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1. Introduction

Copyright © 2022 Weikang Hu et al. Exclusive Licensee Beijing Institute of Technology Press. Distributed under a Creative
Commons Attribution License (CC BY 4.0).

Nanopipette-based observation of intracellular biochemical processes is an important approach to revealing the intrinsic
characteristics and heterogeneity of cells for better investigation of disease progression or early disease diagnosis. However, the
manual operation needs a skilled operator and faces problems such as low throughput and poor reproducibility. This paper
proposes an automated nanopipette-based microoperation system for cell detection, three-dimensional nonovershoot
positioning of the nanopipette tip in proximity to the cell of interest, cell approaching and proximity detection between
nanopipette tip and cell surface, and cell penetration and detection of the intracellular reactive oxygen species (ROS). A robust
focus algorithm based on the number of cell contours was proposed for adherent cells, which have sharp peaks while retaining
unimodality. The automated detection of adherent cells was evaluated on human umbilical cord vein endothelial cells
(HUVEC) and NIH/3T3 cells, which provided an average of 95.65% true-positive rate (TPR) and 7.59% false-positive rate
(FPR) for in-plane cell detection. The three-dimensional nonovershoot tip positioning of the nanopipette was achieved by
template matching and evaluated under the interference of cells. Ion current feedback was employed for the proximity
detection between the nanopipette tip and cell surface. Finally, cell penetration and electrochemical detection of ROS were
demonstrated on human breast cancer cells and zebrafish embryo cells. This work provides a systematic approach for
automated intracellular sensing for adherent cells, laying a solid foundation for high-throughput detection, diagnosis, and
classification of different forms of biochemical reactions within single cells.

biology, monitoring intracellular signals has enabled scien-
tists to elucidate the mechanism of ion homeostasis and sig-

Measurements of intracellular biochemical processes play a
significant role in quantitatively understanding the funda-
mental biological process or cellular heterogeneity in various
physiological and pathological conditions [1]. Recent evi-
dence has shown that reactive oxygen species (ROS) play
crucial roles in multiple biological processes, including ion
transport, signal transduction, cell proliferation, and apopto-
sis induction [2]. Various intracellular ubiquitous chemical
factors such as pH, Ca®*, and ROS have been recognized to
have a significant association with the initiation and progres-
sion of tumors [3, 4]. With the steadfast advance of synthetic

naling, facilitating the use of genetically engineered cells for
the development of innovative therapeutics [5].

In the past decades, the increasing availability of
sophisticated analytical techniques has expanded the routes
for cell exploration [6-9]. Several analytical techniques have
emerged to achieve single-cell intracellular sensing, includ-
ing fluorescence-based spectroscopy/microscopy [10], dark-
field scattering microscopy [11], surface-enhanced Raman
spectroscopy [12], and nanopore/nanoelectrode sensing
[13, 14]. Fluorescence imaging is widely used for subcellular
visualization for revealing subcellular processes [15].
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However, fluorescent probes are prone to disturb the physio-
logical state of the cells due to cytotoxicity and photobleach-
ing/blinking over long timescales [16]. Meanwhile, the
number of live-cell-permeant fluorophores that are available
to perform intracellular sensing is still limited. Nanopipette-
based electrochemical sensing provides an alternative to
fluorescence-based assays by label-free and nondestructive
measurement of the intracellular chemical reactivity of the tar-
get species [17]. Due to the small size of the tip, the damage to
a single cell is minimal. Nanopipette-based electrochemical
biosensing has enabled the detection of subcellular processes
and intracellular molecules with high sensitivity and spatial
resolution because of the limited space at the tip of the nano-
pipette [18]. Besides, the versatility in the surface chemical
modification to the nanopipette has increased the stability,
safety, efficiency, and diversity of the detected species [19,
20]. However, the manually targeted intracellular electro-
chemical sensing for single cells is limited in efficient probing
of subcellular processes of the heterogeneous cell populations.
In addition, the manual intracellular microoperation is time-
consuming and has low repeatability and throughput. Hence,
automated and high-throughput sensing systems are of scien-
tific interest to probe intracellular processes with high statisti-
cal importance.

Robotic cell manipulation technologies focusing on sus-
pended cells have been developed over the recent years
[21-26]. Compared to the suspended cells, cell detection
and other automated microoperations are difficult for adher-
ent cells since they are smaller and irregularly shaped [27,
28]. Till now, several groups have achieved semiautomated
high-throughput microinjection for adherent cells. By using
the semiautomated microinjection systems, both the micro-
injection pipette and microscope stage are motorized, and
microinjection on localized sites is realized by computer
mouse clicking [28, 29]. However, manual cell identification
(without cell detection capabilities) is still tedious to obtain
sufficient data of statistical significance. Pan et al. designed
a fully automated high-productivity microinjection system
with the capability of cell detection based on fluorescence
imaging [30]. However, the fluorescence imaging may lead
to cell damage and introduce disturbance to intracellular
electrochemical sensing.

Efficient automatic cell targeting and nanopipette tip
positioning have been the main features for the development
of fully automated microoperation systems. Dewan et al.
achieved cell detection based on the k-means clustering
method [27]. Patino et al. realized nucleus location by a fully
convolutional network [31]. The performance of these cell
detection algorithms strongly depends on clear cell features
in the images. Generally, defocusing will increase the gray-
scale difference between foreground (cells) and background
by reducing the high-frequency components of the image,
thus simplifying the cell detection [32]. However, the defo-
cused plane determined by experience cannot ensure the
maximum difference between foreground and background,
leading to a poor cell detection rate. On the other hand,
automatically locating the tip of the nanopipette is critical
to avoid any damage to the tip. Youoku et al. [33] and Liu
et al. [34] utilized curve fitting algorithm and quadtree
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recursive algorithm as search strategies to automatically
focus the tip of the micropipette. However, both methods
require a long moving distance and are prone to tip damage
when the tip is driven to the focused plane of adherent cells
due to overshooting, which limits the application when the
cells in the background have been focused. More specifically,
the focusing process of the nanopipette tip can only be done
manually to avoid the tip damage when the stage carrying
the cells has no z-axis freedom and the objective lenses of
the microscope are not motorized. Apart from these, the rel-
ative vertical positioning between the tip of the micropipette
and the cell (proximity detection) is required for automated
intracellular sensing because of the highly varied thickness of
the adherent cells [29].

Here, we propose an automated intracellular electro-
chemical sensing system for adherent cells. The number of
cell contours (NOCC) obtained from a cell segmentation
algorithm was used as the focus algorithm to determine
the defocused plane for cell detection. The cell segmentation
algorithm integrates the triangle thresholding algorithm and
the Otsu thresholding algorithm, which guarantees the
unimodality features of the NOCC-based focus curve. The
automated cell/nucleus detection is achieved by automatic
z-axis positioning of adherent cells to reach a defocused
plane with the maximal NOCC. Besides, the normalized cor-
relation coeflicients during template matching at different z
-axis positions were utilized as the focus algorithm to auto-
focus the nanopipette tip without overshooting and tip dam-
age. The nanopipette tip detection was achieved by defining
a region of interest containing a defocused nanopipette tip to
avoid the time-consuming calculation during template
matching and the false matches for cells or impurities. A rel-
ative height between the nanopipette tip and the cell surface
was detected for the cells in the defocused plane based on
ion current feedback, which can avoid the deformation of
the soft cells. A nanopipette sensor was fabricated and
employed for the specific detection of intracellular ROS.
The experimental results demonstrate the high consistency
and efficiency of the automatic intracellular electrochemical
sensing by the developed system.

2. Materials and Methods

2.1. Fabrication of Nanopipettes as Sensing Probes. Due to
the high spatiotemporal resolution and low invasiveness,
nanopipette has been a highly versatile platform for precise
microinjection [28, 30], nanobiopsies [35, 36], scanning
electrochemical microscopy [37], and monitoring chemi-
cal/biochemical changes within a single cell [20]. The fabri-
cation of nanopipettes utilizes a laser pipette puller (Glass
puller, P-2000, Sutter Instruments) to convert glass capil-
laries into nanopipettes by following sequential heating
and pulling process, as shown in Figure 1(a). Nanopipettes
of varying diameters with tip diameters as small as 100 nm
can be obtained. Nanopipette-based nanosensor was
achieved by sequential electron beam evaporation of tita-
nium (Ti) layer and platinum (Pt) layer, where the Ti layer
enhances the adhesion between the glass nanopipette and
Pt layer. Atomic layer deposition (ALD) was used to deposit
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FIGURE 1: The automated system for intracellular electrochemical sensing. (a) Schematic showing the preparation of nanopipette-based
electrochemical nanosensor. (b) Schematic of the automated robotic platform for intracellular electrochemical sensing. (c) A photograph
showing the automated positioning of the nanopipette relative to the cell surfaces in the culture dish. (d) Morphological characterization

of the nanopipette by electron beam microscope.

an insulation layer of Al,O; (100nm) for high signal-to-
noise ratio intracellular measurements. Finally, focused ion
beam (FIB) milling was performed to achieve a consistent
tip size and expose the Pt layer for ROS detection. Reactive
oxygen species, consisting of radical and nonradical oxygen
species formed by the partial reduction of oxygen, have been
proved to regulate tumor metastasis and cellular signaling
[38, 39]. In this paper, the automated intracellular detection
of ROS was achieved. The Pt coating on the nanopipette can
catalyze the oxidation reaction of ROS in the cell, where the
oxidation current was detected by an electrochemical work-
station (CHI660E, CH Instruments).

2.2. System Setup. The proposed automated robotic platform
for intracellular electrochemical sensing was composed of the
electrochemical sensing system, visual feedback system, and
motion control system, as shown in Figure 1(b). The electro-
chemical sensing system, which is mainly responsible for sub-
cellular sensing, consists of the electrochemical workstation
and the fabricated nanopipette mounted on a high-precision
micromanipulator. An inverted fluorescence microscope
(Axio Observer 5, ZEISS) with a CMOS camera (acA4096-
40uc, Basler AG, Germany) was used for visual feedback. All
images were taken at a 20 x magnification, and each of the
captured images was resampled from 4096 pixels x 2168

pixels to 1024 pixels x 542 pixels for faster image processing.
The motion control system incorporates two independent
four degrees-of-freedom (DOF) micromanipulators (4Mp-4,
Sensapex, Finland) with a travel range of 20 mm, a motion res-
olution of 5nm, and a maximum speed of 5 mm/s along each
degree. Figure 1(c) shows the automated positioning of the
nanopipette relative to the cell surfaces in the culture dish.
The nanopipette was mounted on one of the micromanipula-
tors. Figure 1(d) shows the microstructure of the nanopipette
under an electron beam microscope. The other micromanipu-
lator was used for holding the cell dish. A host computer
(CPU: Inter® Core™ i7-8550U) was used to automate the
motion control with visual feedback.

The automated detection of adherent cells was evaluated
on human umbilical cord vein endothelial cells (HUVEC)
and NIH/3T3 cells. In a typical operation, the cell culture
dish and nanopipette were mounted on the left and right
micromanipulators, respectively. The adherent cells were
moved along the z-axis to reach the best defocused image
plane for cell detection by implementing the NOCC-based
focus algorithm. Then, the target sites for cell penetration
were identified on the geometrical center of each detected
cell contour, and the overall penetration path was optimized.
Then, the nonovershoot nanopipette tip positioning was per-
formed to focus and detect the nanopipette tip. Later, the



accurate relative vertical position of the nanopipette and the
cell surface was obtained based on the ion current feedback.
Finally, the nanopipette was controlled to penetrate the cells,
and intracellular ROS detection was achieved by following
the shortest path.

2.3. Cell Detection and Positioning. Adherent cells are mostly
transparent and exhibit fewer features in the focus plane,
which makes it difficult to segment the cells. According to
Zernike’s phase-contrast method [40], the image of a trans-
parent object can be more explicit for cell detection when
slightly defocused under the optical microscope [41]. The
contrast of the defocused image of transparent and adherent

cells (C(p)) can be written as

c(ﬁ) = 1(131)70—10 =AfAnv2h(ﬁ), (1)

where p and I(p) represent pixel coordinates and the pixel
intensity corresponding to the coordinates, respectively. I, is
the image intensity of the background. Af is the defocused dis-
tance, which is the distance between the imaging plane and the
ideal focus plane along the z-axis. An represents the refractive

index difference between the cell and the medium. h(p) is
the thickness profile of the cell at the corresponding coordi-
nates. The image contrast is proportional to the defocusing dis-
tance Af. Thus, slightly defocusing the image is essential to
bring the transparent adherent cells into view. However, the
defocused plane selected based on experience cannot maximize
the difference between foreground and background, which
leads to a poor detection rate of cells. Here, we design a
NOCC-based focus algorithm to find the optimal defocused
distance by maximizing the detection rate of nonrepeatedly
labeled cells. Algorithm 1 illustrates the procedure of the
NOCC-based focus algorithm, and Figure 2 shows the interme-
diate process.

To avoid the detection of one cell as multiple discrete
labeled regions, the original image I (Figure 2(a)) was blurred
to the image I, by a Gaussian function G(x,y). Then, the
image I; was transformed into grayscale image I,
(Figure 2(b)). Next, an image segmentation algorithm incor-
porating the triangle thresholding algorithm and the Otsu
thresholding algorithm was utilized. The number of cell con-
tours based on the blob analysis after segmentation was used
as the focus algorithm. The segmentation algorithm keeps
NOCC zero when the cell defocuses negatively and extracts
cell regions when the cell defocuses positively. In the triangle
thresholding method, a line is constructed between the gray
histogram peak and the farthest end of the histogram. In our
study, the binarization threshold T, obtained by the Otsu
thresholding algorithm was compared with the gray level
T yeax. Of the gray histogram peak to determine the constructed
line for the triangle thresholding algorithm. When the thresh-
old Ty, is greater than T, the constructed line is connected
between the peak of the gray histogram and the brighter end of
the histogram. The binary image I, can be obtained by the tri-
angle thresholding method, and the connected background
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region with zero number of cell contours was obtained. When
the threshold Ty, is smaller than T\, the binarization I,
(Figure 2(c)) was obtained by the Otsu thresholding algorithm.
The developed image segmentation algorithm can shield the
effect of the increase of the grayscale difference during negative
defocusing and results in a high cell detection rate. Then, the
binarized image was denoised by morphological close opera-
tion (I g, (Figure 2(d))). I 4o Was theninverted as ;. The cell
contours C_y, (Figure 2(e)) were extracted by the OpenCV
function findContours(), and the number of cell contours
NOCC was determined. Finally, the penetration sites Mg
were identified by centroid extraction as shown in Figure 2(f).

2.4. Detection and Positioning of Nanopipette Tip. In a typical
procedure, the region of interest (ROI) of the nanopipette tip
during the autofocusing was extracted to reduce the time con-
sumption during template matching by thresholding and find-
ing contours [42]. The detection of the nanopipette tip needs
to avoid failure detection where the impurities or cells in the
background are more notable than the nanopipette tip when
the nanopipette tip is far away from the focus plane. As shown
in Figure 3, the initial image (Figure 3(a)) was enhanced by
gamma transformation to make the features of the nanopip-
ette tip more obvious (Figure 3(b)). Then, the image was
binarized by the Otsu thresholding method and denoised by
the morphological close operation (Figure 3(c)). Since the tip
area is darker than the background, the image was inverted
(Figure 3(d)), and the longest contour of the nanopipette tip
was obtained (Figure 3(e)). The contour of the nanopipette
tip was fitted by the OpenCV function approxPolyDP(), which
conforms to a triangular contour (Figure 3(f)). The presence
of a triangular feature is used as a reference for the successful
detection of the nanopipette tip. If the fitted contour is trian-
gle-shaped, the vertex of the triangle will be used as the tip
of the nanopipette. To further analyze the weak feature of
the nanopipette quantitatively, the relationship between defo-
cus distance and the successful detection of the nanopipette tip
was studied. It was found that the tip detection algorithm
could successfully detect the nanopipette tip when the defocus
distance is smaller than approximately 110 pym. If the fitted
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FiGURrk 2: The image processing for cell detection. (a) Original image. (b) Image after Gaussian blurring operation. (c) Image binarization.
(d) Image denoise by morphological close operation. (e) Contours of cells. (f) Identification of cell penetration sites overlaid on the

original image.

contour is not triangle-shaped, the tip moves continually
towards the focus plane. Finally, the tip of the nanopipette
can be obtained (Figure 3(g)).

The depth from focus (DFF) method and the depth from
defocus (DFD) method are two typical passive autofocusing
methods that are currently studied. The DFD method is not
suitable for this study because the initial defocused depth of
the nanopipette is larger than the working range of the DFD
method. The feature of the nanopipette is too weak to be recog-
nized. Besides, the DFF method lacks a prediction mechanism
of the tip-sample distance to avoid any collision damage to the
tip of the nanopipette. Thus, we propose a nonovershoot auto-
focusing method based on template matching to realize the
three-dimensional tip positioning of the nanopipette.

The template matching using normalized correlation
coeflicient was used to achieve nonovershoot tip autofocus-
ing. When the tip of the nanopipette was moved downwards
to the focus plane of adherent cells, the image I was com-
pared with the precollected template image of the focused
nanopipette tip T. The similarity S(x, ) of these two images
was calculated by

S(x,y) = Zx’,y’<T,(x”y2’)'Il<x+xl’y+y,>) :
\/Zx',y'T'(x'w') oyl (x+x'y+y)

>

(2)

where

T’(x',y’) = T(x',y') - ﬁ . z T(x",y”),
x",y"

I'<x+x',y+y') :I(x+x’,y+y')
1
- Z I<x+x",y+y").
x’/)y’r

(3)

In the above equations, w and / are the width and height
of the template image, respectively. The tip of the nanopip-
ette can accurately stop above the focus plane when reaching
an appropriate threshold of the similarity.

2.5. Proximity Detection between the Nanopipette and the
Cell Surface. The nonovershoot autofocusing of the nanopip-
ette tip cannot accurately determine the relative vertical
height between the nanopipette tip and the top surface of
the cell. Here, a proximity detection based on ion current
feedback was used to determine the relative vertical posi-
tions between the nanopipette tip and the cell surface. The
schematic for proximity detection is shown in Figure 4. An
Ag/AgCl reference electrode (RE) was immersed in the
phosphate buffer solution (PBS). The Ag/AgCl working elec-
trode (WE) was inserted into the nanopipette backfilled with
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FIGURE 3: Automated tip detection and positioning. (a) Original
image. The scale bar is suitable for the rest of the images. (b)
Image after gamma transformation. (c) Image binarization. (d)
Image obtained after denoising and inversion. (e) Contour
extraction. (f) Contour fitting. (g) Tip detection.

PBS solution. When the nanopipette approaches the cell sur-
face, the ion current (I) that flows between the WE and RE
begins to decrease because the nanopipette tip is gradually
occluded. The relationship between nanopipette tip-cell dis-
tance (d) and ion current can be described as

U (3/2) In (v, /1)), -l
I(d) = =] 1 R 4
(d) »+ R, < " hd ) (4)

where I(d) represents the distance-dependent ion current
and U is the applied potential between the WE and RE
[43]. Besides, the resistance of the nanopipette R, (depends
on the geometry of the pipette and the conductivity of the
electrolyte solution) and the access resistance R, (depends
on the conductivity of the electrolyte solution and the gap
formed between the tip and interface) form the total resis-
tance between the WE and RE. The steady-state ion current
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(I,) can be measured only depending on (R,) resistance,

while the nanopipette tip is away from the sample surface.
r; and r, are the internal radius and the outer radius of the
nanopipette tip, respectively. r, is the internal radius of the
nanopipette base, and / is the nanopipette height. As the
nanopipette tip moves closer to the cell surface, the access
resistance (R,) increases quickly and hence decreases the
ion current. The cell-nanopipette tip proximity detection is
a noncontact approach, which can avoid the deformation
of the soft cells. Besides, the noncontact approaching action
to the cell can avoid unintentional mechanotransduction
processes, where physical cues may induce changes in intra-
cellular biochemistry and gene expression [44, 45]. Besides, a
maximum protection or contamination avoidance of the
nanopipette tip can be ensured during the whole automated
electrochemical sensing process by the robotic nanopipettes.
In the empirical practice of the automated nanopipette prob-
ing, such as scanning ion conductance microscopy, the posi-
tion of z-dimension actuator is recorded as the height of the
sample at the point where the current reduction of 0.25-1%
is identified [46-48]. To further avoid the false identification
by current fluctuation due to measurement error and envi-
ronmental disturbances, a 2% current reduction was set as
the threshold to guarantee high resolution and stable prox-
imity detection, which is still a noncontact approaching pro-
cess between the nanopipette tip and sample [49].

3. Results and Discussions

3.1. z-Axis Positioning of Adherent Cells. Automatic z-axis
positioning of the adherent cells is of great importance for
cell detection with a high positive rate. To evaluate the per-
formance of automatic z-axis positioning, the NOCC-based
focus algorithm was experimentally compared with the other
four kinds of traditional focus algorithms (Tenengrad [50],
Energy [51], Brenner [52], and Variance [50]). The different
focus curves were normalized, as shown in Figure 5. Several
quantitative metrics (accuracy, range, the number of false
maxima, and noise level) were used to evaluate the
performance.

The focus plane of adherent cells determined by tradi-
tional focus algorithms renders cell detection difficult. Here,
the successful rate of cell detection was used to evaluate the
accuracy of the proposed focus algorithm, where the best
defocused plane corresponds to the maximal NOCC. The
traditional range measures the distance between two local
minima containing a global maximum. It is easier to search
for an accurate maximum with a large distance range. How-
ever, the focus plane of adherent cells corresponds to the
local minimum of the traditional focus algorithm. Thus,
the distance between the two neighboring maxima of the
focus plane was used as the range to evaluate the perfor-
mance of the traditional focus algorithms. The number of
false maxima indicates the number of local maxima on the
focus curve. The noise level is represented by the sum of
the squares of the second derivatives of the focus curve. In
this study, the ideal range and number of false maxima are
300 and 0, respectively. The quantitative comparison of dif-
ferent focus algorithms is shown in Table 1.
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TaBLE 1: Quantitative comparison of different focus algorithms.

Metrics Ideal NOCC-based method Energy Tenengrad Brenner Variance Triangle Otsu
Range (ym) 300 247 12.5 13.5 13 33 60.5 42.5
False max 0 0.6 8 2.7 4.6 1.6 6.2 8.4

In the experiment, five sets of 60 images were collected
with a step size of 5um to evaluate the focus algorithms
and cell detection for HUVEC and NIH/3T3 cells. The eval-
uation results are shown in Figure 5(a). The traditional focus
algorithms lack unimodal characteristics and form local min-
ima during cell focusing, which makes the z-axis positioning
challenging for adherent cells. In contrast, the maximum of
the NOCC-based focus curve corresponds to a defocus plane
that enhances the gray difference between the cell and the
background, which can better detect the distinct cell regions

and guarantee a high detection rate for cell/nucleus. As seen
in Figure 5(a), the maximum of the Variance algorithm is
close to that of the NOCC-based focus algorithm. However,
only the NOCC-based focus algorithm can avoid the local
maximum in the range of 0-165 ym and presents unimodal
characteristics. The feature indicates an excellent antinoise
ability of the NOCC-based focusing method.

Besides, unimodal focus curves cannot be obtained by
the triangle thresholding method or the Otsu thresholding
method, as shown in Figure 5(b). In the range of 165-



230 pum, the characteristics of the NOCC-based focus curve
were consistent with those based on the Otsu method
because the same algorithm was used. The inconsistency in
Figure 5(b) is caused by the normalization operation of the
focus curve. However, the triangle thresholding and Otsu
threshold methods cannot guarantee the unimodal charac-
teristics of the focus curve because the negative defocusing
can also increase the grayscale difference between the fore-
ground (cells) and background in the range of 0-100 ym.
In the experiment, the maximal number of detected cells
based on the triangle thresholding method (84) is signifi-
cantly lower than that obtained by the NOCC-based focus
algorithm (170).

As shown in Table 1, the range of the traditional focus
algorithms is less than the ideal range (300 ym). The result
indicates that the positioning range satistying the unimodal
property is small, which causes the failure in autofocusing
of the adherent cells. The range of the NOCC-based focus
algorithm is significantly larger than that of other focus algo-
rithms. Meanwhile, the number of false maxima of the
NOCC-based method is far less than that of other focus
algorithms. The range of the NOCC-based method is still
less than the ideal value because of noise. However, the noise
level of the NOCC-based focus algorithm (0.006) is less than
the allowable noise level in the dynamic curve fitting search
strategy (0.648) with a corresponding variance of 1 [26],
which demonstrates that the global maximum of the
NOCC-based focus algorithm can be searched accurately.

3.2. Cell Detection. The efliciency of cell detection was eval-
uated with HUVEC and NIH/3T3 cells under the defocused
plane. The ellipsoidal-shaped nucleus from a focused image
was used as the ground truth, as shown in Figure 6. The cell
detection was evaluated by two quantitative metrics: hit ratio
and error rate. The hit ratio defines the number of correctly
detected cells out of the total number of cells. The error rate
equals the percentage of the number of off-target points and
multiple labeled cells over the total cell number. The quanti-
tative results were presented in terms of true-positive rate
(TPR) and false-positive rate (FPR), which are expressed as

TP
TPR= S v
(5)
FP
FPR= —
TP + FN

where TP represents the number of accurately identified
cells and FN indicates the number of undetected visible cells.
The sum of TP and FN represents the total cells in the field
of vision. FP refers to the falsely detected cells. In an ideal
case, the TPR and FPR are 100% and 0%, respectively, where
all visible cells are detected.

The experiments were performed based on an evaluation
set made of 10 images containing a total of 755 HUVEC cells
and 593 NIH/3T3 cells. Cells with invisible nucleus features
at the far end of the image were not counted. The TPR of
HUVEC and NTH/3T3 cells was 97.44% and 93.47%, respec-
tively. The lower TPR for NIH/3T3 cells was caused by their
irregular shapes and overlapping. Compared with the cell

Cyborg and Bionic Systems

Ellipsoidal shaped

Identified sit
Pt — Identified sites

25 ym

FiGure 6: The ellipsoidal-shaped nucleus as the ground truth for
cell detection.

detection rate reported by Pan [30] and Becattini [32], the
TPR by the proposed method, as shown in Table 2, is higher,
which shows better cell/nucleus identification. Hence, the
defocused plane determined by the NOCC-based focus algo-
rithm is more reliable for cell detection. The lower FPR indi-
cates a lower probability of incorrect cell labeling and cell
penetration. In addition, the average cell number in the field
of vision was 129.8 in this study, which is 4.2 times of the cell
number in Pan’s study, which significantly improves the effi-
ciency of intracellular electrochemical sensing. The cell posi-
tioning algorithm is also suitable for intracellular
electrochemical sensing of multiple cells. However, the cell
positioning algorithm, by determining the cell contours,
can only localize the nucleus, thus hindering intracellular
electrochemical analysis to the other regions inside the living
cell, such as the cytoplasm.

3.3. Nonovershoot Tip Positioning. The nonovershoot tip
positioning algorithm was evaluated by giving five different
similarity thresholds under the background of the defocused
cells. The tip positioning error was obtained by referring to
the coordinates given by the micromanipulators, and the
95% confidence interval was used as the error bar, as shown
in Figure 7. When the similarity threshold is 0.9, the z-axis
positioning error is —11.07 + 1.24 um, and the tip stops at
11.07 ym before the focus plane. When the threshold is
0.92, the z-axis positioning error is 0.88 +2.00 um, and
the tip may be stopped on either side of the focus plane.
The tip will pass over the focus plane with a z-axis posi-
tioning error of 8.50+1.13ym when the threshold is
0.94. The tip positioning goes from nonovershooting to
overshooting with the increase of similarity threshold.
One may raise the question of why the similarity of the
template matching during overshooting is higher than that
of the focused plane. That is because the template image of
the nanopipette tip composed of a black tip area and white
background can lead to a higher similarity when the nano-
pipette tip is over the focus plane slightly. Compared with
the tip autofocusing of nanopipettes by detecting the body
firstly, the proposed nonovershoot tip positioning method
can avoid tip damage.

In addition, the robustness of the nonovershoot tip posi-
tioning algorithm was separately evaluated on the Pt-coated
nanopipette for electrochemical sensing (E-capillary) and
the pristine glass nanopipette for microinjection (M-capil-
lary) under the focused cell background (F-cells) and the
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TaBLE 2: Comparison of cell detection by different methods.
Methods Cell line TP EN FP TPR FPR
Proposed method HUVEC 145 3.8 11 97.44% 7.39%
Proposed method NIH-3T3 114.6 8 9.6 93.47% 7.83%
Average HUVEC, NIH-3T3 129.3 59 10.3 95.65% 7.59%
Pan [30] MC3T3-El 30.6 8.9 34 89.95% 26.20%
Becattini [32] CHO-K1, HEK \ \ \ 78.6% 18%
15 nanopipette-based sensor that is selective and sensitive to tar-
geted analytes. Thus, the selectivity of the Pt for intracellular
10+ T electrochemical sensing of hydrogen peroxide (H,0,) was
g T I evaluated by using a Pt working electrode with a 1 mm diam-
w5 1 eter and an Ag/AgCl reference electrode. The working elec-
g trode and reference electrode were placed in the PBS
g 0 —t solution, and the current was recorded. As shown in
% - Figure 8(b), the current increased rapidly and then decreased
E 5] T slowly to 1.8 yuA when H,O, was added to the solution. In
N 1 addition, a sudden overshoot of current was observed when
; 0 adding different amino acids such as Thr, Ala, Phe, Val,
g I Cys, Gly, Ser, Arg, His, and Tyr. However, the current was
finally stabilized to 1.8 A, demonstrating that the Pt micro-
~151 electrode is capable of selective quantification of ROS. More-
T T T T T over, the current recorded against different ionic disruptors
0.90 0.91 0.92 0.93 0.94 further proves the selectivity of the Pt (Figure 8(c)).
Similarity threshold Finally, the automated intracellular electrochemical

Ficure 7: The nonovershoot positioning error with different
similarity threshold.

TaBLE 3: Results of the nonovershoot tip positioning.

Condition z-axis error (ym)

M-capillary and F-cells -1.07+£1.18
M-capillary and D-cells -1.95+1.55
E-capillary and F-cells -1.37£0.97
E-capillary and D-cells -4.44+1.59

defocused cell background (D-cells). The experimental
errors were represented by 95% confidence intervals (CI),
as shown in Table 3. The z-axis positioning error of M-
capillary is -1.07 ym and -1.95um, where the similarity
threshold was set to 0.85 (less than 0.92) because of the
low contrast of the transparent M-capillary tip. For the con-
dition of E-capillary, the threshold is 0.91. The defocused
cell background avoids the interference of impurities in the
focusing image, advancing the stop position of the tip by
3.07 ym. In conclusion, the nonovershoot tip positioning
algorithm can be used for the opaque and pristine nanopip-
ettes under the focused and defocused cell background.

3.4. Intracellular Electrochemical Sensing. To quantitatively
understand the function of biological systems, the electro-
chemical monitoring of intracellular ROS requires a

sensing of ROS was performed by automated cell detection,
tip positioning, cell penetration, and nanopipette retraction
from the cell. Two types of cells, namely, zebrafish embryos
and human breast cancer cells (MCF-7), were selected for
the study. Due to the small volume of adherent cells
(MCF-7), 30 minutes of cellular inflammation stimulation
was implemented by adding 1.0 mg/mL phorbol myristate
acetate (PMA) to increase ROS before detecting the intracel-
lular ROS level. Figure 8(d) shows that the relationship
between the concentration of H,O, and current was quanti-
fied by adding different concentrations of H,O, in PBS solu-
tion. The currents increased with the concentration of H,O,,
and current amplitude was proportional to the concentration
of hydrogen peroxide within the range from 0.08 mM to
0.8 mM. In addition, the burst signal during penetration with
a band-pass filter demonstrates intracellular ROS sensing for
zebrafish embryo and MCF-7 cell, respectively, as shown in
Figures 8(e) and 8(f). The variation of ROS signals during
the penetration of both types of cells can be observed clearly,
which indicates that the fabricated nanopipette sensor is
capable of intracellular ROS detection and demonstrates the
remarkable capabilities of automated intracellular electro-
chemical sensing. As the next step, the automated intracellu-
lar electrochemical sensing will leap forward in the
advancement of multiple intracellular signal detections and
manipulation of cell organelles based on real-time measure-
ments of intracellular activities. Besides, automated intracel-
lular electrochemical sensing may provide a reliable
approach for the detection of a low concentration of bio-
markers and the dynamic analysis of intracellular content
in living single cells.
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FiGURE 8: The intracellular ROS detection. (a) Optical images of the nanopipette approaching to the cell, cell penetration, and nanopipette
retraction. (b) Current recordings of ROS when different kinds of amino acids are added to the solution. (c) Current recordings of ROS
when the Pt electrode is immersed in the solution of different ions. (d) Current response with different concentrations of hydrogen
peroxide. (e) The current recording of ROS for zebrafish embryos with band-pass filtering. (f) The ROS current detection from MCEF-7

cell with band-pass filtering.

4. Conclusion

In this study, our robotic intracellular electrochemical
sensing for adherent cells presents a simple, inexpensive,
and nondestructive approach for living single cells with a
high spatial resolution at a subcellular level. The developed
system can accurately achieve cell detection, three-
dimensional nonovershoot positioning of the nanopipette
tip, cell approaching and proximity detection between nano-
pipette tip and cell surface, and cell penetration and detec-
tion of the intracellular reactive oxygen species (ROS). A
focus algorithm based on the number of cell contours is pro-
posed for automatic z-axis positioning of adherent cells, in
which a cell segmentation algorithm integrating the triangle
thresholding algorithm and the Otsu thresholding algorithm
is used to guarantee the unimodality features of the focus
curve. The automated cell/nucleus detection was achieved
in a defocused plane with the maximal number of cell con-
tours. The cell detection was performed on HUVEC and
NIH/3T3 cells, which demonstrated an average of 95.65%
cell targeting rate and the unimodal features of the proposed
focus algorithm. Compared with the defocused plane deter-
mined by experience [32], our results prove that the defo-
cused plane determined based on the NOCC-based focus
algorithm can significantly improve the cell detection rate,
which is significant to improve the efficiency of high-

throughput cell sensing. The three-dimensional nonover-
shoot tip positioning of the nanopipette was realized based
on template matching, and the experimental results demon-
strated that the nonovershoot tip positioning of the Pt-
coated and pristine glass nanopipettes can be achieved under
the focused and defocused cell background. Besides, ion cur-
rent signal was used to detect the relative vertical positions
between the nanopipette tip and the cell without cell defor-
mation. The cell penetration and electrochemical detection
of ROS were evaluated by human breast cancer cells and
zebrafish embryo cells, and the variation of ROS signals
indicates the capability of intracellular ROS detection. The
nanopipette-based electrochemical sensing system makes it
possible to detect the intracellular ROS in tens to hundreds
of cells, demonstrating the potential for high-throughput
intracellular sensing. Besides, the automated nanopipette-
based electrochemical sensing system can achieve spatial
manipulation of cells and organelles with self-sensing
feedback when coupled with other nanopipette-based
micromanipulation techniques, such as dielectrophoretic
micromanipulation for selection, isolation, and positioning
of cells and organelles. The proposed system will also
have important applications in lineage tracing for develop-
mental biology and high-resolution localization of organelles
in living single cells for investigating the specific causes of
diseases and the development of novel therapeutics.
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