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Abstract: In recent years, quantum collision models, sometimes dubbed repeated interaction models,
have gained much attention due to their simplicity and their capacity to convey ideas without
resorting to technical complications typical of many approaches and techniques used in the field
of open quantum systems. In this tutorial, we show how to use these models, highlighting their
strengths and some technical subtleties often overlooked in the literature. We do this by deriving the
Markovian master equation and comparing the standard collisional derivation with the standard
microscopic one. We then use the collision model to derive the master equation of a two-level system
interacting with either a bosonic or fermionic bath to give the reader a flavour of the real use of
the model.
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1. Introduction

Any physics student that starts studying quantum mechanics is first taught about
closed systems, i.e., systems that can be fully described by a Hamiltonian operator and a
ket. Going further in the study of quantum physics, the student realizes that Hamiltonian
dynamics can only describe a small, and often unrealistic, fraction of quantum systems. In
reality, most physical systems are not closed, but rather open: by this it is meant that they
are surrounded by an environment, whose presence influences the system in a way that
cannot be described by a Hamiltonian operator alone. As a consequence, one must find a
way to account for the presence of the environment in the dynamical equations describing
the system.

The interaction with the environment is responsible for many physical phenomena,
such as spontaneous emission and frequency shift [1,2], the emergence of the classical
world [3,4] and the description of thermodynamic phenomena [5].

The description of open quantum systems is still nowadays a central problem in physics [6].
While first approaches to the problem relied on phenomenological equations [7–9], a critical
turning point was arrived at with the derivation of the Gorini–Kossakowski–Sudarshan–
Lindblad (GKSL) master equation [10,11]: starting from a Hamiltonian description of the
system and the environment, the environmental degrees of freedom are traced away under
certain assumptions, leading to a master equation which is guaranteed to be completely positive
and trace-preserving, thus having full physical meaning.

Other approaches to the study of open quantum systems were conceived later, such
as quantum trajectories [12,13], Monte Carlo method [14] and quantum jumps [15] and
input–output formalism relying on stochastic calculus [16–18].

While the aforementioned methods are generally very effective, they often rely on
complicated mathematics, hiding the physics behind the model. On the other hand, in
recent years, growing attention has been devoted to quantum collision models. While
such methods are related to the aforementioned ones [19–23], they rely on a much simpler
mathematical description, allowing one to better focus on the physics of the model.

In collision models, the dynamics is discretized by depicting the environment as a
collection of quantum systems, typically dubbed ancillas, which interact one by one with
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the system through a unitary operation. These ancillary quantum systems are then traced
away, so that one is left with the state of the system alone. In this way, the dynamics
is effectively divided into time slices, giving a step-wise description of the dynamics of
the system. Another advantage of this approach is that, thanks to the discreteness of the
environment, it is also possible to study how its state changes during the interaction with S.

Collision models were first conceived in [24], and since then they have been used to
describe a large number of physical situations: Markovian [25] and non-Markovian [26–30]
dynamics, the role of correlations between system and environment [31–34], global vs
local master equations [35], heat exchange and work extraction in quantum thermodynam-
ics [36–42], quantum optics [43–45], cascaded systems [46–50] and many others [51].

This tutorial goes as follows. In Section 2, we review the derivation of the Markovian
master equation in the GKSL form step by step in both the microscopic and collisional
approach. This will allow us to highlight the differences between the two approaches and
to stress the importance of the approximations made, which can become useful also for
beginners in the field of open quantum systems. Then, in Section 3 we analyze a couple
of examples, namely a two-level system interacting with a bosonic bath and a spin bath.
Finally, in Section 4 we conclude the paper, summarizing what has been done and making
some final remarks.

2. Basic Collision Model: The Markovian GKSL Master Equation

When modeling an Open Quantum System (OQS), one has to keep in mind first the
physical situation from which the dynamics is originated: namely, one always deals with
a closed system, S + E , made by two subsystems, one being the system S we wish to
describe through our dynamical equations, and the other being the environment E . The
joint evolution of these two subsystems taken together can usually be considered closed,
i.e., described by the usual Schrödinger equation corresponding to the total Hamiltonian.
However, as the environment is typically made out of a huge number of degrees of freedom,
it is impossible to keep track of the full dynamics of the joint system, and thus the usual
approach is to trace away the degrees of freedom of the environment in order to obtain a
master equation describing system S alone.

In order to obtain meaningful dynamical equations, the tracing of the environmental
degrees of freedom must be carried out carefully, making appropriate approximations on
the joint dynamics of S + E (see Figure 1). This gives rise to a plethora of different master
equations and approaches, as already mentioned in the introduction to this tutorial. The
most important and simple equation when dealing with open quantum systems is the
Markovian GKSL master equation, which can be used to describe many physical situations,
and is usually used as the starting point in the analysis of more complicated situations.

Thus, in order to better understand collision models, and to highlight their main
strengths, weaknesses and subtleties, it is useful to derive the Markovian GKSL master
equation using a collision model, and to compare this with the usual microscopic derivation,
which can be found in standard books such as [6].

In the following, we will describe the various steps that lead to the Markovian GKSL
master equation using both methods, starting from the initial description of the joint
S + E system, then turning to the dynamical description in both derivations, and finally
comparing how the environmental degrees of freedom are traced away.

2.1. Modeling the System

In both the microscopic and collisional derivation, the system S is described through
a Hamiltonian ĤS. In the microscopic approach, the environment E is described as a set
of modes with free Hamiltonian ĤE , interacting with S through the interaction Hamilto-
nian ĤSE .

On the other hand, in the collisional approach the environment E is described as a
collection of quantum systems {Ei}, typically called ancillas and described by the Hamil-
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tonian ĤEi , each of which interacts piecewise with S through the interaction Hamiltonian
ĤSEi .

⇢̂SE(t0)
<latexit sha1_base64="WMKYwCgFg8HZoez3OlQkC2c+8Tk=">AAACEnicbVDLSgNBEJz1GeMr6lGQwSDoJexGQY+iCB4jmgdkw9I7dpIhsw9megVZ9uYn+BVe9eRNvPoDHvwXd2MOvupUVHXT1eXHShqy7Xdranpmdm6+tFBeXFpeWa2srbdMlGiBTRGpSHd8MKhkiE2SpLATa4TAV9j2R6eF375BbWQUXtFtjL0ABqHsSwGUS15lyx0Cpa4eRpmXXroB0FCASs+ybJc8e8+rVO2aPQb/S5wJqbIJGl7lw72ORBJgSEKBMV3HjqmXgiYpFGZlNzEYgxjBALs5DSFA00vHf2R8JzFAEY9Rc6n4WMTvGykExtwGfj5ZBDW/vUL8z+sm1D/qpTKME8JQFIdIKhwfMkLLvCDk11IjERTJkcuQC9BAhFpyECIXk7yxct6H8/v7v6RVrzn7tfrFQfX4ZNJMiW2ybbbLHHbIjtk5a7AmE+yOPbBH9mTdW8/Wi/X6NTplTXY22A9Yb59WUJ4H</latexit>

⇢̂SE(t) = ÛSE(t, t0)⇢̂SE(t)Û †
SE(t, t0)

<latexit sha1_base64="JV486U3yQaFg/+v2ZEz7/m1HGIM="></latexit>

⇢̂S(t0)
<latexit sha1_base64="jux/p9gjo/TpsuoZtL13zcAWUnI=">AAACB3icbVDLTgJBEJzFF+IL5ehlIjHBC9lFEz0SvXjEKEgCZNM7NDBh9pGZXhOy4QP8Cq968ma8+hke/Bd3kYOCdapUdaery4uUNGTbn1ZuZXVtfSO/Wdja3tndK+4ftEwYa4FNEapQtz0wqGSATZKksB1pBN9TeO+NrzL//gG1kWFwR5MIez4MAzmQAiiV3GKpOwJKunoUTt3kdloh1z5xi2W7as/Al4kzJ2U2R8MtfnX7oYh9DEgoMKbj2BH1EtAkhcJpoRsbjECMYYidlAbgo+kls/BTfhwboJBHqLlUfCbi740EfGMmvpdO+kAjs+hl4n9eJ6bBRS+RQRQTBiI7RFLh7JARWqatIO9LjUSQJUcuAy5AAxFqyUGIVIzTmgppH87i98ukVas6p9XazVm5fjlvJs8O2RGrMIedszq7Zg3WZIJN2BN7Zi/Wo/VqvVnvP6M5a75TYn9gfXwDYQKZJg==</latexit>

⇢̂S(t) = VS(t, t0)⇢̂S(t0)
<latexit sha1_base64="QIFB9tbygi5Szv6Vgc+cikfFjn0=">AAACK3icbVDLSgNBEJz1GeMr6tHLYBAiSNiNgl6EoBePiiYK2bD0jq0ZnH0w0yvIsp/iJ/gVXvXkSdGj/+FszMFXnYqqarq7wlRJQ6774oyNT0xOTVdmqrNz8wuLtaXlrkkyLbAjEpXo8xAMKhljhyQpPE81QhQqPAuvD0r/7Aa1kUl8Srcp9iO4iuWlFEBWCmo7/gAo9/UgKYL8pGjQxp4fAQ0EqLxbBCcN2qTA3fiWspIVglrdbbpD8L/EG5E6G+EoqL37F4nIIoxJKDCm57kp9XPQJIXCoupnBlMQ13CFPUtjiND08+GDBV/PDFDCU9RcKj4U8ftEDpExt1Fok+Xx5rdXiv95vYwud/u5jNOMMBblIpIKh4uM0NI2h/xCaiSC8nLkMuYCNBChlhyEsGJmq6zaPrzf3/8l3VbT22q2jrfr7f1RMxW2ytZYg3lsh7XZITtiHSbYHXtgj+zJuXeenVfn7Ss65oxmVtgPOB+f9pGnog==</latexit>

TrE
<latexit sha1_base64="aCnIceXzWLhu3jip9dlh9L+jzuc=">AAACBnicbVDLSgNBEJz1GeMrxqOXwSB4CrtR0GNQBI8R8oLsEnonnThk9sFMryQsufsVXvXkTbz6Gx78FzcxB02sU1HVTVeXHytpyLY/rZXVtfWNzdxWfntnd2+/cFBsmijRAhsiUpFu+2BQyRAbJElhO9YIga+w5Q+vp37rAbWRUVincYxeAINQ9qUAyqRuoegSjiit60k3dQUofjPpFkp22Z6BLxNnTkpsjlq38OX2IpEEGJJQYEzHsWPyUtAkhcJJ3k0MxiCGMMBORkMI0HjpLPuEnyQGKOIxai4Vn4n4eyOFwJhx4GeTAdC9WfSm4n9eJ6H+pZfKME4IQzE9RFLh7JARWmalIO9JjUQwTY5chlyABiLUkoMQmZhkLeWzPpzF75dJs1J2zsqVu/NS9WreTI4dsWN2yhx2warsltVYgwk2Yk/smb1Yj9ar9Wa9/4yuWPOdQ/YH1sc3IW2ZDw==</latexit>

Unitary evolution
<latexit sha1_base64="PjXe+mg47NiL3V2+Ley20G7Cyn4=">AAACDHicbVC7TsNAEDzzJrwCNEg0JyIkqsgGJCgRNJRBIg8psaL1ZQMnzmfrbh0RWeET+ApaqOgQLf9Awb9gBxeQMNVoZle7M0GspCXX/XRmZufmFxaXlksrq2vrG+XNrYaNEiOwLiIVmVYAFpXUWCdJCluxQQgDhc3g7iL3mwM0Vkb6moYx+iHcaNmXAiiTuuWdDuE9pXUtCcyQ4yBSSe6MuuWKW3XH4NPEK0iFFah1y1+dXiSSEDUJBda2PTcmPwVDUigclTqJxRjEHdxgO6MaQrR+Ok4w4vuJBYp4jIZLxcci/t5IIbR2GAbZZAh0aye9XPzPayfUP/VTqeOEUIv8EEmF40NWGJlVg7wnDRJB/jlyqbkAA0RoJAchMjHJuiplfXiT6adJ47DqHVUPr44rZ+dFM0tsl+2xA+axE3bGLlmN1ZlgD+yJPbMX59F5dd6c95/RGafY2WZ/4Hx8A7NnnC4=</latexit>

Dynamical map
<latexit sha1_base64="n2+34Wx36YpjcLNXDLzkIWfxRBg=">AAACCHicbVDLTgJBEJzFF+ILHzcvE4mJJ7KLJnok6sEjJvJIgJDeocEJs4/M9Bpxww/4FV715M149S88+C8OyEHBOlWqulPd5cdKGnLdTyezsLi0vJJdza2tb2xu5bd3aiZKtMCqiFSkGz4YVDLEKklS2Ig1QuArrPuDi7Ffv0NtZBTe0DDGdgD9UPakALJSJ7/XIryn9HIYQmBFxQOIR518wS26E/B54k1JgU1R6eS/Wt1IJAGGJBQY0/TcmNopaJJC4SjXSgzGIAbQx6alNgtNO51cP+KHiQGKeIyaS8UnIv7eSCEwZhj4djIAujWz3lj8z2sm1DtrpzKME8JQjINIKpwEGaGlrQV5V2okgvHlyGXIBWggQi05CGHFxPaUs314s9/Pk1qp6B0XS9cnhfL5tJks22cH7Ih57JSV2RWrsCoT7IE9sWf24jw6r86b8/4zmnGmO7vsD5yPb9n3mgU=</latexit>

TrE
<latexit sha1_base64="aCnIceXzWLhu3jip9dlh9L+jzuc=">AAACBnicbVDLSgNBEJz1GeMrxqOXwSB4CrtR0GNQBI8R8oLsEnonnThk9sFMryQsufsVXvXkTbz6Gx78FzcxB02sU1HVTVeXHytpyLY/rZXVtfWNzdxWfntnd2+/cFBsmijRAhsiUpFu+2BQyRAbJElhO9YIga+w5Q+vp37rAbWRUVincYxeAINQ9qUAyqRuoegSjiit60k3dQUofjPpFkp22Z6BLxNnTkpsjlq38OX2IpEEGJJQYEzHsWPyUtAkhcJJ3k0MxiCGMMBORkMI0HjpLPuEnyQGKOIxai4Vn4n4eyOFwJhx4GeTAdC9WfSm4n9eJ6H+pZfKME4IQzE9RFLh7JARWmalIO9JjUQwTY5chlyABiLUkoMQmZhkLeWzPpzF75dJs1J2zsqVu/NS9WreTI4dsWN2yhx2warsltVYgwk2Yk/smb1Yj9ar9Wa9/4yuWPOdQ/YH1sc3IW2ZDw==</latexit>

Figure 1. Diagram summarizing the procedure to describe open system dynamics: one starts with
a joint state ρ̂SE of system and environment, then one can either cause the state to evolve through
unitary dynamics and then trace away the environmental degrees of freedom, or, conversely, first trace
away the environment and then apply to system S the dynamical map describing the open dynamics.

Thus, in the microscopic approach, the joint S + E system is described through the
total Hamiltonian:

Ĥmic = ĤS + ĤE + ĤSE , (1)

while in the collisional description we have:

Ĥcol = ĤS + ∑
i

ĤEi + ĤSEi . (2)

Here, we can already see a first difference between the microscopic and the collisional
approach: while in the first case the environment is represented as a continuous “jelly-like”
set of degrees of freedom, in the collision model the environment is discretized into ancillary
quantum systems interacting piecewise with the system. This is pictorially represented in
Figure 2, where it is also highlighted that in the collision model the interaction between
the system and the environment is represented via the interaction of the system with each
single ancilla.

Moreover, it is normally assumed the the system and the environment are initially in a
product state such as:

ρ̂SE (0) = ρ̂S(0)⊗ ρ̂E (3)

where ρ̂E is the state of the environment, most often taken to be a thermal state, though in
principle any choice is possible.

In the collision model, this condition is incorporated by assuming that the system S
and all the ancillas are in a product state, that is:

ρ̂SE (0) = ρ̂S(0)
⊗

i
η̂Ei . (4)

We thus see that not only the system and the environment are in a product state, but also
that there are no correlations between ancillas. It is possible to consider situations where
there are correlations between ancillas, but this in general gives rise to non-Markovian
dynamics, i.e., to memory effects.
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Before moving on and describing how the dynamics is modeled in the microscopic
and collisional approach, we need to discuss the form of the interaction Hamiltonian. In
the microscopic approach one typically assumes that this is of the form:

ĤSE = ∑
α

Â(α)
S ⊗ B̂(α)

E (5)

where Â(α)
S and B̂(α)

E are system and environment operators, respectively, which can be
assumed, without loss of generality, to be Hermitian. Moreover, in order to obtain a
Markovian master equation, this interaction Hamiltonian is assumed to represent a small
perturbation with respect to the free Hamiltonian ĤS, ĤE . In the collision model, one
needs to specify the interaction Hamiltonian between S and all the ancillas Ei. For a time-
independent Hamiltonian, like the one in Equation (5), one can simply assume that these
interaction Hamiltonians are all isomorphic, i.e., they are all of the form:

ĤSEi = g ∑
α

Â(α)
S ⊗ B̂(α)

Ei
(6)

Note also that in Equation (6) we introduced the constant g that gauges the strength of the
interaction between S and the ancillas. This constant will be useful when expanding in
power series to keep track of the order expansion.

<latexit sha1_base64="2ntyjiLPyQC8Tuo7KWqeQRfbfVg=">AAACBXicbVDLTgJBEJzFF+Jr0aOXicTEE9lVox6JxoQjRnkkQEjv0MCE2UdmejVkw9mv8Konb8ar3+HBf3FBDgrWqVLVna4uL1LSkON8Wpml5ZXVtex6bmNza3vHzu/WTBhrgVURqlA3PDCoZIBVkqSwEWkE31NY94ZXE79+j9rIMLijUYRtH/qB7EkBlEodO98aACXlcSe5bQlQ/HrcsQtO0ZmCLxJ3RgpshkrH/mp1QxH7GJBQYEzTdSJqJ6BJCoXjXCs2GIEYQh+bKQ3AR9NOptHH/DA2QCGPUHOp+FTE3xsJ+MaMfC+d9IEGZt6biP95zZh6F+1EBlFMGIjJIZIKp4eM0DLtBHlXaiSCSXLkMuACNBChlhyESMU4LSmX9uHOf79IasdF96x4cnNaKF3OmsmyfXbAjpjLzlmJlVmFVZlgD+yJPbMX69F6td6s95/RjDXb2WN/YH18A9xlmFY=</latexit>

ĤSE
<latexit sha1_base64="Am+IML8ZTRgKH+UbGqPHx3OQ6gk=">AAAB/3icbVC7TgJBFJ3FF+ILtbSZSEwsDNlVo5ZEG0oM8khgQ+4OF5gw+3DmrgnZUPgVtlrZGVs/xcJ/cUEKBU91cs69ueceL1LSkG1/Wpml5ZXVtex6bmNza3snv7tXN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxveTPzGA2ojw+CORhG6PvQD2ZMCKJXc6kl7AJSUx52kOu7kC3bRnoIvEmdGCmyGSif/1e6GIvYxIKHAmJZjR+QmoEkKheNcOzYYgRhCH1spDcBH4ybT0GN+FBugkEeouVR8KuLvjQR8Y0a+l076QAMz703E/7xWTL0rN5FBFBMGYnKIpMLpISO0TNtA3pUaiWCSHLkMuAANRKglByFSMU7ryaV9OPPfL5L6adG5KJ7dnhdK17NmsuyAHbJj5rBLVmJlVmE1Jtg9e2LP7MV6tF6tN+v9ZzRjzXb22R9YH990WpaL</latexit>

S, ĤS

<latexit sha1_base64="vRHFSPq59UeoRWvhvyBQuuUyf0M=">AAACDXicbVDLSgNBEJz1GeNr1ZN4GQyCBwm7KuoxKEKOEcwDkhB6J51kyOyDmV4hLMFP8Cu86smbePUbPPgvbmIETaxTUdVNd5UXKWnIcT6sufmFxaXlzEp2dW19Y9Pe2q6YMNYCyyJUoa55YFDJAMskSWEt0gi+p7Dq9a9GfvUOtZFhcEuDCJs+dAPZkQIolVr2btIQoPj18KjRA0qKw9aP0LJzTt4Zg88Sd0JybIJSy/5stEMR+xiQUGBM3XUiaiagSQqFw2wjNhiB6EMX6ykNwEfTTMYRhvwgNkAhj1BzqfhYxN8bCfjGDHwvnfSBembaG4n/efWYOhfNRAZRTBiI0SGSCseHjNAy7QZ5W2okgtHnyGXABWggQi05CJGKcVpWNu3DnU4/SyrHefcsf3JzmitcTprJsD22zw6Zy85ZgRVZiZWZYPfskT2xZ+vBerFerbfv0TlrsrPD/sB6/wKLx5to</latexit>

E , ĤE
<latexit sha1_base64="Am+IML8ZTRgKH+UbGqPHx3OQ6gk=">AAAB/3icbVC7TgJBFJ3FF+ILtbSZSEwsDNlVo5ZEG0oM8khgQ+4OF5gw+3DmrgnZUPgVtlrZGVs/xcJ/cUEKBU91cs69ueceL1LSkG1/Wpml5ZXVtex6bmNza3snv7tXN2GsBdZEqELd9MCgkgHWSJLCZqQRfE9hwxveTPzGA2ojw+CORhG6PvQD2ZMCKJXc6kl7AJSUx52kOu7kC3bRnoIvEmdGCmyGSif/1e6GIvYxIKHAmJZjR+QmoEkKheNcOzYYgRhCH1spDcBH4ybT0GN+FBugkEeouVR8KuLvjQR8Y0a+l076QAMz703E/7xWTL0rN5FBFBMGYnKIpMLpISO0TNtA3pUaiWCSHLkMuAANRKglByFSMU7ryaV9OPPfL5L6adG5KJ7dnhdK17NmsuyAHbJj5rBLVmJlVmE1Jtg9e2LP7MV6tF6tN+v9ZzRjzXb22R9YH990WpaL</latexit>

S, ĤS
<latexit sha1_base64="GKvxcODDr6gy/cizmwFzk90fx7E=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIDAsoIhEQZBHlISRSdL5twyvmhuzUosvIJtFDRIVq+h4J/wTYuIDDVaGZXOztuqKQh2/6wCguLS8srxdXS2vrG5lZ5e6dlgkgLbIpABbrjcoNK+tgkSQo7oUbuuQrb7uQi9dv3qI0M/Fuahtj3+NiXIyk4JdLN5aA2KFfsqp2B/SVOTiqQozEof/aGgYg89EkobkzXsUPqx1yTFApnpV5kMORiwsfYTajPPTT9OIs6YweR4RSwEDWTimUi/tyIuWfM1HOTSY/TnZn3UvE/rxvR6KwfSz+MCH2RHiKpMDtkhJZJB8iGUiMRT5Mjkz4TXHMi1JJxIRIxSkopJX0489//Ja1a1TmpHl0fV+rneTNF2IN9OAQHTqEOV9CAJggYwyM8wbP1YL1Yr9bb92jBynd24Res9y9mf5H7</latexit>

E2

<latexit sha1_base64="BuhtvjqQRN/Kclv57ylbrQkaiM0=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrIBAWUEQqIMgjykxIrOl0045fzQ3RoUWfkEWqjoEC3fQ8G/YJsUkDDVaGZXOztepKQh2/60CguLS8srxdXS2vrG5lZ5e6dpwlgLbIhQhbrtcYNKBtggSQrbkUbuewpb3ugy81sPqI0MgzsaR+j6fBjIgRScUun2qid75YpdtXOweeJMSQWmqPfKX91+KGIfAxKKG9Nx7IjchGuSQuGk1I0NRlyM+BA7KQ24j8ZN8qgTdhAbTiGLUDOpWC7i742E+8aMfS+d9Dndm1kvE//zOjENzt1EBlFMGIjsEEmF+SEjtEw7QNaXGol4lhyZDJjgmhOhlowLkYpxWkop7cOZ/X6eNI+qzmn1+OakUruYNlOEPdiHQ3DgDGpwDXVogIAhPMEzvFiP1qv1Zr3/jBas6c4u/IH18Q28OJIy</latexit>
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ĤSE2

<latexit sha1_base64="qRAVn3MX35U3GgXe/p95kT367qk=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIBAWUEQkoZBHlIiYnWl01yyvmhuzVSZKXhK2ihokO0/AkF/4JjUkBgqtHMrnZ2vEhJQ7b9YeUWFpeWV/KrhbX1jc2t4vZOw4SxFlgXoQp1ywODSgZYJ0kKW5FG8D2FTW90OfWb96iNDINbGkfo+jAIZF8KoFS66wyBkuqkm9xcdeWkWyzZZTsD/0ucGSmxGWrd4menF4rYx4CEAmPajh2Rm4AmKRROCp3YYARiBANspzQAH42bZKkn/CA2QCGPUHOpeCbiz40EfGPGvpdO+kBDM+9Nxf+8dkz9czeRQRQTBmJ6iKTC7JARWqZ1IO9JjUQwTY5cBlyABiLUkoMQqRin/RTSPpz57/+SxlHZOS0fX5+UKhezZvJsj+2zQ+awM1ZhVVZjdSaYZo/siT1bD9aL9Wq9fY/mrNnOLvsF6/0LfwKXIw==</latexit>

ĤSEi

Figure 2. A pictorial representation of the microscopic (left) and collision (right) model. In the
microscopic approach, the environment is represented as a uniform and continuous set of modes,
while in the collision model it is represented as a discrete collection of quantum systems.

2.2. Modeling the Dynamics

In the microscopic approach, in order to study the dynamics of the system, it is
convenient to move to the interaction picture with respect to the free Hamiltonian ĤS + ĤE .

We thus define the density matrix ρ̂SE and operators ÔSE acting on the joint Hilbert
space in the interaction picture as:

ρ̂I
SE = ei(ĤS+ĤE )tρ̂SE e−i(ĤS+ĤE )t, (7)

ÔI
SE = e−i(ĤS+ĤE )tÔSE e+i(ĤS+ĤE )t, (8)

where from now on we will drop the apex I and put it back only when confusion may arise.
Note also that we have set h̄ = 1.

In the interaction picture, one has that the unitary dynamics of the joint system is thus
given by:

dρ̂SE (t)
dt

= −i
[
ĤSE (t), ρ̂SE (t)

]
, (9)

which implies that the state of the joint system can be written as:
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ρ̂SE (t) = ρ̂SE (0)− i
∫ t

0
ds
[
ĤSE (s), ρ̂SE (s)

]
. (10)

Finally, one can insert Equation (10) into Equation (9) to obtain an integro-differential
equation of second order in ĤSE , and after tracing away the environmental degrees of
freedom one can write:

dρ̂S(t)
dt

= −
∫ t

0
ds Tr

{[
ĤSE (t),

[
ĤSE (s), ρ̂SE (s)

]]}
, (11)

which represents the starting point of the derivation of the Markovian GKSL equation in
the microscopic approach. In writing Equation (11), we assumed that the following stability
condition holds, namely:

TrE
{

ĤSE ρ̂SE (0)
}
= Tr

{
B̂(α)
E ρ̂E

}
= 0. (12)

This is the only assumption made up to now, and we will see shortly that a similar assump-
tion is needed also in the collisional approach. Anyway, it must be highlighted that this
assumption implies no loss of generality, as it can always be enforced by appropriately
rescaling the free Hamiltonian ĤS [47]. Specifically, in the case Tr

{
B̂(α)
E ρ̂E

}
= 〈B̂(α)

E 〉 6= 0,
one can define the displaced operator:

B̂(α)′
E = B̂(α)

E − 〈B̂
(α)
E 〉 (13)

Substituting this into the interaction Hamiltonian in Equation (5), one obtains:

ĤSE = ∑
α

Â(α)
S ⊗ B̂(α)′

E + ∑
α

〈B̂(α)
E 〉Â

(α)
S . (14)

One can immediately see that the second contribution corresponds to a renormalization of
the system Hamiltonian ĤS, while the first contribution is a new interaction Hamiltonian,
where now the stability condition in Equation (12) holds.

Apart from this stability condition, until this point no approximations or assumptions
have been made yet, and Equation (11) is still exact. Notice also that Equation (11) is of
second order with respect to the interaction Hamiltonian ĤSE .

Let us now derive the equivalent expression in the collisional approach, pictorially
summarized in Figure 3. In this case, the system starts its dynamics by interacting with the
first ancilla through the interaction Hamiltonian ĤSE1 according to the unitary map USE1 :

ρ̂S(0)⊗ η̂E1 → USE1(ρ̂S(0)⊗ η̂E1) = ÛSE1 ρ̂S(0)⊗ η̂E1Û†
SE1

(15)

where the unitary operator ÛSE1 stems from the unitary dynamics induced by the interac-
tion Hamiltonian ĤSE1 :

ÛSE1 = exp
[
−iĤSE1 δt

]
. (16)

Note that, at glance with the microscopic derivation, in the collision model we do not move
to the interaction picture.

The quantity δt is the collision time, i.e., the time during which the collision happens
and the system interacts with the ancilla E1. After the first collision, the degrees of freedom
of the ancilla E1 are traced away, leaving us with the state:

ρ̂S(δt) = TrE1

{
USE1(ρ̂S(0)⊗ η̂E1)

}
. (17)

At this point, the system S interacts with the ancilla E2 according to:

ρ̂S(δt)⊗ η̂E2 → USE2(ρ̂S(δt)⊗ η̂E2). (18)
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Then, we once again trace away the environment, obtaining the state of the system after
two collisions:

ρ̂S(2δt) = Tr
{
USE2(ρ̂S ⊗ η̂E2)

}
= Tr

{
USE2 ◦ USE1(ρ̂(0)⊗ η̂E1 ⊗ η̂E2)

}
. (19)

It is then easy to see that after the n-th collision, the state of the system S can be written as:

ρ̂S(nδt) = TrE1,E2,...,En

USEn ◦ USEn−1 ◦ · · · ◦ USE1

ρ̂S(0)
n⊗
i1

η̂Ei

 (20)

In order to obtain the collisional equivalent of Equation (11) we need to write an expression
of second order with respect to the interaction Hamiltonian ĤSEn . In order to do so, we
expand the operator ÛSEn in power series with respect to gδt, obtaining:

ÛSEn = Î − igδtĤSEn −
(gδt)2

2
Ĥ2

SEn
+O

(
(gδt)3

)
, (21)

so that the action of the unitary map USEn on the state ρ̂((n− 1)δt)⊗ η̂En can be written as:

USEn (ρ̂S((n− 1)δt)⊗ η̂En )

= ÛSEn (ρ̂S((n− 1)δt)⊗ η̂En )Û
†
SEn

= ρ̂S((n− 1)δt)⊗ η̂En − igδt
[
ĤSEn , ρ̂S((n− 1)δt)⊗ η̂En

]
(22)

+(gδt)2ĤSEn (ρ̂S((n− 1)δt)⊗ η̂En )ĤSEn −
(gδt)2

2

{
Ĥ2

SEn
, ρ̂S((n− 1)δt)⊗ η̂En

}
Upon assuming the stability condition, which in the collisional approach reads:

TrEi

{
ĤSEi (ρ̂S((i− 1)δt)⊗ η̂Ei )

}
= 0 ∀ i, (23)

we can finally write, after tracing the ancilla degrees of freedom:

ρ̂S(nδt)− ρ̂S((n− 1)δt)
δt

= (24)

g2δt TrEn

{
2ĤSEn(ρ̂S ⊗ η̂En)ĤSEn −

1
2
{

ĤSEn , ρ̂S((n− 1)δt)⊗ η̂En

}}
.

Equation (25) is the collisional equivalent of Equation (11): in fact, on the lhs of the
equation we find the difference between the state of the system at two different times,
divided by the collision time δt, which is nothing but a discrete form of the derivative with
respect to time appearing in Equation (11). On the rhs we find instead an expression which
is of second order with respect to the interaction Hamiltonian ĤSEn . It is also important
to highlight that in performing the series expansion in Equation (21), we assumed for
simplicity the interaction Hamiltonian is time independent, as otherwise another term
would appear [45,52].

Up to now, it might seem that the only difference between the microscopic and
collisional approaches is that one is time-continuous and the other discrete. In the next
subsection, we are going to see how the Born and Markov approximations allow one to
get deeper into the dynamics of the open system, and this will allow us also to see more
significant differences between the two approaches.
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Figure 3. Schematic representation of the collisional dynamics in the Markovian case. In panel (a),
the system interacts with the first ancilla E1 through the unitary map USE1 . In panel (b), after the
interaction has taken place, the ancilla E1 is traced away, leaving us with the state of the system after
the interaction ρ̂S(δt). Then in panel (c), the system interacts with the second ancilla E2 through the
unitary map USE2 . Finally, in panel (d), the ancilla E2 is traced away, leaving us with the state ρ̂S(2δt).
Repeating these two steps, interaction and tracing, for all the ancillas, gives rise to the open system
dynamics of S.

2.3. The Born-Markov Approximation

Let us now go back to Equation (11): while this equation looks very elegant, it is not
yet very informative, and is also hard to treat, as it is not clear how to deal with the huge
number of environmental degrees of freedom. Thus, some approximations are required in
order to simplify the expression.

The first of these approximations is the Born approximation: with this approximation,
one assumes that, as the coupling is weak and the environment is very large, the interaction
between S and E only slightly affects the state of the environment, so that the states of S
and E are factorized at all times, i.e.,

ρ̂SE (t) ' ρ̂S(t)⊗ ρ̂E (25)

It is important to stress that this approximation does not imply that the environment is
not affected by the interaction with S or that no excitations are created in the environment,
but only that these excitations decay much faster than the typical timescale at which the
dynamics of S happens. We can already see that we do not need to make this approximation
in the collisional approach, in the sense that the Born approximation is already embedded
in the model, since all the ancillas are initially uncorrelated with S.

Inserting Equation (25) into Equation (11), we obtain:

dρ̂S(t)
dt

= −
∫ t

0
ds Tr

{[
ĤSE (t),

[
ĤSE (s), ρ̂S(s)⊗ ρ̂E

]]}
, (26)

which is one step further towards our goal, but still is not simple enough to allow for further
calculations. In fact, the problem with Equation (26) is that it is non-local in time, i.e., it still
contains the state of the system at a previous time s, and thus is non-Markovian. Thus, in
order to derive a Markovian master equation, we need to enforce the Markov approximation,
which consists in substituting ρ̂S(s) with ρ̂S(t), obtaining the Redfield equation:
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dρ̂S(t)
dt

= −
∫ t

0
ds Tr

{[
ĤSE (t),

[
ĤSE (s), ρ̂S(t)⊗ ρ̂E

]]}
. (27)

At a glance with the microscopic approach, the Markov approximation is already embedded
in the collision model, and thus need not be enforced in Equation (25): this feature is due to
both the fact that the ancillas are all initially uncorrelated, i.e., in a product state, and also to
the fact that after the interaction with the system S the ancilla is immediately traced away.

In order to guarantee the positivity of Equation (27), we need one further assumption,
namely that the relaxation time τR at which the state of the joint system changes appreciably
is much larger than the timescale τE at which the environmental correlation functions, to
be defined in the next subsection, decay (see also [53,54]). If this is the case, then it is
possible to make the substitution s→ t− s in Equation (27) and let the integration limit go
to infinity:

dρ̂S(t)
dt

= −
∫ ∞

0
ds Tr

{[
ĤSE (t),

[
ĤSE (t− s), ρ̂S(t)⊗ ρ̂E

]]}
. (28)

2.4. The Secular Approximation

We are almost ready to write the Markovian master equation in the GKSL form. To
do this, we need to write the interaction Hamiltonian ĤSE in Equation (5) in terms of the
eigenoperators of ĤS. This can be done by considering the projectors Π̂ε onto the subspace
with energy ε and defining:

Â(α)
S (ω) = ∑

ε−ε′=ω

Π̂ε′ Â
(α)
S Π̂ε (29)

so that the interaction Hamiltonian becomes:

ĤSE = ∑
α,ω

Â(α)
S (ω)⊗ B̂(α)

E . (30)

The advantage of writing the interaction Hamiltonian in terms of the eigenoperators of ĤS
is that this allows us to write it in the interaction picture in a very simple fashion:

ĤSE (t) = ∑
α,ω

e−iωt Â(α)
S (ω)⊗ B̂(α)

E (t) (31)

As one can see, thanks to the decomposition in terms of eigenoperators of ĤS, the time
evolution of the interation Hamiltonian simply reduces to a phase. We can substitute
Equation (31) into Equation (28) and develop the commutator, obtaining:

dρ̂S(t)
dt

=
∫ ∞

0
ds TrE{ĤSE (t− s)(ρ̂S(t)⊗ ρ̂E )ĤSE (t)− (ρ̂S(t)⊗ ρ̂E )ĤSE (t− s)ĤSE (t)

+ ĤSE (t)(ρ̂S(t)⊗ ρ̂E )ĤSE (t− s)− ĤSE (t)ĤSE (t− s)(ρ̂S(t)⊗ ρ̂E )}
= ∑

ω,ω′
α,β

ei(ω′−ω)t
∫ ∞

0
ds eiωs TrE{B̂(α)†

E (t)B̂(β)
E (t− s)ρ̂E}[Â(β)

S (ω′)ρ̂S Â(α)†
S (ω) (32)

− Â(α)†
S (ω′)Â(β)

S (ω)ρ̂S(t) + Â(α)†
S (ω)ρ̂S Â(β)

S (ω′)− ρ̂S(t)Â(β)
S (ω)Â(α)†

S (ω′)]

The last equation can be written in a more concise fashion by defining the Fourier transform
of the environmental two-time correlation functions as:

Γαβ(ω) =
∫

ds eiωs TrE
{

B̂(α)†
E (t)B̂(β)

E (t− s)ρ̂E
}

(33)
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where it has been assumed that ρ̂E is a stationary state of the environment, i.e., that[
ĤE , ρ̂E

]
= 0, so that Γαβ(ω) is time-independent. With this definition, Equation (33) can

be written as:

dρ̂S(t)
dt

= ∑
ω,ω′
α,β

Γαβ(ω)ei(ω′−ω)t[Â(β)
S (ω′)ρ̂S Â(α)†

S (ω)− Â(α)†
S (ω′)Â(β)

S (ω)ρ̂S(t)

+Â(α)†
S (ω)ρ̂S(t)Â(β)

S (ω′)− ρ̂S(t)Â(β)
S (ω)Â(α)†

S (ω′)] (34)

Let us now take a closer look at Equation (34), where we have eigenoperators relative to
different eigenfrequencies ω, ω′. The dynamics of S happens at a timescale τS ' |ω−ω′|−1;
that is, τS is the timescale at which the state of S changes appreciably. If this timescale
is much smaller than the timescale τR at which the joint S + E system evolves, then it is
possible to neglect the terms with ω 6= ω′ in Equation (34). This is the so-called secular
approximation, which allows us to write:

dρ̂S(t)
dt

= ∑
ω

α,β

Γαβ(ω)[Â(β)
S (ω)ρ̂S Â(α)†

S (ω)− Â(α)†
S (ω)Â(β)

S (ω)ρ̂S(t)

+Â(α)†
S (ω)ρ̂S Â(β)

S (ω)− ρ̂S(t)Â(β)
S (ω)Â(α)†

S (ω)] (35)

Thanks to the secular approximation, we have a much simpler expression, as now
only terms where the operators have the same frequency ω appear.

Let us now go back to the collisional approach. Substituting Equation (6) into
Equation (25), we obtain immediately:

ρ̂S(nδt)− ρ̂S((n− 1)δt)
δt

=

g2δt ∑
α,β

Γαβ

(
Â(α)

S ρ̂S((n− 1)δt)Â(β)†
S − 1

2

{
Â(β)†

S Â(α)
S , ρ̂S((n− 1)δt)

})
. (36)

where in this case we define the environment correlation functions as:

Γαβ = TrEn

{
B̂(β)†

En
B̂(α)

En
η̂En

}
. (37)

It is worth noticing at this point some differences with the microscopic approach. First, we
did not need to express the interaction Hamiltonian ĤSEn in terms of eigenoperators of
ĤS. This feature is once again due to the discrete nature of the collision model, while in
the microscopic approach, having depicted the environment as a continuum of modes, we
needed to select the collective modes actually interacting with the system S.

In second place, we did not need to invoke the secular approximation: while this
feature might still look as if it is due to the discreteness of the model, it is actually due
to the fact that each collision between system and ancillas is by construction described
by a completely positive and trace-preserving (CPT) map. This has important and deep
consequences: first of all the positivity of Equation (36) is already guaranteed, since a
combination of CPT maps is still a CPT map. This is to be compared with the microscopic
approach, where the secular approximation is a necessary condition to obtain complete
positivity. Furthermore, dynamical evolution described by a combination of CPT maps
implies the possibility of writing a master equation in Lindblad form [6,51].

At this point, only one more step is needed to derive the semigroup generator in GKSL
form, as we are going to see in the next subsection.
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2.5. The GKSL Generator

In order to write the final form of the GKSL master equation, we need to manipulate
the matrix Γαβ. This manipulation is basically the same in both approaches, apart from the
different definition. In fact, the matrix Γαβ(ω) can be written as:

Γαβ(ω) =
1
2

Γαβ(ω) +
1
2

Γαβ(ω) =
1
2
(Γαβ(ω) + Γ∗βα(ω)) +

i
2
(−iΓαβ(ω) + iΓ∗βα(ω))

=
1
2

γαβ(ω) + iΣαβ(ω) (38)

where we have defined

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω), (39)

Σαβ(ω) = − i
2
(Γαβ(ω)− Γ∗βα(ω)). (40)

The matrix Σαβ is Hermitian for fixed ω, while the matrix γαβ(ω) is positive. Every
positive matrix can be diagonalized through a unitary operator uαβ(ω), so that:

γαβ(ω) = ∑
γ

uαγ(ω)γ′γu†
γβ(ω) (41)

where the matrix γ′γ(ω) is a real diagonal matrix. Through the unitary uαβ(ω), it is also
possible to define the new operators

Â
′(α)
S (ω) = ∑

β

uαβ Â(β)
S (ω), (42)

which are linear combinations of the original operators Â(α)
S (ω).

Using the definitions in Equations (39), (40), (42) we can rewrite Equation (35) as:

dρ̂S(t)
dt

= −i
[
ĤLS, ρ̂S(t)

]
+ ∑

ω,α
γ′α(ω)

(
Â
′(α)
S (ω)ρ̂S Â

′(α)†
S (ω)− 1

2

{
Â
′(α)†
S (ω)Â

′(α)
S (ω), ρ̂S(t)

})
(43)

where the Hermitian operator ĤLS(t) is known as the Lamb shift and is defined as:

ĤLS = ∑
ω

α,β

Σαβ(ω)Â(α)†
S (ω)Â(β)

S (ω). (44)

Equation (43) is the GKSL form of the master equation, and the operators Â
′(α)
S are called

Lindblad operators: it contains a unitary part of the dynamics, dictated by the commutator
term, and a dissipative part, dictated by the sum of the terms on the second line.

With the same procedure, we can write the final GKSL form of the master equation in
the collisional approach, obtaining:

ρ̂S(nδt)− ρ̂S((n− 1)δt)
δt

= −i
[
ĤLS, ρ̂S((n− 1)δt)

]
(45)

+g2δt ∑
ω,α

γ′α(ω)

(
Â
′(α)
S (ω)ρ̂S((n− 1)δt)Â

′(α)†
S (ω)− 1

2

{
Â
′(α)†
S (ω)Â

′(α)
S (ω), ρ̂S((n− 1)δt)

})
.

We see that the main difference between Equations (43) and (45) is the discreteness of the
time parameter: we are going to see in the next subsection how it is possible to transform
Equation (45) into a time-continuous equation.
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We are also at a good point to present the main differences between the collisional and
microscopic approaches, as presented in Table 1.

Table 1. Summary of the main differences between the microscopic and collisional approaches. The
stability condition is very similar in the two approaches, and the main difference is given only by the
discrete nature of the collision model. The Born and Markov approximations are instead where the
differences between the two approaches become the most evident: in facts, while in the microscopic
approach one needs to enforce both during the derivation of the master equation, in the collisional
approach these two approximations are already encompassed in the initial conditions, namely the
fact that all the ancillas do not share any initial correlation and that they do not interact with each
other during the dynamics. As a matter of fact, non-Markovianity is usually introduced in collision
models by allowing interactions between the ancillas so that some memory effect is retained. Finally,
also the secular approximation is identical in both approaches, as it deals with the ratio between the
typical timescale of the system S and the one of the joint system. However, as highlighted in the main
text, the secular approximation is usually not needed in most collision models, as the interaction
Hamiltonian is chosen so as to conserve the particle number.

Approximation Microscopic Approach Collisional Approach

Stability condition TrE
{

ĤSE ρ̂SE (0)
}
= 0 TrEi

{
ĤSEi (ρ̂S((i− 1)δt)⊗ η̂Ei )

}
= 0

Born approximation ρ̂SE (t) ' ρ̂S(t)⊗ η̂E Not needed, as it is already encompassed
by the assumption of tensorized ancillas

Markov approximation ρ̂S(s)→ ρ̂S(t) Not needed, as the ancillas do not interact
with each other

Secular approximation τS ' |ω−ω′|−1 << τR
Not needed, as each collision is already

completely positive

The first assumption we made was the stability condition, as in Equations (12) and (23):
these two equations look very similar indeed, and the only difference between the two is
given by the fact that the microscopic model is time-continuous while the collision model
has a discrete fashion.

An important difference between the two approaches has been met first when dealing
with the Born and Markov approximations. In the microscopic approach, both approxi-
mations had to be enforced through Equations (25) and (27), respectively. In the collision
model, on the other hand, there was no need to enforce these approximations, as they are
already included in the initial conditions of the model. Namely, the Born approximation
is given, in the collisional approach, by the fact that the initial state of the ancillas is a
tensor product state with the state of the environment, and as the interaction is always
between the system S and a single ancilla Ei, and as the ancilla degrees of freedom are
traced away immediately afterwards, no correlations are retained in the system. As for the
Markov approximations, since there are no intra-ancilla interactions, i.e., collisions between
different ancillas, no memory effects are present: in fact, collision models giving rise to
non-Markovian dynamics are often obtained by allowing for such intra-ancilla interactions,
so that partial memory of the previous collisions is retained, though memory effects can be
introduced also by other means [28].

Finally, the last approximation we enforced in the microscopic approach was the
secular approximation. This approximation involves the ratio between the typical timescale
of the system, defined by |ω−ω′|−1, and the typical relaxation time τR of the joint system,
and it is enforced in order to guarantee the complete positivity of the dynamical evolution.
Opposite to this, in the collision model the complete positivity is guaranteed by the fact
that each collision between the system S and one of the ancillas is completely positive by
definition, and thus the combination of CPT maps is also completely positive. This is one
of the most distinctive feature of collision models, and one of the main reasons they allow
for a simple derivation of the master equation.
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2.6. The Continuous Time Limit

In this subsection, we briefly explain how to enforce the continuous time limit in
the collision model. While at first sight this might seem strange, as the collision model
is inherently discrete, the continuous time limit can lead to a continuous time master
equation directly from a simple discrete model. Once again, this is to be compared with the
microscopic approach, where one needs to enforce a series of approximations, thus making
more complicated the derivation of the final result.

To enforce this limit, one needs at the same time to make the number of collisions and
the interaction strength infinite, while making the collision time infinitesimal, so as to have:

lim
g→∞
δt→0

g2δt = γ (46)

Within this limit, one has that the product between the number of collisions and the collision
time becomes the time variable, while the collision time becomes a differential:

lim
δt→0
n→∞

nδt = t (47)

Inserting all this limit into Equation (45), one has that the lhs of the equation becomes:

lim
δt→0
n→∞

ρ̂S(nδt)− ρ̂S((n− 1)δt)
δt

=
dρ̂S(t)

dt
, (48)

while the rhs of Equation (45) becomes:

lim
δt→0

lim
n→∞

lim
g→∞
−i
[
ĤLS, ρ̂S((n− 1)δt)

]
+g2δt ∑

ω,α
γ′α(ω)

(
Â
′(α)
S (ω)ρ̂S((n− 1)δt)Â

′(α)†
S (ω)− 1

2

{
Â
′(α)†
S (ω)Â

′(α)
S (ω), ρ̂S((n− 1)δt)

})
(49)

= −i
[
ĤLS, ρ̂S(t)

]
+ γ ∑

ω,α
γ′α(ω)

(
Â
′(α)
S (ω)ρ̂S(t)Â

′(α)†
S (ω)− 1

2

{
Â
′(α)†
S (ω)Â

′(α)
S (ω), ρ̂S(t)

})
.

Thus one can see that after the continuous time limit has been enforced, Equation (50)
becomes basically identical to Equation (43). It must be noted, however, that much care
is needed when enforcing such a limit, as there are situations in which it can give rise to
pathological situations, see [51] for an extensive discussion of this issue.

3. Examples

In order to better understand the collisional approach, we are now going to examine
some very simple examples of two-level systems (TLS) and harmonic oscillators interacting
with thermal baths. Such scenarios are among the most simple and common that one can
find, and thus very instructive without unnecessary complications stemming from more
articulated physical systems.

3.1. TLS Interacting with a Bosonic Bath

As a first example, we want to consider a TLS, characterized by the two levels |e〉, |g〉,
with free Hamiltonian

ĤS =
1
2

h̄ω0σ̂z (50)

where σ̂z is the usual Pauli matrix defined as:

σ̂z = |e〉〈e| − |g〉〈g| =
[

1 0
0 −1

]
. (51)
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This TLS interacts with a polarized monochromatic electric field in a thermal state, i.e.,
a bosonic mode. We thus model the environment as a set of ancillas {Ei} characterized by
the Hamiltonian

ĤEi = h̄ωb̂†
Ei

b̂Ei (52)

where b̂†
Ei

, b̂Ei are bosonic creation and annihilation operators, respectively, fulfilling the
commutation relations: [

b̂Ei , b̂†
Ej

]
= δij. (53)

Moreover, we assume that the frequency ω ' ω0, so that each ancilla is almost at resonance
with the frequency of the TLS.

As we want to study the effect of the interaction with a thermal field, we write the
state of the ancillas as:

η̂Ei =
e−βĤEi

ZEi

, ZEi = Tr
{

e−βĤEi

}
= (1− e−βh̄ω)−1, (54)

where β = (kBT)−1 is the inverse temperature and ZEi is the so-called partition function.
To a first approximation, the interaction between the TLS and the field is given by the

dipole interaction. In cases of light polarized along the x direction, the dipole interaction
between the TLS and the electric field can be written as:

ĤSEi = g(σ̂+ b̂Ei + σ̂− b̂†
Ei
), (55)

where g is a constant containing all the information about the dipole moment matrix
element and the interaction strength, while the operators σ̂± are defined as:

σ̂+ = |e〉〈g| =
[

0 1
0 0

]
, (56)

σ̂− = |g〉〈e| =
[

0 0
1 0

]
. (57)

The first thing to notice is that the stability condition is fulfilled, since:

TrEi

{
ĤSEi (ρ̂S(i− 1)⊗ η̂Ei )

}
=

g
ZEi

TrEi

{
(σ̂+ b̂Ei + σ̂− b̂†

Ei
)(ρ̂S(0)⊗ e−βh̄ωb̂†

Ei
b̂Ei )

}
= 0. (58)

At this point we can immediately compute the environmental correlation functions,
which in this case are given by:

γb̂† b̂ = Tr

{
b̂† b̂

e−βh̄ωb̂† b̂

Z

}
= Nβ = (eβh̄ω − 1)−1, (59)

γb̂b̂† = Tr

{
b̂b̂† e−βh̄ωb̂† b̂

Z

}
= Nβ + 1 = (eβh̄ω − 1)−1 + 1, (60)

γb̂b̂ = 0, γb̂† b̂† = 0. (61)

We are then ready to write the master equation as:

ρ̂S(n + 1) = ρ̂S(n) + (gδt)2

{
(Nβ + 1)

[
σ̂−ρ̂S(n)σ̂+ −

1
2
{σ̂+σ̂−, ρ̂S(n)}

]

+ Nβ

[
σ̂+ρ̂S(n)σ̂− −

1
2
{σ̂−σ̂+, ρ̂S(n)}

]}
. (62)
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As one can see, thanks to the simplicity of the collision model, we have been able to write
down the master equation after just a few lines of calculations.

It is easy to find the steady state ρ̂
steady
S of Equation (62) by imposing the condition

ρ̂S(n + 1) = ρ̂S(n), which implies:

(Nβ + 1)
[

σ̂−ρ̂
steady
S σ̂+ −

1
2

{
σ̂+σ̂−, ρ̂

steady
S

}]
+ Nβ

[
σ̂+ρ̂

steady
S σ̂− −

1
2

{
σ̂−σ̂+, ρ̂

steady
S

}]
= 0

⇒ −Nβ

[
(ρ

steady
11 − ρ

steady
22 ) ρ

steady
12

ρ
steady
21 −(ρsteady

11 − ρ
steady
22 )

]
−
[

ρ
steady
11 ρ

steady
12 /2

ρ
steady
21 /2 −ρ

steady
11

]
= 0. (63)

Using Equation (63) together with the condition ρ
steady
11 + ρ

steady
22 = 1, we obtain:

ρ
steady
11 =

1
eβh̄ω0 + 1

(64)

ρ
steady
22 =

eβh̄ω0

eβh̄ω0 + 1
, (65)

ρ
steady
12 = 0. (66)

These matrix elements are nothing but those of a thermal state at temperature β, i.e.,

ρ̂
steady
S =

e−βh̄ω0σ̂z

Tr{e−βh̄ω0σ̂z} . (67)

It is important to note also that the detailed balance condition is satisfied since:

ρ
steady
11

ρ
steady
22

= e−βh̄ω0 . (68)

3.2. Bosonic Mode Interacting with a Bosonic Bath

As a second example, we want to consider a bosonic mode interacting with a bosonic
bath. At a glance, with the previous example, the system Hamiltonian is now given by:

ĤS = h̄ω0 â† â, (69)

where â†, â are the creation and annihilation operators for the bosonic mode, fulfilling the
standard commutation relation

[
â, â†] = Î.

As in the previous example, we model the environment as a set of ancillas {Ei} in the
thermal state η̂Ei characterized by the Hamiltonian in Equation (52).

Since now the system is described by the operators â, â†, we write the interaction
Hamiltonian between the system and each ancilla in the dipole approximation as:

ĤSEi = g
(

âb̂†
Ei
+ â† b̂Ei

)
(70)

As the environmental correlation functions are identical to the ones from the previous
section, it is immediately apparent that the master equation can be written as follows:

ρ̂S(n + 1) = ρ̂S(n) + (gδt)2

{(
Nβ + 1

)[
âρ̂S(n)â† − 1

2

{
â† â, ρ̂S(n)

}]

+ Nβ

[
â†ρ̂S(n)â− 1

2

{
ââ†, ρ̂S(n)

}]}
. (71)
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As can be seen, Equation (71) is very similar to the master equation in Equation (62), with
the only difference being that the operators σ̂+, σ̂− have been substituted by the operators
â†, â, respectively.

Using Equation (71), it is possible to compute the steady state of the expectation
value of any combination of operators â, â†. In particular, one can find the steady state
populations by imposing the condition:

Tr
{

â† â(ρ̂S(n + 1)− ρ̂S(n))
}
= 0. (72)

From this condition, inserting Equation (71) and exploiting the commutation relations of
the operators â, â†, one obtains:

(gδt)2(Nβ + 1)Tr
{

â† ââρ̂S(n)â† − â† ââ† âρ̂S(n)
}

+(gδt)2Nβ Tr
{

â† ââ†ρ̂S(n)â− 1
2

â† âââ†ρ̂S(n)−
1
2

â† âρ̂S(n)ââ†
}

= 0 (73)

⇒ (gδt)2
[
−(Nβ + 1)Tr

{
â† âρ̂S(n)

}
+ Nβ(Tr

{
â† âρ̂S(n)

}
+ 1)

]
= 0

⇒ Tr
{

â† âρ̂S(n)
}
= Nβ.

As in the previous example, the populations become thermal, which implies that the system
thermalizes at the temperature β of the environment. This is perfectly analogous to the case
of a TLS interacting with the bosonic bath, with the main difference being the fact that we
exploited the algebra of the operators â, â† to perform the calculations.

3.3. TLS Interacting with a TLS Bath

The last example we consider is once again a TLS, but this time interacting with a bath
composed by TLSs. Thus, the Hamiltonian of the system is the same as in Equation (50),
while we model the environment as a set of ancillas {Ei} with Hamiltonian

ĤEi =
1
2

h̄ωσ̂z
Ei

, (74)

that is, each ancilla is a TLS in the state η̂Ei that for the moment does not need to be specified.
We can write the most general interaction between two TLSs as:

ĤSEi = gex

(
σ̂+

S σ̂−Ei
+ σ̂−S σ̂+

Ei

)
+ gdecσ̂z

Sσ̂z
Ei

. (75)

The first part of this interaction Hamiltonian is responsible for the exchange of excitations
between S and the ancilla Ei, and thus is equivalent to the interaction Hamiltonian in
Equation (55) with the operators σ̂± substituting b̂, b̂†. The term proportional to gdec is
instead responsible for pure decoherence, as we are going to see explicitly.

The first thing to do is to verify whether the stability condition holds. In order to do
this, we need to compute the following traces:

Tr
{

σ̂+
Ei

η̂
}
= η21, Tr

{
σ̂−Ei

η̂
}
= η12, Tr

{
σ̂z

Ei
η̂
}
= η11 − η22 (76)

where we have parametrized the ancilla state η̂Ei as:

η̂Ei =

[
η11 η12
η21 η22

]
(77)

We note that for the stability condition to hold one surely needs η12 = η∗21 = 0, i.e., the
environmental state must not have any coherence. This is actually a more general fact,
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since the first moments of creation and annihilation (fermionic or bosonic) are typically
zero for diagonal states such as thermal states or the vacuum.

We also notice that the third term in Equation (76) is never zero, apart from the case
of the maximally mixed state. This is anyway not a problem, because the corresponding
term in the master equation is proportional to σ̂z

S, and thus to the Hamiltonian ĤS, so that
we can eliminate it through an appropriate renormalization of the frequency of the TLS.
This is an example of how the stability condition can be always enforced, as anticipated in
Section 2. We will thus neglect this term in what follows.

Assuming that the ancilla state is diagonal (i.e., η12 = η∗21 = 0), one can compute the
environmental correlation function as:

Γ̂σ̂+ σ̂− = TrEi

{
σ̂+σ̂−η̂Ei

}
= η11 (78)

Γ̂σ̂− σ̂+ = TrEi

{
σ̂−σ̂+η̂Ei

}
= η22 (79)

Γ̂σ̂z σ̂z = TrEi

{
σ̂zσ̂zη̂Ei

}
= 1, (80)

so that the master equation finally reads:

ρ̂S(n + 1)− ρ̂S(n)
δt

= g2
exδt η11

[
σ̂−S ρ̂S(n)σ̂+

S −
1
2
{

σ̂+
S σ̂−S , ρ̂S(n)

}]
+ g2

exδt η22

[
σ̂+

S ρ̂S(n)σ̂−S −
1
2
{

σ̂−S σ̂+
S , ρ̂S(n)

}]
+ g2

decδt[σ̂z
Sρ̂S(n)σ̂z

S − ρ̂S(n)] (81)

where in the last row we have exploited the identity σ̂z
Sσ̂z

S = I.
We can now analyze the effect of each row of Equation (81). The first two rows,

analogously to Equation (62), are responsible for the exchange of excitation into and from
the bath, respectively. In particular, one can notice that, in agreement with the physics of
fermions, the first row, which described the exchange of excitations from the system into
the environment, is proportional to the population of the ground state of the environment:
if η11 = 0, this would mean that all the spin in the environment is in their excited state, and
thus that there would not be any space for an excitation coming from the system.

Conversely, the second row is responsible for the absorption of excitations from the
environment into the system: if η22 = 0, this would mean that environment were in its
ground state, and thus that there would be no excitations that the system could absorb.

Finally, the last term of Equation (81) has no analogue in Equation (62): we can
easily verify that this term is responsible for pure decoherence, i.e., decoherence without
dissipation. To see this we compute explicitly the effect of this term. We have that:

σ̂z
Sρ̂S(n)σ̂z

S =

[
1 0
0 −1

][
ρ11(n) ρ12(n)
ρ21(n) ρ22(n)

][
1 0
0 −1

]
=

[
ρ11(n) −ρ12(n)
−ρ21(n) ρ22(n)

]
(82)

so that one has that the density matrix at the n + 1 step can be written as:[
ρ11(n + 1) ρ12(n + 1)
ρ21(n + 1) ρ22(n + 1)

]
=

[
ρ11(n) ρ12(n)
ρ21(n) ρ22(n)

]
− 2(gdecδt)2

[
0 ρ12(n)

ρ21(n) 0

]
. (83)

From Equation (83), we can see that the effect of the Lindblad term with the operator σ̂z
S

has the effect of reducing the off-diagonal terms of the density matrix, that is, the coherence
of the state, thus driving any initial state into a purely diagonal state, without affecting
the population.

This, together with the other two terms of Equation (81), implies that the steady state
of the system is a state without coherence (i.e., diagonal) whose populations are the same as
the one of the environment. This means that we are dealing with a homogenizing process,
in which the system is driven step by step towards the same state as the environment.
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4. Conclusions

In this tutorial we have examined how collision models work by deriving the Marko-
vian GKSL generator. This was done step by step, highlighting the approximations made
and their meaning with respect to physical systems. Moreover, the collisional approach was
compared step by step with its microscopic counterpart, thus highlighting the differences
between the two approaches, in order to better explain the strengths and weaknesses of the
two approaches.

We have also shown how to practically use the concept illustrated in Section 2 via
three paradigmatic examples, namely a quantum TLS interacting with either a bosonic or a
TLS bath, and the case of a bosonic system interacting with a bosonic bath.

We hope that this tutorial can be useful to anybody interested in starting using collision
models, as they represent a useful tool in the study of the open quantum system and there
is a large community of researchers working with them.
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