Skip to main content
. 2022 Sep 10;24(9):1276. doi: 10.3390/e24091276
Algorithm 1: Global spatial level adaptation
Input: iris data X, pixel label Y,  segmentation network G, training epochs T, ratio coefficient γ
Initialize: binary discriminator D
For t = 1,…,T do
  Unfreeze the D and freeze the G
  Compute the logit maps: P=softmax(G(X))
  Compute the entropy: E(h,w)(X)=cKP(h,w,c)log(P(h,w,c))
  Sort the logit maps P based the S=i=1hj=1wE(i,j)hw
  Split the iris data X corresponding to sorted P into Xhard and Xeasy by ratio coefficient γ
  Compute the D’s loss: Lglobaladv(Xeasy,Xhard)=log(1D(Ehard))+log(D(Eeasy))
  minDLglobaladv to train D
  Unfreeze the G and freeze the D
  Compute the crossentropy: Lcrossseg(X)=hHwWcKY(h,w,c)log(P(h,w,c))
  minGLcrossseg+maxGLglobaladv to train G