Skip to main content
. 2022 Sep 2;12(9):2132. doi: 10.3390/diagnostics12092132

Table 6.

Benchmarking table showing a comparison of proposed and existing segmentation-based classification models.

Author and Year Segmentation Dataset—Chest X-ray
(COVID-19 Images + Other Images)
Technique Accuracy Accuracy
Improvement *
AUC
Alom et al. 2020) [30] NABLA-N network
Accuracy—94.66
Dice—88.46
Jaccard—86.50
Kaggle
(390 + 234)
Inception Recurrent Residual Neural Network (IRRCNN) model 3 class-87.26% 10.19% 0.93
Wehbe et al. (2021) [31] NA Private
(4253 + 14,778)
Ensemble CNN 2 class-83% 14.45% 0.9
Oh et al. (2020) [87] DenseNet103
Jaccard+95.5%
Kaggle + GitHub
(180 + 322)
ResNet-18 4 class-88.9% 8.55% NA
Teixeira et al. (2021) [81] UNet
Dice+98.2%
RYDLS-20-v2
(503 + 2175)
Inception V3 3 class-88% (F1 score) 9.45% 0.9
Keidar et al. (2021) [88] NA Private
(1289 + 2427)
Ensemble model 2 class-90.3% 7.15% 0.96
Fang et al. (2022) [55] CLSeg
Dice—94.09
COVIDGR 1.0 dataset
(426 + 426)
SC2Net (novel CNN) 3 class-84.23% 13.22% 0.94
Abdulah et al. (2021) [89] Res-CR-Net
Dice—98
Jaccard—98
Private
(1435 + 3797)
Ensemble CNN 2 class-79% 18.45% 0.85
Bhattacharyya et al. (2021) [90] GAN network
Accuracy—NA
GitHub
(342 + 687)
VGG-19 + Random Forest 3 class-96.6% 0.85% NA
Hertel et al. (2022) [91] ResUnet
Dice—95
COVIDx5 + MIDRC-RICORD-1C + BIMCV dataset
(4013 + 12,837)
Ensemble model 2 class-91%
3 class-84%
6.45% 0.95
Aslan et al. (2022) [92] ANN based segmentation
Accuracy—NA
COVID-19 Radiography database (Kaggle)
(219 + 2905)
DensenNet201+SVM 3 class-96.29% 1.16% 0.99
Xu et al. (2021) [93] ResUNet
Jaccard—92.50
GitHub
(433 + 6359)
ResNet50 5 class-96.32% 1.13% NA
Proposed UNet
Accuracy—96.35
Dice—94.88
Jaccard—90.38
COVID-19 Radiography database (Kaggle)
(3611 + 9849)
Xception 5 class-97.45% - 0.998

* Accuracy improvement with respect to proposed work.