Skip to main content
. 2022 Sep 2;12(9):2132. doi: 10.3390/diagnostics12092132

Table 5.

Benchmarking table-showing comparison of proposed and existing classification (solo) models.

Author and Year Dataset—Chest X-ray (COVID-19 Images + Other Images) Technique Accuracy AUC
Nayak et al. (2020) [29] GitHub
(203 + 203)
ResNet-34 2 class-98.33% 2 class-0.98
Choudhury et al. (2020) [60] COVID-19 Radiography database (Kaggle)
(423 + 3064)
CheXNet 3 class-97.74% NA
Jain et al. (2020) [28] Kaggle
(490 + 5942)
Xception 3 class-97.97% NA
Nikolaou et al. (2021) [68] COVID-19 Radiography database (Kaggle)
(3616 + 11,537)
EfficientNetB0 2 class-95%
3 class-93%
NA
Yang et al. (2021) [83] COVID-19 Radiography database (Kaggle)
(3616 + 4845)
VGG16 2 class-98%
3 class-97%
NA
Khan et al. (2020) [26] GitHub
(284 + 967)
Coronet (novel CNN) 3 class-95% NA
Hussain et al. (2020) [27] COVID-R dataset
(500 + 1600)
CoroDet (novel CNN) 2 class-99.1%
3 class-94.2%
4class-91.2%
NA
Aslan et al. (2020) [84] COVID-19 Radiography database (Kaggle)
(219 + 2686)
mAlexNet + BiLSTM (Bidirectional long short term memory) 3 class-98.7% NA
Timemy et al. (2021) [85] GitHub
(435 + 1751)
ResNet-50 + ESD (Ensemble Subspace Discriminant) 5 class- 91.6% NA
Khan et al. (2022) [86] COVID-19 Radiography database (Kaggle)
(3616 + 17,449)
EfficientNetB 4 class-96.13% NA
Nillmani et al. (2022) [69] COVID-19 Radiography database (Kaggle)
(3611 + 13,833)
VGG16, NASNetMobile, DenseNet201 2 class-99.84%
3 class-96.63
5 class-92.70
2 class-1.0
3 class-0.97
5 class-0.92
Proposed COVID-19 Radiography database (Kaggle)
(3611 + 9849)
Xception 5 class-97.45% 0.998