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Abstract 

Background:  The three-dimensional (3D) structure of chromatin has a massive effect 
on its function. Because of this, it is desirable to have an understanding of the 3D struc-
tural organization of chromatin. To gain greater insight into the spatial organization 
of chromosomes and genomes and the functions they perform, chromosome con-
formation capture (3C) techniques, particularly Hi-C, have been developed. The Hi-C 
technology is widely used and well-known because of its ability to profile interactions 
for all read pairs in an entire genome. The advent of Hi-C has greatly expanded our 
understanding of the 3D genome, genome folding, gene regulation and has enabled 
the development of many 3D chromosome structure reconstruction methods.

Results:  Here, we propose a novel approach for 3D chromosome and genome struc-
ture reconstruction from Hi-C data using Particle Swarm Optimization (PSO) approach 
called ParticleChromo3D. This algorithm begins with a grouping of candidate solu-
tion locations for each chromosome bin, according to the particle swarm algorithm, 
and then iterates its position towards a global best candidate solution. While moving 
towards the optimal global solution, each candidate solution or particle uses its own 
local best information and a randomizer to choose its path. Using several metrics to 
validate our results, we show that ParticleChromo3D produces a robust and rigorous 
representation of the 3D structure for input Hi-C data. We evaluated our algorithm on 
simulated and real Hi-C data in this work. Our results show that ParticleChromo3D is 
more accurate than most of the existing algorithms for 3D structure reconstruction.

Conclusions:  Our results also show that constructed ParticleChromo3D structures are 
very consistent, hence indicating that it will always arrive at the global solution at every 
iteration. The source code for ParticleChromo3D, the simulated and real Hi-C datasets, 
and the models generated for these datasets are available here: https://​github.​com/​
Oluwa​dareL​ab/​Parti​cleCh​romo3D

Keywords:  Hi-C, 3D chromosome structure, Particle Swarm Optimization, 
Chromosome conformation capture, 3D genome
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Background
Understanding the three-dimensional (3D) architecture of the genome is essential for 
understanding a variety of biological processes such as gene expression, gene stabil-
ity and regulation, and DNA replication [1, 2]. To aid the genome architecture study, 
Chromosome Conformation Capture (3C) and its derivative technologies have been 
extremely beneficial in defining the 3D structure of the genome [1]. Because of its sys-
tematic nature, 3C’s biochemical technique to investigating DNA’s topography within 
chromatin has outperformed traditional microscopy tools such as fluorescence in  situ 
hybridization (FISH) in aiding the 3D genome structure study [2]. It is worth noting that 
microscopy approaches are sometimes used in conjunction with 3C for verifying the 3D 
structure of a chromosome or genome [1]. 3C was first described by [3] Dekker et al. 
(2002). Since then, more technologies were developed [4], such as the Chromosome 
Conformation Capture-on-Chip (4C) [5], Chromosome Conformation Capture Carbon 
Copy (5C) [6], Hi-C [7], Tethered Conformation Capture (TCC) [8], and Chromatin 
Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) [2, 9]. These deriva-
tive technologies were designed to augment 3C’s in the following areas, measure spatial 
data within chromatin, increase measuring throughput, and analyze proteins and RNA 
within chromatin instead of just DNA. Lieberman-Aiden et al., 2009 [7] designed high-
throughput chromosome conformation capture technology (Hi-C) as a minimally biased 
"all vs. all" approach. Hi-C works by injecting biotin-labeled nucleotides during the liga-
tion step [4]. Hi-C provides a method for finding genome-wide chromatin Information 
Frequency (IF) data in the form of a contact matrix [1]. In addition, the Hi-C datasets 
provides important information for visualizing regulatory element interactions at spe-
cific loci or depicting the hierarchical organization of nuclear genome structure, which 
are more observable in a 3D structure.

Hi-C analysis doubtlessly introduced great benefit to 3D genome research— they 
explain a series of events such as genome folding, gene regulation, genome stability, and 
the relationship between regulatory elements and structural features in the cell nucleus 
[2, 7, 10]. Importantly, it is possible to glean insight into chromatin’s 3D structure using 
the Hi-C data. However, to use Hi-C data for 3D structure modeling, some pre-pro-
cessing is necessary to extract the interaction frequencies between the chromosome or 
genome’s interacting loci [11]. This process involves quality control and mapping of the 
data [12]. Once these steps are completed, an IF matrix, or called contact matrix or map, 
is generated. An IF matrix is a symmetric matrix that records a one-to-one interaction 
frequency for all the intersecting loci [7, 10]. The IF matrix is represented as either a 
square contact matrix or as a three-column sparse matrix. Each cell has genomic bins 
within these matrices that are the length of the data’s resolution representing each cell 
[12]. Hence, the higher the resolution (5 KB), the larger the contact matrix’s size. And 
similarly, the lower the resolution (1 MB), the smaller the contact matrix’s size. Next, this 
Hi-C data is normalized to remove biases that next-generation sequencing can create 
[12, 13]. An example of this type of bias would be copy number variation [13]. Other sys-
tematic biases introduced during the Hi-C experiment are external factors, such as DNA 
shearing and cutting [10]. Today, several computational algorithms have been developed 
to remove these biases from the Hi-C IF data [13–19]. Once the Hi-C IF matrix data is 
normalized, it is most suitable for 3D chromosome or genome modeling. Some tools 
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have been developed to automate these Hi-C pre-processing steps; they include Genom-
eFlow [20], Hi-Cpipe [21], Juicer [22], HiC-Pro [23], and HiCUP [24].

To create 3D chromosome and genome structures from IF data, many techniques can 
be used. Oluwadare, O., et  al. (2019) [10] pooled the various developed analysis tech-
niques into three buckets, which are Distance-based, Contact-based, and Probabil-
ity-based methods. The first method is a Distance-based method that maps IF data to 
distance data and then uses an optimizer to solve for the 3D coordinates [12]. This type 
of analysis’s final output will be (x, y, z) coordinates [12]. An advantage of Distance-based 
methods is that they are unambiguous in their results and because of this the relative 
accuracy of algorithms can be easily compared [10]. This unambiguity helps make dis-
tance-based algorithms useful for managing a large range of modeling problems with dif-
ferent resolutions and noise thresholds [10]. However, the difficulty is picking out how to 
convert the IF data and which optimization algorithm to use [10]. The distance between 
two genomic bins is often represented as Distancei,j = 1/(IF i,j

α) [10, 11]. In this approach 
IF i,j is the number of times two genomic bins had contact, and α is a factor which is used 
for modeling, called the conversion factor. This distance can then be optimized against 
other genomic bins’ other distance values to create a 3D model. Several methods [10] 
belong in this category include, ChromSDE [25], AutoChrom3D [26], Chromosome3D 
[27], 3DMax [28], ShRec3D [29], LorDG [30], InfMod3DGen [31], HSA [32], ShNeigh 
[33]. The second classification for 3D genome structure modeling algorithms from IF 
data is Contact-based methods. This technique uses the IF data directly instead of start-
ing by converting the data to an (x, y, z) coordinate system [10]. One way to model this 
data is with a gradient descent/ascent algorithm [10]. This approach was explored by 
Trieu T, and Cheng J., 2015 through the algorithm titled MOGEN [34]. MOGEN works 
by optimizing a scoring function that scores how well the chromosomal contact rules 
have been satisfied [34]. This method has a strength in its scalability [10, 34]. Scalability 
is especially important for ensemble models [10]. Another contact method was to take 
the interaction frequency and use it for spatial restraints [35]. Gen3D [36], Chrom3D 
[37], and GEM [38] are other examples in this category. The third classification is Proba-
bility-based. The advantages of probability-based approaches are that they easily account 
for uncertainties in experimental data and can perform statistical calculations of noise 
sources or specific structural properties [10]. Unfortunately, probability techniques 
can be very time-consuming compared to Contact and Distance methods. Rousseau 
et al., 2011 created the first model in this category using a Markov chain Monte Carlo 
approach called MCMC5C [39]. Markov chain Monte Carlo was used due to its synergy 
with estimating properties’ distribution [10]. Varoquaux. N. et  al., 2014 [40] extended 
this probability-based approach to modeling the 3D structure of DNA. They used a Pois-
son model and maximized a log-likelihood function [40]. Many other statistical models 
can still be explored.

This paper presents ParticleChromo3D, a new distance-based algorithm for chromo-
some 3D structure reconstruction from Hi-C data. ParticleChromo3D uses Particle 
Swarm Optimization (PSO) to generate 3D structures of chromosomes from Hi-C data. 
We chose PSO because of its social and individual qualities, which we hypothesis will 
allow it to optimize sub-sections of the chromosome while conveying its progress to the 
entire swarm. Given the correct topology and coefficient optimization, this advantage 
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could help advance the state of the art for avoiding local minima. The sub-section “Why 
PSO” of the Methods section delves deeper into the rationale for using the PSO algorithm 
and the gap it addresses, especially for distance-based optimization approaches that 
focus on global optimizations. Here, we show that ParticleChromo3D can generate can-
didate structures for chromosomes from Hi-C data. Additionally, we analyze the effects 
of parameters such as confidence coefficient and swarm size (SS) on the structural accu-
racy of our algorithm. Finally, we compared ParticleChromo3D to a set of commonly 
used chromosome 3D reconstruction methods, and it performed better than most of 
these methods. We showed that ParticleChromo3D effectively generates 3Dstructures 
from Hi-C data and is highly consistent in its modeling performance.

Methods
The Particle Swarm Optimization algorithm

Kennedy J. and Eberhart R. (1995) [41] developed the Particle Swarm Optimization 
(PSO) as an algorithm that attempts to solve optimization problems by mimicking the 
behavior of a flock of birds. PSO has been used in the following fields: antennas, bio-
medical, city design/civil engineering, communication networks, combinatorial optimi-
zation, control, intrusion detection/cybersecurity, distribution networks, electronics and 
electromagnetics, engines and motors, entertainment, diagnosis of faults, the financial 
industry, fuzzy logic, computer graphics/visualization, metallurgy, neural networks, pre-
diction and forecasting, power plants, robotics, scheduling, security and military, sensor 
networks, and signal processing [42–46]. Since PSO has been used in so many disparate 
fields, it appears robust and flexible, which gives credence to the idea that it could be 
used in this use case of bioinformatics and many others [47]. PSO falls into the optimi-
zation taxonomy of swarm intelligence [48]. PSO works by creating a set of particles or 
actors that explore a topology and look for the global minimum of that topology [48]. 
At each iteration, the swarm stores each particle’s minimum result, as well as the global 
swarm’s minimum, found. The particles explore the space with both a position and 
velocity, and they change their velocity based on three parameters. These three param-
eters are current velocity, distance to the personal best, and distance to the global best 
[48]. Position changes are made based on the calculated velocity during each iteration. 
The velocity function is as follows [49] in Eqs. (1) and (2):

Then position is updated as follow:

where:

•	 Vn is the current velocity at iteration n
•	 c1 and c2 are two real numbers that stand for local and global weights and are the per-

sonal best of the specific particle and the global best vectors, respectively, at iteration 
n [49].

•	 The R1 and R2 values are randomized values used to increase the explored terrain 
[49].

(1)Vn+1 = w ∗ Vn + c1 ∗ R1 ∗ (Pn − Xn)+ c2 ∗ R2 ∗ (Gn − Xn)

(2)Xn+1 = Xn + Vn+1
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•	 w is the inertia weight parameter, and it determines the rate of contribution of a 
velocity [41].

•	 Gn represents the best position of the swarm at iteration n.
•	 Pn represents the best position of an individual particle.
•	 Xn is the best position of an individual particle at the iteration n.

Why PSO

This project’s rationale is that using PSO could be a very efficient method for optimizing 
Hi-C data due to its inherent ability to hold local minima within its particles. This inher-
ent property will allow sub-structures to be analyzed for optimality independently of the 
entire structure.

In Fig. 1, particle one is at the global best minimum found so far. However, particle 
two has a better structure in its top half, and it is potentially independent of the bottom 
half. Because particle one has a better solution so far, particle two will traverse towards 
the structure in particle one in the iteration n+ 1 . While particle two is traversing, it 
will go along a path that maintains its superior 3D model sections. Thus, it has a higher 
chance of finding the absolute minimum distance value. The more particles there are, 
the greater the time complexity of PSO and the higher the chance of finding the absolute 
minimum. The inherent breaking up of the problem could lend itself to powerful 3D 
structure creation results. More abstractly relative to Hi-C data but in the traditional 
PSO sense, the same problem as above might look as follows (Fig. 2) when presented in 
a topological map.

From Fig.  2, in the nth iteration, particle 1 found a local minimum within this step. 
Since of all the particles, this is the lowest point; particle two will search towards particle 
one with a random chance amount added to its velocity [48, 50, 51]. The random chance 

Fig. 1  PSO potential advantage for structure folding. The figure summarizes the PSO algorithm performance 
expectation on the 3D genome structure reconstruction problem. The figure shows two particles with 
their current local 3D structure representations using example 3D structures. In this illustration, Particle one 
has reached the best global minimum, however Particle two has a better upper half that is theoretically 
independent of the bottom half. The figure depicts the 3D structure that will be created once the PSO 
algorithm traverses particle two towards the structure in particle one in the next iteration
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keeps particle two from going straight to the optimal solution [48]. In this case, particle 
two found the absolute minima, and from here on, all the particles will begin to migrate 
towards particle 2. We will test this hypothesis by analyzing its output with the evalua-
tion metrics defined in the “Methods” section.

In summary, we believe the particle-based structure of PSO may lend itself well to the 
problem of converting Hi-C IF data into 3D models. We will test this hypothesis and 
compare our results to the existing modeling methods.

PSO for 3D structure reconstruction from Hi‑C data

Here we describe how we implemented the PSO algorithm as a distance-based approach 
for 3D genome reconstruction from Hi-C data. This algorithm is called ParticleChro-
mo3D. In this context, the input IF data is converted to the distance equivalent using 
the conversion factor, α , for 3D structure reconstruction. These distances are sometimes 
called the "wish" distances [30] as they are a computational approximation of the 3D spa-
tial distance between the underlying loci or bins in the chromosome. Because they are 
inferred from the input IF distance, they are used as the true representation to evalu-
ate our algorithm’s performance. That is, the closer our algorithm can predict these dis-
tances, the better it is. First, we initialize the particles’ 3D (x,y,z) coordinates for each 
genomic bin or region randomly in the range [-1, 1]. Next, we set the stop parameters for 
our algorithm; these parameters are the maximum number of iterations allowed and the 
error threshold. For each bin, we now calculate a velocity and then update our position. 
We used the sum of squared error function as the loss function to compute chromosome 
structures from a contact map for the evaluation performed in this work. We described 
the impact of using different loss functions in the “Discussion” section.

Finally, following the description provided for the PSO algorithm above, we used the 
PSO to iteratively improve our function until it has converged on either an absolute or 
local minimum. The complete ParticleChromo3D algorithm is presented in Fig. 3. Some 
parameters are needed to use the PSO algorithm for 3D structure reconstruction. This 
work has provided the parameter values that produced our algorithm’s optimal results. 

Fig. 2  PSO particle iteration description. This figure explains the PSO algorithm’s search mechanism for 
determining the best 3D structure following the individual particles’ modified velocity and position in the 
swarm
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The users can also provide their settings to fit their data where necessary. The results 
of the series of tests and validation performed to determine the default parameters are 
described in the "Parameters Estimation" section of the Methods section.

Particle representation

A particle is a candidate solution. A list of XYZ coordinates represents each particle in 
the solution. The candidate solution’s length in the number of regions in the input Hi-C 
data. Each particle’s point is the individual coordinate, XYZ, of each bead. A swarm con-
sists of N candidate solution, also called the swarm size, which the user provides as pro-
gram input. We provide more explanation in the "Parameters Estimation" section below 
for how to determine the swarm size.

Metrics used for evaluation

To evaluate the structure’s consistency with the input Hi-C matrix, we used the met-
rics below. All these metrics are represented in terms of distance. The evaluations were 
performed on the pairwise Euclidean distances between each chromosome locus corre-
sponding to the structure generated by ParticleChromo3D and the pairwise distance of 
the underlying chromosome generated from the input Hi-C data.

Fig. 3  PSO for chromosome and genome 3D Structure prediction. We present a step-by-step illustration of 
the significant steps taken by ParticleChromo3D for 3D chromosome and genome structure reconstruction 
from an input normalized IF matrix



Page 8 of 26Vadnais et al. BioData Mining           (2022) 15:19 

Distance Pearson Correlation Coefficient (DPCC)

The Distance Pearson correlation coefficient is as follows [10],

where:

•	 Di and di are instances of a distance value between two bins.
•	 D and d are the means of the distances within the data set.
•	 It measures the relationship between variables. Values a between -1 to + 1
•	 A higher value is better.

Distance Spearman Correlation Coefficient (DSCC)

The Distance Spearman’s correlation coefficient is defined below [10],

where:

•	 xi and yi are the rank of the distances,Di and  di, described in the DPCC equation 
above.

•	 x and y are the sample mean tank of both x and y, respectively.
•	 Values a between -1 to + 1. A higher value is better.

Distance Root Mean Squared Error (DRMSE)

The Distance Root mean squared error follows the equation below [10],

where:

•	 Di and di are instances of distance values from the data and another data source.
•	 The value n is the size of the data set.

TM‑Score

TM-Score is defined as follows [52, 53],

PCC =
( di − d ∗ Di − D )

di − d
2
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2
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where:

•	 LTarget is the length of the chromosome.
•	 di is an instance of a distance value between two bins.
•	 Lali Represents the count of all aligned residues.
•	 d0 is a normalizing parameter.

The TM-score is a metric to measure the structural similarity of two proteins or mod-
els [52, 53]. A TM-score value can be between (0,1] were 1 indicates two identical struc-
tures [52]. A score of 0.17 indicates pure randomness, and a score above 0.5 indicates the 
two structures have mostly the same folds [53]. Hence the higher, the better.

Mean Squared Error (MSE)

MSE is defined below [54]:

where:

•	 Di and di are instances of distance values from the data and another data source.
•	 The value n is the size of the data set.

Huber loss

Huber loss is defined below [55]:

where:

•	 d is an instance of distance values from the data and another data source
•	 α is a positive real number used to decide the transition point between the top and 

bottom loss functions. We varied α with values of 0.1, 0.5, and 0.9.

Data

Our study used the yeast synthetic or simulated dataset from Adhikari et al., 2016 [27] 
to perform parameter tuning and validation. The simulated dataset was created from a 
yeast structure for chromosome 4 at 50 kb resolution [56]. The number of genome loci 
in the synthetic dataset is 610. We used the GM12878 cell Hi-C dataset to analyze a real 
dataset, GEO Accession number GSE63525 [57]. The normalized contact matrix was 
downloaded from the GSDB database with GSDB ID: OO7429SF [58].

dMSE =
1

n
∗
∑

(di − Di)
2

HuberLoss = {

1
2
∗ d2,

∣
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α ∗
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∣
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)
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∣
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Parameters estimation

We used the yeast synthetic dataset to decide on ParticleChromo3D’s best parameters. 
We used this data set to investigate the mechanism for choosing the best alpha conver-
sion factor for input Hi-C data. Also, determine the optimal swarm size; determine the 
best threshold value for the algorithm, inertia value(w), and the best coefficients for our 
PSO velocity ( c1 and c2 ). We evaluated our reconstructed structures by comparing them 
with the synthetic dataset’s true distance structure provided by Adhikari et al., 2016 [27]. 
We evaluated our algorithms with the DPCC, DSCC, DRMSE, and TM-score metrics. 
Based on the results from the evaluation, the default value for the ParticleChromo3D 
parameters are set as presented below:

Conversion factor test ( α)

The synthetic interaction frequency data set was generated from a yeast structure for 
chromosome 4 at 50 kb [38] with an α value of 1 using the formula: IF = 1/Dα . Hence, 
the relevance of using this test data is to test if our algorithm can predict the alpha value 
used to produce the synthetic dataset. For both DPCC and DSCC, our algorithm per-
formed best at a conversion factor (alpha) of 1.0 (Additional file 1: Figure S1). Our algo-
rithm’s default parameter setting is that it searches for the best alpha value in the range 
[0.1, 1.5]. Side by side comparison of the true simulated data (yeast) structure and the 
reconstructed structure by ParticleChromo3D shows that they are highly similar (Addi-
tional file 1: Figure S2).

Swarm size

The swarm size defines the number of particles in the PSO algorithm. We evaluated the 
performance of the ParticleChromo3D with changes in swarm size (Additional file  1: 
Figure S3A, S3B, S3C). Also, we evaluated the effect of an increase in swarm size against 
computational time (Additional file 1: Figure S3D). Our result shows that computational 
time increases with increased swarm size. Given the computational implication and the 
algorithm’s performance at various swarm size, we defined a swarm size of 15 as our 
default value for this parameter. According to our experiments, the Swarm size 10 is 
most suitable if the user’s priority is saving computational time, and swarm size 20 is 
suitable when the user’s preference is algorithm performance over time. Hence, setting 
the default swarm size 15 gives us the best of both worlds. The structures generated by 
ParticleChromo3D also shows that the result at swarm size 15 (Additional file 1: Figure 
S4C) and 20 (Additional file 1: Figure S4D) are most similar to the simulated data true 
structure represented in Additional file 1: Figure S2A.

Threshold: optimal parameter to determine structure stability

The threshold parameter is designed to serve as an early stopping criterion if the algo-
rithm converges before the maximum number of iterations is reached. Hence, we evalu-
ated the effect of varying threshold levels using the evaluation metrics (Additional file 1: 
Figure S5). The output structures generated by each threshold also allow a visual exami-
nation of a threshold value (Additional file 1: Figure S6). We observed that the lower the 
threshold, the more accurate (Additional file 1: Figure S5) and similar the structure is to 
the generated true simulated data structure in Additional file 1: Figure S2A (Additional 
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file 1: Figure S6F). It worth noting that this does have a running time implication. Reduc-
ing the threshold led to a longer running time. However, since this was a trade-off 
between a superior result and longer running time or a reasonably good result and short 
running time, we chose the former for ParticleChromo3D. The default threshold for our 
algorithm is 0.000001. We used this control parameter.

Confidence coefficient ( c1 and c2)

The c1 and c2 parameters represent the local-confidence and local and global swarm 
confidence level coefficient. Kennedy and Eberhart, 1995 [41] proposed that c1 = 
c2 = 2 . We experimented with testing how this value’s changes affected our algo-
rithm’s accuracy for local confidence coefficient ( c1) 0.3 to 0.9 and global confidence 
values 0.1 to 2.8 (Additional file 1: Figure S9 and S10). From our results, we found that 
a local confidence coefficient ( c1) of 0.3 with a global confidence coefficient ( c2 ) of 2.5 
performed best (Additional file 1: Figure S7). Hence, these values were set as Parti-
cleChromo3D’s confidence coefficient values. The accuracy results generated for all 
the local confidence coefficient (c1) at varying global confidence values is compiled in 
Additional file 1: Figure S8.

Random numbers ( R1 and R2)

R1 and R2 are uniform random numbers between 0 and 1 [59].

Results
Assessment on simulated data

We evaluated how noise levels affect ParticleChromo3D’s ability to predict chromo-
some 3D structures in the presence of noise. Using the yeast synthetic dataset from 
Adhikari et al., 2016 [27]. The data were simulated with a varying noise level. Adhikari, 
et al. introduced noise into the yeast IF matrix to make 12 additional datasets with dif-
ferent levels of noise at 3%, 5%, 7%, 10%, 13%, 15%, 17%, 20%, 25%, 30%, 35%, and 40%. 
As reported by the authors, converting this IF to their distance equivalent produced 
distorted distances that didn’t match the true distances. They were thereby simulating 
the inconsistent constraints that can sometimes be observed in un-normalized Hi-C 
data. As shown, our algorithm performed the best with no noise in the data at 0 (Fig. 4).

Furthermore, the other result obtained by comparing the ParticleChromo3D algo-
rithm’s output structure from the noisy input datasets with the simulated dataset’s true 
structure shows that it can achieve a competitive result when dealing with un-normal-
ized or noisy Hi-C datasets (Fig. 5). The result shows that our algorithm can achieve the 
results obtainable at reduced noise level even at increased noise as indicated by Noise 
7% (Fig. 5B) and 20% (Fig. 5C), respectively (Fig. 4). Also, the difference in performance 
between the best structure and the worst structure is ~ 0.01. Hence, our algorithm can-
not potentially be affected by the presence of noise in the input Hi-C data.

Assessment on real Hi‑C data

For evaluation on the real Hi-C data, we used the GM12878 B-lymphoblastoid cells 
line by Rao et al., 2014 [57]. The normalized 1 MB and 500 KB resolution interaction 
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frequency matrices GM12878 cell line datasets were downloaded from the GSDB 
repository under the GSDB ID OO7429SF [58]. The datasets were normalized using 
the Knight-Ruiz normalization technique [16].  The performance of ParticleChro-
mo3D was determined  by computing the DSCC value between the distance matrix 
of the normalized frequency input matrix and the Euclidean distance calculated from 
the predicted 3D structures. Figure 6 shows the assessment of ParticleChromo3D on 
the GM12878 cell line dataset. The reconstructed structure by ParticleChromo3D is 
compared against the input IF expected distance using the DPCC, DSCC, and RMSD 
metrics for the 1  MB and 500  KB resolution Hi-C data. When ParticleChromo3D 
performance is evaluated using both 1  MB and 500  KB resolution HiC data of the 

Fig. 4  Assessment of the structures generated by ParticleChromo3D for the simulated dataset on varying 
noise levels. A A plot of the DSCC versus Noise level. B A plot of DPCC versus the Noise level. This plot shows 
the DSCC and DPCC accuracy of the structures generated by ParticleChromo3D at different noise levels 
introduced. In Fig. 4A and Fig. 4B, the Y-axis denotes the metric score in the range [-1,1]. The X-axis denotes 
the Noise level. A higher DSCC and DPCC value is better

Fig. 5  Structures generated by ParticleChromo3D at different Noise levels. Here, we show the structure 
generated by ParticleChromo3D at Noise level = A 0, that is no Noise, B 7% (70), C 20% (200), and D 40% (400)
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GM12878 cell, we observed some consistency in the algorithm’s performance for both 
datasets. Chromosome 18 had the lowest DSCC value of 0.932 and 0.916 at 1 MB and 
500 KB resolutions, respectively, while chromosome 5 had the highest DSCC value of 
0.975 and 0.966 at 1 MB and 500 KB resolutions, respectively.

Model consistency: robustness test over number of independent runs

Next, we assessed the consistency of our generated structures. We created 30 struc-
tures for the chromosomes and then evaluated the structure’s similarity using the DSCC, 
DPCC, DRMSE, and TM-Score (Fig. 7). We assessed the consistency for both the 1 MB 
and 500 KB resolution Hi-C data of the GM12878 cell. As illustrated for the TM-score, 
a score of 0.17 indicates pure randomness, and a score above 0.5 indicates the two struc-
tures have mostly the same folds. Hence the higher, the better. Our results show from the 
selected chromosomes that the structures generated by ParticleChromo3D are highly con-
sistent for both the 1 MB (Fig. 7) and 500 KB (Fig. 8) datasets. As shown in Fig. 7 for the 
1 MB Hi-C datasets, the average DSCC and DPCC values recorded between the models 
for the selected chromosomes is >  = 0.985 and >  = 0.988, respectively, indicating that chro-
mosomal models generated by ParticleChromo3D are highly similar. It also indicates that 

Fig. 6  Performance evaluation of ParticleChromo3D using DSCC values for 1 MB and 500 KB resolution 
GM12878 cell Hi-C data. A A plot of ParticleChromo3D DSCC performance on 1 MB GM12878 cell Hi-C data 
chromosome 1 to 23 B A plot of ParticleChromo3D DSCC performance on 500 KB GM12878 cell Hi-C data for 
chromosome 1 to 23
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it finds an absolute 3D model solution on each run of the algorithm (Fig. 7C and Fig. 7D). 
Similarly, as shown in Fig. 8, for the 500 KB Hi-C datasets, the average DSCC and DPCC 
values recorded between the models for the selected chromosomes is >  = 0.992.

Comparison with existing chromosome 3D structure reconstruction methods

Here, we compared the performance of ParticleChromo3D side by side with nine exist-
ing high-performing chromosome 3D structure reconstruction algorithms on the 
GM12878 data set at both the 1 MB and 500 KB resolutions. The reconstruction algo-
rithms are ChromSDE [25], Chromosome3D [27], 3DMax [28], ShRec3D [29], LorDG 
[30], HSA [32], MOGEN [34], GEM [38] and PASTIS [40] (Fig.  9). According to the 
DSCC value reported, we observed that ParticleChromo3D outperformed most of the 
existing methods in many chromosomes evaluated at 1 MB and 500 KB resolution. At 
a minimum, ParticleChromo3D secured the top-two best overall performance position 
among the ten algorithms compared. ParticleChromo3D achieving these results against 
these methods and algorithms shows the robustness and suitability of the PSO algorithm 
to be used to solve the 3D chromosome and genome structure reconstruction problem.

Discussion
Parameter optimization: swarm size versus time

We discussed the Swarm Size value’s relevance in the Parameters Estimation section. 
We showed on the synthetic dataset that a Swarm Size value of 5 did not produce 

Fig. 7  The model consistency check for 1 MB resolution structures generated by ParticleChromo3D using 
different evaluation metrics. A The average DSCC Between 30 Structures per chromosome at 1 MB Resolution 
for the GM12878 datasets. B The average DPCC Between 30 Structures per chromosome at 1 MB Resolution 
for the GM12878 datasets. C The average TM-Score Between 30 Structure per chromosome at 1 MB 
Resolution for the GM12878 datasets. D The boxplot shows the distribution of the 30 structure’s TM-score by 
chromosome for the GM12878 datasets. The Y-axis denotes the DSCC and DPCC metric score in the range 
[-1,1], and TM-Score in the range [-0,1]. The X-axis denotes the chromosome. A higher DSCC, DPCC, and 
TM-Score value is better
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satisfactory performance. However, it was the fastest considering the other swarm 
sizes. At SS = 10, the performance was significantly improved than at SS = 5, but 
with an increase in computation time as a consequence. SS values 15 and 20 similarly 
achieved better performance, but the cost of this performance improvement similarly is 
an increase in the program running time. However, we settled for a SS = 15 because it 
achieved one of the best performances, and the computational cost can be considered 
manageable. To investigate the implication of our choice, we carried out two tests dis-
cussed below:

ParticleChromo3D performance on different swarm size values

First, we evaluated the performance of the ParticleChromo3D algorithm on the 
GM12878 data set on both the 1 MB and 500 KB resolutions at Swarm Sizes 5, 10, 
and 15 to ensure that the performance at SS = 15 that we observed on the synthetic 
dataset is carried over to the real dataset (Fig.  10). The 1  MB and 500  KB dataset 
result shows that SS = 15 achieved the best DSCC value mostly across the chromo-
somes (Fig.  10). However, we observed that the result generated at SS = 10 were 
also competitive and achieved an equal performance a few times with SS = 15. This 
shows us that choosing the SS = 10 does not necessarily reduce the performance of 
our ParticleChromo3D. There is an additional gain of saving on computational time 
if this value is used.

Fig. 8  The model consistency check for 500 KB resolution structures generated by ParticleChromo3D 
using different evaluation metrics. A The average DSCC Between 30 Structures per chromosome at 500 KB 
Resolution for the GM12878 datasets. B The average DPCC Between 30 Structures per chromosome at 500 KB 
Resolution for the GM12878 datasets. C The average TM-Score Between 30 Structure per chromosome at 
500 KB Resolution for the GM12878 datasets. D The boxplot shows the distribution of the 30 structure’s 
TM-score by chromosome for the GM12878 datasets. The Y-axis denotes the DSCC and DPCC metric score in 
the range [-1,1], and TM-Score in the range [-0,1]. The X-axis denotes the chromosome. A higher DSCC, DPCC, 
and TM-Score value is better
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Computational time

Second, we evaluated the time it took our algorithm to perform the 3D reconstruction 
for select chromosomes of the 1 MB and 500 KB GM12878 cell Hi-C data set. The mod-
eling of the structures generated by ParticleChromo3D for the synthetic and real dataset 
was done on an AMD Ryzen 7 3800 × 8-Core Processor, 3.89GHZ with installed RAM 
31.9 GB.

ParticleChromo3D is programmed to multithread. It utilizes each core present on 
the user’s computer to run a specific task, speeding up the modeling process and sig-
nificantly reducing computational time. Accordingly, the more the number of proces-
sors a user has, the faster ParticleChromo3D will generate an output 3D structures. 
As mentioned earlier in the Parameter Estimation section, one of the default settings 

Fig. 9  A comparison of the accuracy of nine existing methods and ParticleChromo3D for 3D structure 
reconstruction on the 1 MB and 500 KB real Hi-C dataset. A An DSCC Comparison of 3D structure 
reconstruction methods on the GM12878 Hi-C dataset at 1 Mb resolution for chromosomes 1 to 23. B A 
DSCC Comparison of 3D structure reconstruction methods on the GM12878 Hi-C dataset at 500 KB resolution 
for chromosomes 1 to 23. The Y-axis denotes the DSCC metric score in the range [-1,1], and X-axis denotes the 
chromosome. A higher DSCC value is better
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for ParticleChromo3D is to automatically determine the best conversion factor that 
fits the data in the range [0.1, 1.5]. Even though this is one of our ParticleChromo3D’s 
strengths, this process has the consequence of increasing the algorithm’s computational 
time. Based on the real Hi-C dataset analysis, our result shows that the Swarm Size 
10 consistently has a lower computational time than the SS = 15 as speculated for the 
500 KB and 1 MB Hi-C datasets (Fig. 11). These results highlight an additional strength 
of ParticleChromo3D that it can achieve a competitive result in a lower time (Fig. 11) 
without trading it off with performance (Fig. 10). It is worth noting that we recommend 
that users can set the Swarm Size to the preferred value depending on the objective. In 
this manuscript, we favored the algorithm achieving a high accuracy over speed. We 
made up for this by making our algorithm multi-threaded, reducing the running time 
significantly.

Loss functions

A recurring question that occurred in this work is the impact of the loss function choice 
on the performance of the algorithm. To address this, we performed experiments on the 
simulated datasets and the real Hi-C datasets using the following loss functions: Sum of 

Fig. 10  ParticleChromo3D DSCC performance on Swarm Size values 5,10 and 15 for 1 MB and 500 KB 
GM12878 cell Hi-C data. A Comparing the performance by ParticleChromo3D on the 1 MB GM12878 cell Hi-C 
data at Swarm Size values 5, 10, and 15. B Comparing the performance by ParticleChromo3D on the 500 KB 
GM12878 cell Hi-C data at Swarm Size values 5, 10, and 15. The Y-axis denotes the DSCC metric score in the 
range [-1,1], and X-axis denotes the chromosome. A higher DSCC value is better



Page 18 of 26Vadnais et al. BioData Mining           (2022) 15:19 

Fig. 11  ParticleChromo3D Computational Time at Swarm Size (SS) 10 and 15 for 1 MB and 500 KB GM12878 
cell Hi-C data. A Comparing the running time for ParticleChromo3D for select chromosomes for 1 MB 
GM12878 cell Hi-C data (B) A comparison of the running time for ParticleChromo3D for select chromosomes 
for 500 KB GM12878 cell Hi-C data. The Y-axis denotes the running time for ParticleChromo3D in minutes, and 
X-axis denotes the chromosome

Fig. 12  Loss function versus DSCC on a simulated dataset. A side-by-side comparison of DSCC performance 
at loss functions Sum of Squared Error (SSE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
Huber loss on the simulated dataset. The Y-axis denotes the DSCC metric score in the range [-1,1], and X-axis 
denotes the loss function. A higher DSCC value is better
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Squared Error (SSE), Mean Squared Error (MSE) [54], Root Mean Squared Error, and 
the Huber loss [55].

ParticleChromo3D had the best performance on the simulated dataset when the 
SSE, RMSE, and MSE loss functions were used (Fig.  12). These three loss functions 
also reported the same performance. As the representative loss function to use in our 
experiments, we chose the SSE loss function for all the results reported. However, we 
had the underlying question if this performance can be replicated on the real Hi-C data-
set. Hence, we performed the loss function test on the real Hi-C dataset to check the 
impact of the loss function on the performance of our algorithm. On the 1 MB dataset, 
the RMSE loss function reported the best performance; it had a comparatively short box 
plot with a high median, suggesting that the DSCC values across the chromosomes are 
closer to each other (Fig. 13). On the 500 KB Hi-C dataset, the SSE loss function showed 
a better performance than the other loss functions (Fig. 14). From this test, we observed 
that, though minimal, the choice of the loss function had some impact on the algorithm’s 
result. Hence, we included an option in the ParticleChromo3D tool for users to select 
the loss function to use for their 3D reconstruction problem from the options above.

Finally, we had a conjecture that a contributing factor to loss function difference in 
performance was from the impact of the randomized initial XYZ coordinate assigned to 

Fig. 13  Comparison of Loss Function distribution for 1 MB GM12878 cell Hi-C data. A A boxplot showing 
the DSCC value distribution of `3D output structure of 1 MB GM12878 cell Hi-C data chromosome 1 to 23 
obtained by using loss functions SSE, RMSE, Huber-0.9, Huber -0.5, Huber-0.1, and MSE B A Comparison of the 
average DSCC value of 1 MB GM12878 cell Hi-C data chromosome 1 to 23 obtained by using loss functions 
SSE, RMSE, Huber-0.9, Huber -0.5, Huber-0.1, and MSE. The Y-axis denotes the DSCC metric score in the range 
[-1,1], and X-axis denotes the loss function. A higher DSCC value is better
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each loss function job execution. We mean that because each loss function on different 
runs gets a different randomized XYZ coordinate assignment, it affects the algorithm’s 
convergence and performance. To test this assumption, instead of using a randomized 
XYZ coordinate for the loss function test, we used the same XYZ coordinate for the ini-
tialization across the loss functions test for 1 MB GM12878 cell Hi-C data chromosomes 
1,10,12,19, and 21. We observed that with this configuration, ParticleChromo3D’s per-
formance across the loss functions was more stable and consistent (Fig. 15). Hence, con-
firming the conjecture that each of the loss functions by themselves have little impact 
on performance, but an algorithm’s performance could be influenced, though minimally 
(Fig. 13 and Fig. 14), by the randomized initial XYZ coordinate assignment done at the 
initialization stage (Fig. 15).

Topologies

So far, we have described PSO through the lens of a global best optimizer with a ran-
domly initiated topology. While this implementation was the focus of this paper, we 
also tested if we could use our optimized hyperparameters on other topologies and 
see even better results. The open-source library we used was PySwarms–an extensible 
research toolkit for PSO in Python [60] and we implemented its topologies local best 

Fig. 14  Comparison of Loss Function distribution for 500 KB GM12878 cell Hi-C data. A A boxplot showing 
the DSCC value distribution of `3D output structure of 500 KB GM12878 cell Hi-C data chromosome 1 to 23 
obtained by using loss functions SSE, RMSE, Huber-0.9, Huber -0.5, Huber-0.1, and MSE (B) A Comparison 
of the average DSCC value of 500 KB GM12878 cell Hi-C data chromosome 1 to 23 obtained by using loss 
functions SSE, RMSE, Huber-0.9, Huber -0.5, Huber-0.1, and MSE. The Y-axis denotes the DSCC metric score in 
the range [-1,1], and X-axis denotes the loss function. A higher DSCC value is better XYZ coordinates
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optimization with a ring topology, pyramid, star, and random. We wrote an adapter that 
converted the frequency data into a format that PySwarms could ingest and optimize. 
We examined these topologies using a swarm size of 15 as justified by our validations 
in the Parameter Estimation section above. Each of these PSO algorithm topologies are 
described and compared with our results below:

Local best optimization with ring topology

Local best is like global best in that it finds a set of potential solutions and then update 
position and velocity [61]. The key difference is that it uses a ring topology (see Addi-
tional file  1: Figure S11) on initialization that causes particle to be attracted to their 
neighbors. PySwarms uses a k-D tree to select its neighbors. The velocity equation is [41, 
61] shown as in Eqs. (3) and (4):

Then position is updated as follow:

where:

•	 Vi,n is the current velocity at iteration n of particle i.

(3)Vi,n+1 = w ∗ Vij,n + c1 ∗ Rj,1 ∗
(

Pij,n − Xij,n

)

+ c2 ∗ Rj,2 ∗
(

Gj,n − Xij,n

)

(4)Xi,n+1 = Xi,n + Vi,n+1

Fig. 15  Loss Function comparison without random XYZ coordinate initialization. We used the same XYZ 
coordinates for the initialization across the loss function run execution for each of the chromosomes 
1,10,12,19, and 21 of 1 MB GM12878 cell Hi-C data. With this configuration, we had the same initialization for 
the algorithm to use for the 3D structure reconstruction for the loss functions SSE, RMSE, Huber-0.9, Huber 
-0.5, Huber-0.1, and MSE. The Y-axis denotes the DSCC metric score in the range [-1,1], and X-axis denotes the 
chromosomes. A higher DSCC value is better
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•	 c1 and c2 are two real numbers that stand for local and global weights and are the per-
sonal best of the specific particle and the global best vectors, respectively, at iteration 
n [61].

•	 The Rj,1 and Rj,2 values are randomized values used to increase the explored terrain 
based off particle i’s neighbors [61].

•	 w is the inertia weight parameter, and it determines the rate of contribution of a 
velocity [41].

•	 Gj,n represents the best position of the particle’s neighbors at iteration n.
•	 Pij,n represents the best position of a particle and its neighbors.
•	 Xij,n is the best position of an individual particle at the iteration n.

Local Best has two additional hyperparameters that we will not be optimizing in the 
scope of this paper. These parameters are number of neighbors to consider and whether 
to measure distance using sum-of-absolute values or Euclidean distance. We chose to 
use Euclidean distance and three neighbors.

Pyramid topology

The pyramid topology attempts to create spatially meaningful neighbors [62]. Pyramid 
does this by optimizing heuristics that implement natural neighbors using Delaunay 
Triangulation [62]. This algorithm works by first, randomly initializing the swarm [62]. 
Then it loops through the following steps for each particle until the end criterion is met 
[62]:

	 i.	 Compute the Delaunay.
	 ii.	 Seeing if the particles new position (derived from the Delaunay) is better than its 

old position.
	iii.	 choosing its best neighbor
	iv.	 Updating position and velocity with regards to its neighbors.

Star topology

Star topologies are often used in conjunction with Global Best strategies with the main 
difference being that instead of a randomized or ring laydown on initialization they are 
generated to a star [63]. This looks like a ring with every ring connected to a particle in 
the middle which it considers its neighbor as shown in Additional file 1: Figure S12 [63]. 
It can use either the base global best velocity and position equations or it can use local 
best [63]. If it uses local best, it considers its neighbor the center point [63].

Random topology

In a random topology the neighbors of a swarm are selected at random, and the starting 
positions can also be random [63]. The implementation we used uses the Dijkstra algo-
rithm to find the distance of one particle to another and then if any unconnected parti-
cles exist add edges between them [63]. The Random Topology used the same additional 
hyper parameters as Local Best.
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Comparison of ParticleChromo3D’s algorithm topology with Other PSO Topologies

Here we compared ParticleChromo3D using the global best topology to local, pyra-
mid, star, and random topologies described above. Due to computational time com-
plexity, we experienced for these algorithms as the number of bins in the chromosomes 
increased, we only compared chromosomes 16–23 of the GM12878 data set. Overall, 
while the other topologies have their strengths, however, according to our results for this 
3D structure prediction problem, the PSO implementation used in ParticleChromo3D 
algorithm–global best optimization with a random topology–outperformed the other 
algorithms. As shown in Additional file  1: Figure S13, ParticleChromo3D significantly 
outperformed the other topologies to the point that its worst run was better than any of 
the other topologies best runs.

Conclusions
We developed a new algorithm for 3D genome reconstruction called ParticleChromo3D. 
ParticleChromo3D uses the Particle Swarm Optimization algorithm as the foundation 
of its solution approach for 3D chromosome reconstruction from Hi-C data. The results 
of ParticleChromo3D on simulated data show that with the best-fine-tuned parameters, 
it can achieve high accuracy in the presence of noise. The computational complexity of 
ParticleChromo3D may make it worthwhile to optimize this algorithm with GPU sup-
port or in a faster language than Python. We compared ParticleChromo3D accuracy 
with nine (9) existing high-performing methods or algorithms for chromosome 3D 
structure reconstruction on the real dataset. The results show that ParticleChromo3D 
is effective and a high performer by achieving more accurate results over the other 
methods in many chromosomes; and securing the top-two best overall position in our 
comparative analysis with different algorithms. Our experiments also show that Partic-
leChromo3D can also achieve a faster computational run time without losing accuracy 
significantly. ParticleChromo3D’s parameters have been optimized to achieve the best 
result for any input Hi-C by searching for the best conversion factor ( α ) and using the 
optimal PSO hyperparameters for any given input automatically. This algorithm was 
implemented in python and can be run as an executable or as a Jupyter Notebook found 
at https://​github.​com/​Oluwa​dareL​ab/​Parti​cleCh​romo3D
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