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Abstract: There are various distributions of image histograms where regions form symmetrically
or asymmetrically based on the frequency of the intensity levels inside the image. In pure image
processing, the process of optimal thresholding tends to accurately separate each region in the image
histogram to obtain the segmented image. Otsu’s method is the most used technique in image
segmentation. Otsu algorithm performs automatic image thresholding and returns the optimal
threshold by maximizing between-class variance using the sum of Gaussian distribution for the
intensity level in the histogram. There are various types of images where an intensity level has right-
skewed histograms and does not fit with the between-class variance of the original Otsu algorithm.
In this paper, we proposed an improvement of the between-class variance based on lognormal
distribution, using the mean and the variance of the lognormal. The proposed model aims to handle
the drawbacks of asymmetric distribution, especially for images with right-skewed intensity levels.
Several images were tested for segmentation in the proposed model in parallel with the original Otsu
method and the relevant work, including simulated images and Medical Resonance Imaging (MRI)
of brain tumors. Two types of evaluation measures were used in this work based on unsupervised
and supervised metrics. The proposed model showed superior results, and the segmented images
indicated better threshold estimation against the original Otsu method and the related improvement.

Keywords: between-class variance; thresholding; images segmentation; lognormal distribution;
Otsu’s method; right-skewed distribution

1. Introduction

Thresholding-based segmentation is the most commonly used technique for segment-
ing images. Thresholding is a simple and effective process to find an adequate value of gray
level for separating objects from their background [1]. Various techniques were proposed
in the literature in this regard. In an ideal case, the gray level histogram has the symmet-
ric distribution of two regions representing foregrounds and backgrounds, respectively,
such that the threshold can be chosen at the bottom between the two regions [2]. Image
segmentation is a sensitive and difficult process in computer vision and image analysis
applications, where no segmentation algorithm can give the best result for any type of
image [3]. Segmentation techniques tend to make understandable images after grouping
objects and re-represent the image in separated segments. In general, the segmentation
techniques rely upon two cases of intensity level presence in an image: discontinuity and
similarity. In the first case, the segmentation technique relies on the sudden changes in
intensity level; this represents the edges of intensities inside images, while in the second
case, the technique relies on the similar presence of intensity levels that represent one area
based on predefined criteria [4].

There are different types of images where intensity levels have different forms of
distribution. Images with right-skewed histograms exist in every field, and sometimes
images affected by specific lighting conditions generate the skewness of right histograms
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in images. This condition can be implemented as simulated images in this regard, as we
did in this work to test the proposed model. Medical Resonance Imaging (MRI) is one
of the most effective technologies that produce anatomical images [5]. Some MRI brain
tumor images have specific features that make the segmentation process difficult such as
heterogeneous intensities around the tumor, background noises, fuzzy boundaries, and
less contrast between brain tissues [6,7]. The proposed model can play an important role in
determining the optimal threshold for these cases. Accurate segmentation provides reliable
object detection in medical diagnosis, observing the segmented shape inside the given
images [8,9], and this is every imaging specialist and radiologist’s goal.

The original Otsu’s method is one of the thresholding techniques that uses Gaussian
distribution in its objective function [4,10], based on the assumption that an image his-
togram has symmetric modes. In the case where the image histogram has nonsymmetric
modes (skewed to the right), the original Otsu method showed some problems in the
image thresholding result. In [3], the Otsu method was improved based on its original
formula but using only the mean value of lognormal distribution on its objective function.
However, theoretically, this improvement has some problems because the formula of the
original Otsu is based on the Gaussian, and in [3], the authors used the mean of lognormal
instead of the mean of Gaussian. Our proposed method uses the definition of lognormal
distribution in the development of the objective function to obtain an improved formula of
the original Otsu method. The proposed model has been evaluated and compared with the
original Otsu method and another relevant method presented in the literature. The main
contributions of this research are:

• Developing a formula of the between-class variance based on lognormal distribution;
• Introducing an accurate segmentation model for images that have a right-skewed

histogram distribution and handling the challenges of finding the optimal threshold
in such types of images;

• Implementing a boosted and inclusive segmentation algorithm that measures segmen-
tation results in parallel using supervised and unsupervised evaluation.

This research is divided as follows: The related work is stated in Section 2, with a brief
introduction to the Otsu method and lognormal distribution. In Section 3 we explained the
proposed between-class variance. The performance evaluations are stated in Section 4. The
results are discussed in Section 5. Finally, the conclusion and future work are stated in Section 6.

2. Related Work

Image segmentation is one of the major topics for image processing researchers.
Various methods have been presented in the literature. Each method has a different
development approach for defining good segmentation based on the optimal threshold.
Although thresholding is the simplest process in image segmentation, the optimal threshold
that accurately separates objects from the background remains a difficult task [10]. Gray-
level histogram-based thresholding is the most used method in image segmentation. The
easiest task when a given image f (x, y) has dark objects on a bright background or vice versa,
representing a bimodal histogram, is to separate this histogram using the threshold value
that can be located in the valley of the histogram classes. According to the thresholding
definition, the segmented image g(x, y) is a binary image composed using pixels comparison
from the image f(x, y) with the optimal threshold T [4]. One of the most used thresholding
methods in this form is Otsu’s method.

2.1. The Original Otsu’s Method

Otsu’s method relies on the variance of the gray level to obtain the threshold value
that groups the image pixels into a binary form, the object, and the background. Otsu
algorithm uses the definition of Gaussian distribution. In general, the threshold value is
selected to maximize the between-class variance. The Otsu algorithm for finding the global
threshold is categorized in the following [4,10].
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2.1.1. The Probability and Gray Mean Value

The intensity level of the image f(x, y) is [0, 1, 2, . . . L − 1]. The threshold value t
(0 ≤ t ≤ L − 1) split f(x, y) into two categories: object and background. The probability of object
class is Po, and the probability of background class is Pb, as defined in Equations (1) and (2).

Po =
t

∑
i=0

Pi (1)

Pb =
L−1

∑
i=t+1

Pi (2)

where Pi is the ratio of ni, and ni is the number of pixels in the intensity level i of the entire
image, indicating the probability of intensity level i.

Pi =
ni
n

(3)

The values µo and µb represent the mean of object and background, respectively, as
defined in Equations (4) and (5).

µo(t) =
t

∑
i=0

iPi
Po

(4)

µb(t) =
L−1

∑
i=t+1

iPi
Pb

(5)

2.1.2. Orders of Cumulative Moment

Let Po(t) = ∑t
i=0 Pi the zero-order cumulative moment of the gray-level histogram. It

represents the probability of the gray level from 0 to t.

Po(t) = Po (6)

Making µo(t) as the mean value of the gray level from 0 to t represents the first-order
cumulative moment of the gray level histogram

µo(t) =
t

∑
i=0

iPi (7)

where µT is the mean value of the entire image, as shown in Equation (8)

µT =
L−1

∑
i=0

iPi (8)

With Equations (1)–(8), the relation for any t can be represented in Equation (9)

Po + Pb = 1, Poµo + Pbµb = µT (9)

The object class variance σ2
o (t) and the background class variance σ2

b (t) can be defined
using the second-order moment of the gray-level histogram, as shown in Equations (10) and (11)

σ2
o (t) =

t

∑
i=0

(i− µo)
2Pi

Po
(10)

σ2
b (t) =

L−1

∑
i=t+1

(
i− µb

)2Pi

Pb
(11)
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2.1.3. Class Variance and Total Variance

Based on the above equations, the between-class variance of object and background, the
within-class variance, and the total variance are expressed as shown in Equations (12)–(14)

σ2
Between−Class = Po(µo − µT)

2 + Pb(µb − µT)
2 (12)

σ2
Within−Class = Poσ2

o + Pbσ2
b (13)

σ2
Overall =

L−1

∑
i=0

(i− µT)
2Pi (14)

Equations (12) to (14) fulfill the following relationship.

σ2
Overall σ2

Between−Class σ2
Within−Class (15)

2.1.4. Finding the Optimal Threshold

Based on the variance between the object and background, which is represented as
σ2

Otsu(t), the maximum gray level is selected to be the optimal threshold t*, as defined in
Equation (17)

σ2
Otsu =

[µT Po(t)− µo(t)]
2

Po(t) [1− Po(t)]
(16)

t∗ = argmax
{

σ2
Otsu (t)

}
, 0 ≤ t ≤ L− 1 (17)

Otsu’s method uses automatic search to find the threshold. Images with bimodal his-
tograms can be segmented accurately, especially when the classes are represented in symmetric
distribution since the Otsu method relies on the Gaussian distribution definition. However,
any sudden or gradual changes between the object and background boundary can be reflected
by the variance. Some medical images have more than one object that remains under the
same class with overlapped gray levels in the background and may also have a right-skewed
histogram, for example, some objects in MRI brain tumor images. In this case, it is difficult to
select the desired gray level that separates the object from the background.

Several improvements of the Otsu method were presented in the literature. Most of
the segmentation improvements were proposed for specific detection purposes. The Otsu
method is improved for speediness and stabilization [11]. Otsu method was improved
to study the influence of the aggregate size in asphalt concrete [12]. Otsu and Canny
edge detection technique is used to determine the grain boundaries of metal [13]. The
method of threshold selection combined with Otsu to calculate the volume distribution of
nanoparticles in the brain parenchyma [14]. Otsu and multiple filtering techniques were
used to detect the cracks in the concrete image [15].

In response to the stated research, some researchers have proposed an improvement for
Otsu algorithms. Otsu method was improved for radiography image segmentation. Even
though the threshold is located on the left bottom side of the unimodal distribution, it is
only suitable for images that have a large proportion of low brightness background [10,16].
Another improvement in Otsu was presented for defect detection using the weighted
variance of the object; the improvement remains sensitive to the overlapped noise in some
types of images [17]. Moreover, the Otsu algorithm was proposed as a double window
algorithm for mixed distribution. Nonetheless, selecting the window size is required,
depending on the desired object [18]. The optimal threshold of Otsu’s algorithm and some
other mean-based thresholding algorithms can completely rely on the estimated mean for
their objective functions [19,20]. As a relevant work, the Otsu method was modified using
Gamma and lognormal distribution, although the usage of lognormal distribution does
not satisfy the lognormal definition as it only tends to replace the mean value of lognormal
with the mean of Gaussian in the Otsu method [3]. The results of this modified method
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were also included in this research for the comparison of the original Otsu method and the
proposed model.

2.2. Lognormal Distribution

The random variable whose logarithm is normally distributed has a probability distri-
bution called the lognormal distribution. The random variable Y with a normal distribution
has a lognormal distribution X = exp (Y). Similarly, when the variable X is log-normally
distributed, the variable Y = log (X) is normally distributed [3]. The probability density
function (PDF) of the lognormal distribution is defined in Equation (18). It is a distribution
skewed to the right, where the degree of skewness increases as the standard deviation
σ increases for a given mean µ. Equally, for the same σ, the skewness of the probability
density function (PDF) increases as µ increases, as shown in Figure 1. Some medical images,
such as ultrasound, are modeled using different distributions, including lognormal [21].
The local probability distribution function (PDF) in ultrasound images is modulated using
lognormal distribution as well [22]. Lognormal is also used with region-based level sets for
object separation in synthetic aperture radar (SAR) [23]. Moreover, the PDF of lognormal
and the gamma distributions were used for background digital level distributions in diesel
spray images [24].

F(x, µ, σ) =
1

xσ
√

2π
e
−1

2 (
ln x−µ

σ )
2

(18)

where µ is the mean, σ is the standard deviation, and x is the pixel’s intensity level. As
an image with histogram h(x), it is assumed that the histogram is modeled as lognormal
distributions [3,25] and can be defined in Equation (19):

h(x) =
m

∑
i=0

pi f (x, µi, σi), x > 0 (19)
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The ith mode in histogram h(x) can be represented as pi f (x, µi, σi), where pi is the
probability of this ith mode, and m is the number of modes in the histogram h(x). If
the data in an image are assumed to be a combination of two lognormal distributions,
then the mean value of the two modes in that histogram, e.g., µo Log and µb Log, can
be estimated in Equations (20) and (21), representing the mean of the object and the
background, respectively [3]

µo Log(t) =
∑t

i=0 h(i).log(i)

∑t
i=0 h(i)

(20)

µb Log(t) =
∑L−1

i=t+1 h(i).log(i)

∑L−1
i=t+1 h(i)

(21)
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Therefore, the total mean of the entire image µT log can be defined in Equation (22)

µT log(t) =
∑L−1

i=0 h(i).log(i)

∑L−1
i=0 h(i)

(22)

where h(i) is the given image histogram, and L is the maximum gray level.
Concerning the previous relevant work, the original Otsu method is suitable for the

symmetric histogram modes because of the usage of Gaussian distribution [4,10], as stated
in Section 2.1. Otsu method was improved in [3,25] using only the mean of lognormal
inside the original Otsu’s method that follows the Gaussian definition, which is not true
when thresholding images with right-skewed intensities. In this work, we have corrected
the stated issue by developing a formula of between-class variance based on lognormal
distribution. The proposed formula is more general than using Gaussian distribution
when applying images with right-skewed histograms for segmentation. The proposed
model aims to evolve the thresholding function based on the mean and the variance of the
lognormal. Therefore, it improves thresholding efficacy for images that have right-skewed
histograms. The strength of the proposed model against related methods is represented in
the impact of the mean and the variance using lognormal distribution, as shown in Table 1.

Table 1. Effectiveness of the proposed method compared with the related methods.

Between-Class Variance Parameters Values Effectiveness

The Original Otsu Mean and variance are based on the definition
of Gaussian distribution

Suitable for images with symmetric distribution but limited for
asymmetric distributions

The Modified Otsu [3] The original Otsu formula using only the mean
value of the lognormal distribution

Almost have the same efficiency as the original method with
improvements for certain types of images

The Proposed Model Mean and variance are based on the definition
of Lognormal distribution

Boosted efficacy for images with right-skewed intensity
distributions but not suitable for left-skewed distribution.

3. Materials and Methods

As stated in the Introduction and the related work, it is a difficult task to analyze
the shape of a specific object in complex scenes of an image, especially when using tra-
ditional segmentation techniques. The Otsu method was improved several times in
literature [3,10,16–18]. However, Otsu is more suitable for images with symmetric dis-
tribution because it relies on the definition of Gaussian distribution. This paper aims to
develop a formula for between-class variance and boost the optimality of the threshold
value for the image segmentation process. The proposed formula is derived based on the
definition of the lognormal distribution, in which the mean and the variance are based on
the lognormal definition. The proposed model tends to avoid the usage of the Gaussian
distribution in the between-class variance. Therefore, the proposed between-class variance
using lognormal distribution has been developed as a formula on which the optimal thresh-
old maximizes. The proposed model aims to improve the segmentation accuracy of specific
cases when images have a right-skewed histogram.

3.1. Materials

Images with a right-skewed histogram have been used for segmentation to conduct
the objective evaluation and the efficiency comparison of the proposed model with the
relevant works in this regard. The used datasets represent an asymmetric distribution of
gray levels. In this study, we applied 50 simulated images and 100 MRI brain tumor images
for segmentation in parallel with the proposed model and relevant methods. The sizes of
the used images are 256 × 256 pixels. The MRI brain tumor images are part of the public
archives from the database BRATS2012, 2015, and the Harvard Medical School website [7].
They were applied for segmentation using Minimum Cross Entropy Thresholding (MCET)
with heterogeneous mean filters [20]. We will not compare the results with that study
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because they use different notions. Images are selected for segmentation in this study based
on their right-skewed histogram.

3.2. Proposed Between-Class Variance

According to the definition of the between-class variance in Section 2.1, the usage of
Gaussian distribution with the Otsu method is more suitable with the symmetric distribu-
tion but not with the asymmetric or right-skewed distribution, where the process of mean
calculation lies under a classical mean definition, and the variance lies under the definition
Gaussian distribution. Furthermore, according to the definition of lognormal distribution
in Section 2.2, the mean and the variance are more suitable for the cases where images have
right-skewed histograms. Based on the definition of the lognormal distribution, the mean
value of two modes in a given image can be estimated using Equations (20) and (21). Using
this right-skewed distribution is more general than the Gaussian distribution in terms of
dealing with right-skewed histograms. Having the definition of the between-class variance
in the original Otsu method, our developed formula σ2

Lognormal(t) aims to use the mean and
the variance of the lognormal distribution, as defined in Equation (23)

σ2
Lognormal(t) = Po

[
log (µo Log(t)

)
− µT log(t)]

2 + Pb

[
log (µb Log(t)

)
− µT log(t)]

2 (23)

where µo log(t), µb log(t), and µT log(t) are the mean values based on the definition of the
lognormal distribution, as stated in Equations (20)–(22), respectively; this is when the data
in the histogram are modeled as a lognormal distribution as stated in Equation (19).

The variance between object and background in the proposed between-class variance
is defined as σ2

Lognormal(t) in Equation (23). The maximum gray level t* is selected using the
sequential search function defined in Equation (24) as the desired value corresponding to
maximum variance, representing the optimal threshold in the proposed model.

t∗ = argmax
{

σ2
Lognormal (t)

}
, 0 ≤ t ≤ L− 1 (24)

Figure 2 shows the workflow schema of the proposed between-class variance.
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3.3. Proposed Algorithm

The proposed model has been implemented with MATLAB R2019a 64-bit and MAT-
LAB parallel computing toolbox. Intel Core i5 quad-core, 3.8 GHz, and 8 GB RAM. The
proposed model is applied to an image with N pixels and L intensities. The optimal thresh-
old t* is computed by maximizing the σ2

Lognormal(t)). Therefore, the time complexity of
the proposed algorithm is the maximum of (O(N), O[L∗L])To improve time performance,
the algorithm can use a fast recursive dynamic programming algorithm, especially when
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applying large datasets for segmentation. The overall computational processes can perform
better than sequential processing, as shown in Table 2. The pseudocode for the proposed
algorithm is Algorithm 1.

Algorithm 1. Parallel Processing

1. Input image f(x, y)
2. Compute the histogram h(i), i = 0, . . . ., 255 for f(x, y)
3. Parfor t = 0: 255 do
4. Compute µo Log(t) using Equation (20)
5. Compute µb Log(t) using Equation (21)
6. Compute µT Log(t) using Equation (22)
7. Compute σ2

Lognormal(t) using Equation (23).

8. Compute the original and the modified σ2
Otsu(t) based on their distributions.

9. Find the optimal t* which maximizes each of σ2
Lognormal(t) and the relevant σ2

Otsu(t)
10. End for.
11. Compute the average sum of the performance measure for each t*.
12. Find the best t* which maximizes the performance measure.
13. Return the best t*
14. Output image g(x, y).

Table 2. Time performance of the proposed algorithm when implemented using parallel processing.

Segmented Images No. of Images Sequential(s) Parallel(s) Speedup Gain

1 MRI Brain Tumor 100 407.904 267.552 34.4%
3 Simulated Images 50 301.710 203.391 32.5%

4. Performance Evaluation
4.1. Unsupervised Evaluation

Evaluating segmentation results can be achieved without any a priori image data. The
evaluation that relies on the statistical approach between the segmented and the original
images is the unsupervised evaluation, such as uniformity and region contrast [26,27].

4.1.1. Image Uniformity (IU)

This evaluation helps to measure the quality of the thresholding method. Region
uniformity can be computed based on the variance in a given image. It was proposed by
Levine et al. [26], as shown in Equation (25)

IU(t) = 1−
σ2

1 (t)− σ2
2 (t)

Z
(25)

where Z is calculated as shown in Equation (26), and σ2
1 (t) and σ2

2 (t) are the variances
of modea and modeb, respectively,

Z =
(Imax − Imin)

2

2
(26)

where Imax and Imin are the maximum and the minimum intensities.

4.1.2. Region Contrast (RC)

This evaluation finds the adjacent regions and checks the high contrast; thus, it mea-
sures the quality of segmented results, as shown in Equation (27)

RC(t) =

∣∣µ1(t)− µ2(t)
∣∣

µ1(t)− µ2(t)
(27)

where µ1(t) and µ2(t) are the mean values of the regions 1 and 2 in a given image, respec-
tively. The value of RC(t) ranges between 0 and 1 such that 0 indicates pore segmentation
and 1 indicates accurate segmentation.
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4.2. Supervised Evaluation

This evaluation depends on the pixels matching approach between the segmented
results and their reference or the ground truth. It is a widely used approach in the literature
and is considered a powerful measurement for segmentation quality [28–31]. The aim of
using this evaluation is to maximize the true positivity (TP) of pixels in the segmentation
result based on the terms shown in Figure 3.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 14 
 

 

4. Performance Evaluation 
4.1. Unsupervised Evaluation 

Evaluating segmentation results can be achieved without any a priori image data. 
The evaluation that relies on the statistical approach between the segmented and the 
original images is the unsupervised evaluation, such as uniformity and region contrast 
[26,27]. 

4.1.1. Image Uniformity (IU) 
This evaluation helps to measure the quality of the thresholding method. Region 

uniformity can be computed based on the variance in a given image. It was proposed by 
Levine et al. [26], as shown in Equation (25) 𝐼𝑈(𝑡) = 1 − ఙ12(௧)ି ఙ22(௧)   (25)

where Z is calculated as shown in Equation (26), and 𝜎ଵଶ(𝑡) and 𝜎ଶଶ(𝑡) are the variances 
of 𝑚𝑜𝑑𝑒 and 𝑚𝑜𝑑𝑒, respectively, 𝑍 = (ூೌೣିூ)మଶ   (26)

where 𝐼௫ and 𝐼 are the maximum and the minimum intensities. 

4.1.2. Region Contrast (RC) 
This evaluation finds the adjacent regions and checks the high contrast; thus, it 

measures the quality of segmented results, as shown in Equation (27)  𝑅𝐶(𝑡) = |ఓభ (௧)ିఓమ (௧)|ఓభ (௧)ିఓమ (௧)   (27)

where 𝜇ଵ(𝑡) and 𝜇ଶ(𝑡) are the mean values of the regions 1 and 2 in a given image, re-
spectively. The value of RC(t) ranges between 0 and 1 such that 0 indicates pore seg-
mentation and 1 indicates accurate segmentation. 

4.2. Supervised Evaluation 
This evaluation depends on the pixels matching approach between the segmented 

results and their reference or the ground truth. It is a widely used approach in the liter-
ature and is considered a powerful measurement for segmentation quality [28–31]. The 
aim of using this evaluation is to maximize the true positivity (TP) of pixels in the seg-
mentation result based on the terms shown in Figure 3.  

 
Figure 3. TN refers to pixels that have not been segmented, FN refers to pixels that should belong to 
the segmented image, TP refers to the joint segmented pixels, and FP refers to pixels that should 
not have been segmented. 

The Jaccard index in Equation (28) helps to evaluate the intersection percent of 
F-scores in Equation (29), which is to evaluate the true positive pixels and their probabil-

Figure 3. TN refers to pixels that have not been segmented, FN refers to pixels that should belong to
the segmented image, TP refers to the joint segmented pixels, and FP refers to pixels that should not
have been segmented.

The Jaccard index in Equation (28) helps to evaluate the intersection percent of F-scores
in Equation (29), which is to evaluate the true positive pixels and their probability, where
precision represents the TP/TP + FP, and recall represents the TP/TP + FN. Precision helps
to measure the detected true pixels, and recall helps to measure the true positivity and the
matching rate and whether the segmented pixel belongs to the ground truth. Segmentation
accuracy refers to the accurate match between the pixels in the segmented image and its
reference to the ground truths, as shown in Equation (30)

Jaccardindex =
TP

TP + FP + FN
(28)

FScore = 2 ∗ Precision Recall
Precision + Recall

(29)

Accuracy =
TP + TN

FN + FP + TP + TN
(30)

4.3. Modeling the Accurate Segmentation

The lognormal distribution has been used to form the between-class variance of the
proposed model so that the threshold value reaches the maximum, and this function is
compared with the between-class variance of the original Otsu method using Gaussian
distribution. When the value t is maximized, it indicates the final threshold t* for the given
image, and the accurate segmentation aims to maximize the evaluation scores; we propose
using the parallel processing evaluation to reduce time complexity in each segmentation
case, as follows:

Maximize Evaluation(Unsupervised, Supervised) (31)

where unsupervised (IU(t), RC(t)), and supervised evaluations (Jaccardindex, FScore,
Acuuracy) ∈ [0, 1].

5. Results and Discussion

Several tests were performed for segmentations; they were evaluated to attain the
segmentation efficiency of the proposed model. To show the significance of the proposed
model against the original and the relevant methods, two types of measurement were used,
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unsupervised and supervised evaluations, to obtain maximum scores for each segmented
image. Figure 4 shows selected samples of segmented images that have a right-skewed
histogram. These samples reflect experimental results subjectively when comparing results
from the proposed model with the original and modified Otsu methods, as shown in
columns (c) and (f) in Figure 4. Nonetheless, it can be noticed that the objective results
appeared in the evaluation scores, as shown in Table 3.
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Figure 4. Selected samples, IMGs (1), (2), (3), and (4) are MRI brain tumor images, IMGs (5), (6),
(7), and (8) are simulated images; (a) are original images, (b) corresponding histograms, (c) ground
truths, (d) segmentation results using the modified Otsu method [3], (e) segmentation results using
the original Otsu, and (f) segmentation results using the proposed lognormal-based model.
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Table 3. Evaluation scores of images in Figure 4: (A) refers to supervised evaluation, and (B) refers to
unsupervised evaluation.

Modified Otsu [3] Original Otsu The Proposed Model

A B A B A B

IMG(1) 0.87977 0.84472 0.88948 0.85621 0.90387 0.87921
IMG(2) 0.86998 0.84380 0.87650 0.85757 0.91105 0.87987
IMG(3) 0.85892 0.83877 0.87380 0.85591 0.90744 0.88760
IMG(4) 0.86390 0.82988 0.88157 0.85608 0.90094 0.87794
IMG(5) 0.84898 0.82790 0.87599 0.86189 0.91079 0.89093
IMG(6) 0.83907 0.82319 0.85280 0.86839 0.91969 0.88957
IMG(7) 0.82995 0.81758 0.85720 0.86898 0.92781 0.89116
IMG(8) 0.83614 0.82947 0.84997 0.85911 0.91570 0.88931

The overall experimental results showed appreciable objective results. From the point
of view of the mean-based thresholding, the type of the distribution does matter; thus,
finding the optimal threshold in images with right-skewed intensity levels seems to be
a challenging task when using the Gaussian distribution with the Otsu method. It is
noticeable that both types of images used in this research have histograms skewed right,
and there was a wide gap in obtaining the optimal threshold, as shown in Figure 4b.

In the original and the modified Otsu methods, the thresholds were shifted to the left,
including pixels from the fuzzy backgrounds. It can be noticed that the gap was filled when
using the proposed model, where the threshold value acts to exclude most of the unwanted
area between the object and the background. Simulated images were used in this work
to focus on the goal of segmenting images with a right-skewed histogram, as it has wide
skewness covering the range of the intensity levels.

In most cases, the supervised evaluation shows a slight increase in scores against
the unsupervised evaluation, as shown in Table 3. The slight difference depends on the
process used in each measurement. The unsupervised evaluation relies on the statistical
approach between the output image and the structure of the original image. In contrast,
the supervised evaluation relies on the matching approach between pixels in the output
image and the ground truth, e.g., the recorded scores of the unsupervised evaluation of
IMG (1) using the proposed model are 0.86912 IU and 0.88931 RC, while the recorded
scores of the supervised evaluation are 0.89927 Jaccard index, 0.90158 F-scores, and 0.91067
segmentation accuracy.

The overall evaluation was computed by averaging each evaluation, as shown in
Table 4. The three methods and their corresponding evaluations were recorded in four
patterns. Two evaluations for simulated images and two for MRI brain tumor images,
referring to the unsupervised and the supervised evaluations. As can be noticed from
the results, the proposed model yield better thresholding accuracy and promising image
segmentation outputs.

Table 4. Evaluation of performance measures for the original Otsu method, the modified Otsu
method [3], and the proposed model.

Original Otsu Modified Otsu [3] The Proposed Model

Images/Evaluation Average
Metrics

Average
Metrics

Accuracy
Increase rate

Average
Metrics

Accuracy
Increase rate

MRI Brain Tumor/Unsupervised 0.87028 0.8681 −0.25% 0.88931 2.19%
MRI Brain Tumor/Supervised 0.88177 0.87903 −0.31% 0.90208 2.30%
Simulated Images/Unsupervised 0.87593 0.87470 −0.14% 0.91097 4.00%
Simulated Images/Evaluation 0.89298 0.89109 −0.21% 0.91208 2.13%

The generality of the performance evaluation in Table 4 indicates that simulated image
segmentation showed a 2.19% accuracy increase rate with the unsupervised evaluation and
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2.30% with the supervised evaluation compared with the original method. In MRI brain
tumor image segmentation, the proposed model showed a 4.00% accuracy rate increase
with the unsupervised evaluation and 2.13% with the supervised evaluation. Overall, the
between-class variance using lognormal was able to record better evaluation scores over the
other methods for such kinds of images. This effective increase rate reflects the subjective
and objective goals of accurate segmentation for images with a right-skewed histogram.

6. Conclusions and Future Work

This paper presents an improvement of between-class variance based on the mean
and variance of the lognormal distribution. The proposed model aims to find the optimal
threshold in right-skewed histograms for accurate image segmentation. Simulated images
and MRI brain tumor data sets have been applied for segmentation and evaluation. The
results of the proposed model were examined using the supervised and unsupervised
evaluation in comparison with the original and related methods. Based on the used
evaluation, the proposed model showed an accuracy increase rate of 2.24% when applying
MRI brain tumor images and 3.00% when applying simulated images for segmentation
against relevant methods. This paper contributes to improving the segmentation results of
asymmetric and right-skewed distribution for different images.

In future work, the proposed model can be examined by applying a large dataset of
extended types of medical and optical images for multimodal thresholding and extending
the contribution to a wide domain of applications for image segmentation.
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