recognition method based on inertial or capacitive
sensing signals can replace the load cell [110, 111], which is
one big advantage, since a load cell sensor is susceptible to
mechanical fatigue and has limited working lifespan. Apart
from this, pattern recognition is a relatively complicated
method and cannot work better than sensor signal-based
threshold rules for detecting some gait phases.

The threshold decision method is based on the output
sensor signals directly, and it is an effective, understandable,
and easy-to-operate method to realize gait phase or event
detection. This method can directly decide the gait event
and then divide one gait cycle into several different gait
phases using the signals of different sensors (i.e., load cell
[5, 7], strain gauge [56], and ankle of knee angle sensors [6,
30]). Mendez et al. have adopted joint angles, ground reac-
tion force, and time thresholds to divide each gait cycle into
four gait phases to make a finite-state machine controller
[27]. The threshold method has good time efficiency since
its low computation complication, and one study have given
that the threshold method takes less than 1 us to recognize
the swing and stance phases by the prosthetic load cell’
signals [15].

To recognize the gait phase, some gait events (for exam-
ple, the start and end of each gait phase) play an important
role in prosthesis control. These critical gait events are corre-
sponding to the start of a new control strategy and also the
transition timing between two different control strategies.
The difficulty in gait event detection, at present, is how to
realize its adaptive detection, such as at different walking
speeds, on different terrains, and for different prosthesis
users. One latest study has tried to realize the adaptive detec-
tion for maximum dorsiflexion timing of prosthesis during
walking at different speeds and on different ramps for three
prosthesis users by updating the detection model and thresh-
old rules using the several previous gait data [112]. This gives
an indication to realize detection adaptation, which requires
more attempts and further explorations.

5. Continuous Gait Phase Estimation

Different from dividing one gait cycle into several gait phases,
a continuous gait phase increases monotonically from 0 to 2
rad (or 0 to 100%) in each gait cycle or in one specific gait

TaBLE 1: The characteristics of two gait events and phase methods.

Method Pattern recognition  Threshold decision
Complexity Complex Simple
Operability Moderate-hard Easy
Detection accuracy High High
Detection time More Less

Sensor replace Yes No

period (for example, in the stance phase period) when the
prosthesis is in periodical or quasi-periodical movement.

For the moment, there are three popular methods
explored in the continuous gait phase estimation of lower-
limb prosthesis. The first method is to calculate the average
duration of several previous gait cycles as the denominator
and then calculate the time percent (i.e., gait phase, from 0
to 100%) relative to the average duration in each gait cycle.
The second method is designing or utilizing a specific algo-
rithm to estimate the continuous gait phase, such as adaptive
oscillator [113] and extended Kalman filter [17]. Xu et al.
have used the IMU signals to estimate the continuous gait
phase of transtibial prosthesis, and their study results have
shown some estimation adaptation to different walking con-
ditions when using the adaptive oscillator method [113].
Thatte et al. have used the extended Kalman filter to estimate
the continuous gait phase in the stance period (namely,
starting at heel strike (0%) and reaching 100% (precisely
at toe off)) based on IMU and angle signals of powered
transfemoral prosthesis [17]. The third method is based
on the polar angle method [114]. Holgate et al. have found
that the polar angle between the tibia angle and its scaled
angular velocity has an invertible relationship with the gait
phase and is not subject-dependent, and they have built a
fitted function between the polar angle and gait phase
and realized the continuous gait phase estimation [114].
Quintero et al. have computed the continuous phase in
their study utilizing thigh angular position and its corre-
sponding integral to form a well-defined thigh orbit [18].

Although all the three methods can realize continuous
gait estimations, each method has its advantage and disad-
vantages. The first method is easy and simple; however, the
estimation accuracy may encounter decline since there may
exist difference between the average duration and the current
gait cycle time length. The second method, for example,
adaptive oscillator, can get high estimation accuracy and
good adaptation to steady locomotion mode (different speeds
and terrains [113]). However, its performance may be
affected by variations in gait and encounter decline when
applied to unsteady locomotion. The extended Kalman filter
is able to quickly adapt to step-to-step gait variations [17],
but its estimation accuracy still needs improvement. The
third method has good adaptations due to its subject-
independent features, whereas it is sensitive to step-to-step
gait variations and its performance is susceptible to signal
drift and integral drift. Though these methods have limita-
tions, the prosthesis control based on continuous gait has
shown its robustness and smoothness, which is one good
alternative to improve prosthesis control.
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6. Discussion

This paper has reviewed the state-of-the-art research progress
about lower-limb intent recognition from the locomotion task
perspective. Human intent recognition is important to make
lower-limb prosthesis users finish their daily activities more
naturally and comfortably. The human’s intent recognition,
including (not limited to) locomotion mode recognition, gait
event and phase detection, and continuous gait phase estima-
tion, is conducted based on sensing signals. SEMG, as one
widely used sensing method, has a contact problem between
the electrode and skin, which is vulnerable to sweat and easy
to cause skin indentation and even fester. Jeong et al. have
developed one capacitive epidermal electronics for electrically
safe, long-term electrophysiological measurements, which
can improve the measurement of SEMG [115]. This capacitive
epidermal electronics are thin, soft, and stretchable, which
enables conformal contact on the surface of the limb, with
the ability to accommodate skin deformation in real time
[115]. This capacitive epidermal electronics has provided a
new approach in sensor design, while its practical effect in
lower-limb prosthesis has not been validated now and is
worth exploring. The capacitive sensing method can detect
muscles’ relaxation and contraction, and it has shown some
effects in improving recognition. Currently, the capacitive
sensing method is still in the preliminary stage in decoding
the human’s movements. In addition to improving the
sensors’ designs, multisensor fusion has also shown its
advantages. More sensors can provide more locomotion sig-
nals; therefore, it is helpful to improve the human’s intent
recognition. However, some sensors are hard to be
integrated with prosthesis for their big sizes (for example,
depth camera); besides, more sensors will make prosthesis
weight increment. Both of these will make prosthesis redun-
dant, decrease the assistance performance, and may increase
difficulties in wearing. All the mentioned above can be
summarized as an approach that roots in sensors to improve
the human-prosthesis interface and enhance the human’s
intent recognition. Besides, one another approach is to try
to change or improve the human. One approach that has
been validated in intent recognition is targeted muscle
reinnervation (TMR) [81]. Targeted muscle reinnervation
(TMR) is a new approach to rebuild the lost electromyo-
graphic signals for amputees and is helpful to improve loco-
motion mode recognition performance and profit prosthesis
control with sSEMG decoding [81]. This approach is one good
exploration, and it provides a new way of thinking to improve
intent recognition.

The current locomotion intent recognition performances
cannot totally meet the demand in prosthesis control, since
there always exist recognition errors. The effects of recogni-
tion errors to prosthesis control also need further analysis.
One group has studied the effects of recognition errors on
volitional control of powered above-knee prostheses and
concluded that some errors cannot affect the control of pros-
thesis and some errors can be avoided by adopting some con-
trol strategies based on recognition [32]. Nevertheless, there
are some recognition errors that can deteriorate the prosthe-
sis performance and need to be dealt with. Future studies
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need to adopt a better method and improve recognition tech-
niques to enhance intent recognition performance.

Most of the current studies about locomotion intent recog-
nition are conducted in the structured environment, which
has a distance to practical application in the real world. In
addition, the adaptation problems of locomotion intent recog-
nition have not been well solved. The adaptation problems are
relatively complicated, which proposes requirements from
hardware to software (sensors, recognition algorithms, control
strategies, prostheses design, etc.), which will call for more
interdisciplinary cooperation and research collaborations.

7. Conclusion

To set control strategies for lower-limb prosthesis users’ daily
activities, it is important to recognize the user’s locomotion
intent. For the lower limb, gait event detection, continuous
gait phase estimation, and locomotion mode recognition
are the main recognition tasks. The paper develops the
recognition review specifically for the human’s locomotion
intent recognition based on lower-limb prosthesis, reviews
the state-of-the-art human’s intent recognition techniques,
and summarizes and analyzes the general framework for
the intent recognition with lower-limb prosthesis. This
work also summarizes the research progress and points
out the challenges and future prospects in the human’s
locomotion intent recognition based on lower-limb robotic
prosthesis.
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