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Abstract

Intent recognition is a data-driven alternative to expert-crafted rules for triggering transitions 

between pre-programmed activity modes of a powered leg prosthesis. Movement-related signals 

from prosthesis sensors detected prior to movement completion are used to predict the upcoming 

activity. Usually, training data comprised of labeled examples of each activity are necessary; 

however, the process of collecting a sufficiently large and rich training dataset from an amputee 

population is tedious. In addition, covariate shift can have detrimental effects on a controller’s 

prediction accuracy if the classifier’s learned representation of movement intention is not robust 

enough. Our objective was to develop and evaluate techniques to learn robust representations of 

movement intention using data augmentation and deep neural networks. In an offline analysis 

of data collected from four amputee subjects across three days each, we demonstrate that our 

approach produced realistic synthetic sensor data that helped reduce error rates when training 

and testing on different days and different users. Our novel approach introduces an effective and 

generalizable strategy for augmenting wearable robotics sensor data, challenging a pre-existing 

notion that rehabilitation robotics can only derive limited benefit from state-of-the-art deep 

learning techniques typically requiring more vast amounts of data.
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I. Introduction

Advances in wearable sensing have enabled access to a vast collection of kinematic, 

kinetic, and muscle activity patterns during locomotion from both healthy and gait-

impaired individuals. These patterns, when aggregated across individuals and experimental 

conditions, have been useful for not only assessing walking behavior but also developing 

human-machine interfaces for controlling wearable assistive devices such as powered leg 

prostheses. In powered lower-limb prosthetics, movement-related signals detected before 

movement completion can be used to train a pattern classification algorithm. The algorithm 

predicts the upcoming activity to modulate assistance from the device on a step-by-step basis 

(e.g. at heel contact and toe off) with a technique called intent recognition [1], [2].

Intent recognition is a machine learning-based alternative to using threshold-based rules 

to trigger transitions between pre-programmed prosthesis activity modes such as level-

ground and ascending/descending stairs and ramps. Intent recognition has already enabled 

amputees to safely, seamlessly, and intuitively transition between these modes [3] but 

labeled examples of these activities are required to train this type of controller. Collecting 

training data from a gait-impaired population is tedious and challenges the long-term clinical 

viability of intent recognition. During a typical training session, a subject walks on the 

device for up to 3–4 hours under supervision by clinical and research teams who ensure 

subject safety and comfort [4], [5].

User safety may be compromised by some prediction errors that cause substantial gait 

perturbations so minimizing the number of misclassified steps is an ongoing area of 

improvement for intent recognition [6]–[8]. Therefore, improving the long-term stability 

and generalizability of intent recognition-based classifiers without increasing the training 

burden represents a major improvement towards clinical viability. Ideally, experienced users 

should be able to walk with the prosthesis while performing activities of daily living over 

long durations after the initial training data collection. Novice users should also able to 

walk with the prosthesis using a classifier pre-trained on other users (after which classifier 

adaptation could provide additional personalization) [9].

Misclassifications occur when the trained classifier does not generalize well to new patterns 

at prediction time. Poor generalization (i.e. covariate shift) between days or users can be 

attributed to factors such as differences in device configuration (e.g. prosthetic alignment, 

socket comfort), task conditions (e.g. speed, step length), user characteristics (e.g. residual 

limb length, muscle strength), or the environment (e.g. stair height, level of distraction). 

Although these factors cannot be perfectly anticipated, solutions designed to mitigate their 

adverse effects could greatly improve intent recognition functionality by reducing error rates 

over long durations and for novice users.
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Existing approaches to improve generalizability have mostly relied on online adaptation 

or experimental dataset expansion. In online adaptation, the system estimates the activity 

mode of the previous gait cycle to automatically label incoming data. Adaptation, though 

promising, is a gradual process that still requires an adequately performing initial classifier 

[10]. Intuitively, the classifier could also be improved by experimentally collecting more 

training data to provide better coverage of the input space. Using prior knowledge in how 

the predicted movements could be performed, the experimental protocol can be designed to 

target plausible sources of variability to improve classifier generalizability [11], [12].

The experimental protocol is commonly completed as semi-continuous circuits designed 

to maximize the number of transitions collected [10]. However, examples of transitional 

steps (e.g. level-ground to stairs) are still sparse compared to steady-state steps (e.g. level-

ground walking) as a natural consequence of a circuit-based protocol. In addition to circuits 

completed in the laboratory, collecting additional data in more ecological settings (e.g. with 

spontaneous transitions, distractions) and with natural gait variability (e.g. in cadence, angle 

of approach) can encourage learning invariance to factors unrelated to the activity label [12]. 

Although these strategies may provide some benefit, there are practical limitations to just 

collecting more experimental training data.

Even with experimental dataset expansion, classifiers are effectively only trained on a 

sparsely sampled subset (relative to the set of all probable prosthesis configurations for 

a given activity) of the sensor data, which lie in a high-dimensional space. Therefore, 

we questioned whether we could learn the underlying generative model (i.e. true data 

distribution) of the multivariate time-series sensor data recorded from a powered leg 

prosthesis for several different walking activities. If successful, we could use the model 

to generate an arbitrary number of synthetic examples of sensor data which are similar to, 

but not mere copies of, the experimental training data. Ideally, synthetic examples would 

reflect plausible sources of variability and could supplement the limited experimental data.

Synthesizing images, sound, and text using deep generative models has been very successful 

[13]–[15]. However, deep generative modeling is not commonly applied to multivariate 

time-series data from sensors used in wearable robotics. Therefore, we developed and 

validated techniques for training deep generative models of multivariate sensor data using 

only tens or hundreds of experimentally-collected training examples by first applying 

data augmentation techniques including shifting, scaling, and additive random noise. We 

applied our approach to improve the generalizability of an existing intent recognition 

paradigm across days and across users [5]. Using the generative model yielded more robust 

representations of movement intention which effectively replaced an additional session of 

experimental training data collection.

To our knowledge, this study represents the first attempt to apply generative modeling to 

improve control of a wearable assistive device. The main contributions of our work include 

a flexible pipeline for training a deep generative model which synthesizes realistic sensor 

data and an initial demonstration of its effectiveness in mitigating some adverse effects of 

covariate shift. First, we describe the experimental protocol and training dataset and explain 

the intent recognition paradigm. Second, we detail the data processing steps for training a 
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generative model of prosthesis sensor data. Lastly, we present offline classification results 

to highlight the ways in which combining data augmentation with a deep generative model 

can improve the generalizability and functionality of a state-of-the-art intent recognition 

paradigm without increasing the training burden.

II. Methods

A. Experimental protocol

Four individuals with a unilateral transfemoral amputation (Table 1) were recruited and 

gave written informed consent to participate in the study, which was approved by the 

Northwestern Institutional Review Board. Subjects were fitted with a powered knee-ankle 

prosthesis designed by Vanderbilt University [16] and had prior experience (at least 10 

hours) with the device. The device is controlled using a finite-state based impedance 

control system, described in detail in [4]. Briefly, it uses an impedance-based model to 

specify reference joint torques throughout the gait cycle and vary the mechanical response 

of the prosthesis for stance and swing phases across different activity modes including 

level-ground walking, ramp ascent/descent, stair ascent/descent, and standing.

The prosthesis is pre-programmed to function in these six activity modes and uses a variety 

of device-embedded sensors (Table 2, in units after applying scaling factors) to record 

movement-related signals. These sensor signals are used to both trigger transitions between 

states and predict the upcoming activity using intent recognition. Each mode except for 

standing was subdivided into four states (early-to mid-stance, late-stance, swing flexion, 

swing extension); standing was subdivided into two states (load on, load off). Mode 

transitions occurred 90 ms after one of four gait event-related state transitions: heel contact, 

mid-stance, toe-off, or mid-swing. Previous work has shown that triggering changes only 

at these points in the gait cycle enables seamless and natural transitions between prosthesis 

modes [5], [10].

We used a mode-specific classification scheme [5] to predict whether the prosthesis should 

remain in the same mode or switch to a different mode. Eight mode-specific classifiers were 

selectively activated depending on the current mode and triggered gait event. For example, 

the heel contact level-ground walking classifier (HCLW) was active when heel contact was 

triggered in level-ground walking mode and predicted whether the prosthesis should remain 

in level-ground walking mode or transition to ramp descent or to stair descent mode for the 

upcoming stance phase. Training data were collected from subjects on three separate days 

separated by at least 7 weeks depending on subject availability (Figure 1, Table 1).

On each day, subjects were instructed to perform several locomotor activities including 

level-ground walking, ascending/descending stairs and a 10° ramp, and transitions between 

these activities in the form of a circuit in an ambulation laboratory. A single circuit trial 

consisted of traversing the following ordered series of terrain in both directions (level-

ground to stair ascent to level-ground to ramp descent to level-ground, and level-ground 

to ramp ascent to level-ground to stair descent to level-ground). Circuit A and circuit B 

distinguished trials using 6-step and 5-step staircases, respectively.
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1) Day 1 protocol: Ten trials each of circuit A and circuit B, 10 trials of level-ground 

walking (speed and heading varied trial-by-trial), 10 trials each of ascending/descending a 

2-step staircase from standing, and 5 trials each of ascending/descending a 4-step staircase 

(different step height) from standing.

2) Day 2 protocol: Seven trials each of circuit A and circuit B, 10 trials of level-ground 

walking (speed, direction, step length, and step width varied trial-by-trial), 10 trials each of 

ascending/descending a 2-step staircase (different step height from Day 1) from standing, 

and 5 trials each of ascending/descending the 4-step staircase from Day 1 with trial-by-trial 

variation in upper extremity support (i.e. one hand, both hands, no hands).

3) Day 3 protocol: Two trials each of circuit A and circuit B and the following in 

a therapy gym in the rehabilitation hospital: 10 trials of level-ground walking (speed, 

heading, step length, step width, stops, starts, sudden turns varied trial-by-trial), 5 trials each 

of ascending/descending a 10° ramp and a 14° ramp (cadence, upper extremity support, 

step length, approach varied trial-by-trial), 10 trials each of ascending/descending a 4-step 

staircase (different step height from Days 1 and 2), a trial of ascending/descending 4 flights 

of stairs with varied number of steps, and 5 trials each of ascending/descending a 2-step 

staircase with trial-by-trial variation in upper extremity support.

Task variability was intentionally embedded in the training data by instructing subjects to 

vary speed, cadence, step length, step width, upper extremity support on stairs, and angle 

of approach. Environmental variability was embedded by using staircases with different step 

heights and varied number of even- or odd-numbered steps, and ramps with different grade. 

Data were also collected from more ecological settings where spontaneous and minimally 

constrained maneuvers were more highly encouraged compared to circuits in the laboratory. 

Characteristics of the training data are summarized in Table 3. We excluded the traditional 

toe off (TO), standing toe off (STO), and standing heel contact (SHC) classifiers because 

they usually have more training examples and achieve lower error rates than the other 

classifiers [5], [10]. The ramp ascent class was merged with level-ground walking in the 

HCLW classifier because previous studies have shown that sharing impedance parameters 

between these modes has negligible effect on prosthesis function but improves classification 

accuracy [17].

B. Problem formulation

In this study, we formulated the problem of improving model generalizability from the 

perspective of learning a generative model of the prosthesis sensor signals. Learning the 

true high-dimensional data distribution is intractable so we use deep neural networks to 

learn a model approximating the true data distribution. Our working assumption is that the 

sensor data for each mode-specific classifier lie on or near a lower-dimensional “motion 

manifold” [18] which represents a subspace of plausible movement sequences preceding a 

user-initiated step while performing a certain locomotor activity. In other words, we assume 

that the relationship between movement intention and this motion manifold is preserved 

despite noise and variability in the measured sensor data.
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We hypothesized that a deep generative model would learn robust representations of 

movement intention which are more invariant to sources of task, environmental, and 

subject -related variability and provide better generalization in the presence of covariate 

shift. If successful, our model should generate realistic synthetic sensor data that improve 

intent recognition classification accuracy. Guided by our working assumption, we build off 

previous work describing autoencoders [19] to learn a concise representation of our sensor 

data by jointly learning an encoder and decoder. The encoder maps data samples to a 

lower-dimensional latent space whereas the decoder maps the encoding from the latent space 

back to the original data space.

Some desirable properties of latent space models include expressivity (i.e. real examples 

can be reconstructed), realism (i.e. any point in latent space represents a plausible example, 

even ones not found in the training data), and smoothness (i.e. closeness in latent space 

implies similarity in input space). The autoencoder (i.e. encoder-decoder), a type of latent 

space model, is trained to reconstruct its input. Because large covariate shifts in the sensor 

data at prediction time cannot always be reasonably anticipated based off the training data 

or synthetic data, we also sought a method for aligning the motion manifolds between the 

training and testing data. To accomplish these goals, we combined several key training and 

architectural choices into our autoencoder model, including:

1) Denoising: To make the decoding task more difficult, the input sensor data can 

be corrupted before being fed to the encoder and the decoder is trained to recover the 

uncorrupted sensor data. Additive white Gaussian noise is commonly used and forces the 

autoencoder to learn more robust representations which are preserved in the presence of 

task-invariant noise [20].

2) Regularization: To encourage more concise representations of the input data, the 

latent space can be constrained to match a prior distribution (e.g. multivariate normal 

distribution). Methods for shaping the distribution of the latent space to match an arbitrary 

prior generally include variational and adversarial approaches. Variational approaches 

minimize the Kullback-Leibler divergence between the latent space and prior distributions, 

Alternatively, adversarial approaches formulate a minimax problem using a discriminator 

model which is trained to correctly distinguish latent space samples from the encoded latent 

space and the prior. In opposition, the encoder is updated such that the discriminator cannot 

correctly distinguish its encodings from the prior. Previous studies primarily in the domain 

of image generation have shown that adversarial approaches may lead to more expressive 

encoder models than variational approaches [21].

3) Semi-supervision: To enable the model to align the motion manifolds without the 

true class label (as is the case at test time), the encoder should also predict its own class label 

(i.e. pseudo-label [22]) from the input sensor data. The predicted label can be combined with 

the latent representation before being fed to the decoder [21]. The latent space encoding 

and pseudo-label can be regarded as the “style” and “content,” respectively, of the input. 

Conditioning the decoder on the pseudo-label encourages the encoder to pay attention to 

class-discriminative information in the input sensor data, allows conditional generation of 
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synthetic data using the trained generative model, and acts as a mild form of regularization 

by giving the network an auxiliary task [23].

C. Training data

Data from the 17 prosthesis sensor channels were recorded at 1 kHz and segmented into 

300 ms windows beginning 210 ms before the gait event and ending 90 ms after the gait 

event. Windows were downsampled by a factor of 5 for computational efficiency yielding 

input tensors of shape (60, 17). The signs of shank accelerometer and gyroscope channels 

were flipped appropriately to account for side of amputation. Data augmentation can combat 

overfitting by injecting prior knowledge about the class-invariant sources of variability in 

the data to provide better coverage of the input space, especially when the training data are 

sparse in a high-dimensional space.

Applying label-preserving transformations such as scaling, shifting, rotation, and jitter (i.e. 

additive random noise) can improve the generalizability of deep neural networks for image 

classification [24]. In the domain of human activity recognition using wearable sensors, 

applying analogous transformations for data augmentation not only preserved class labels 

but also improved binary classification accuracy for detecting Parkinson’s disease symptoms 

using a single wearable accelerometer [25]. Similarly, we applied global (i.e. across all 

channels for all time steps) transformations consisting of 2 additional shifted copies (±10 

ms relative to the original window), 8 additional scaled copies (the original window was 

multiplied by a scaling factor sampled from a uniform distribution between 0.95 and 1.05 

on a per channel basis), and 10 shifted-scaled copies (5 scaled copies for each of the shifted 

copies) (Figure 2) for combined 20-fold data augmentation.

We used these shifting and scaling transformations to encourage the model to learn latent 

representations which were more robust to slight differences in timing of event detection and 

signal magnitude, respectively. The time shift was bounded by the range of ±10 ms because 

10 ms represented the smallest allowable window increment for our embedded controller. 

The typical deviation in the signal magnitude (averaged across all channels) during trials 

where the subject performed standing only was about 10 percent. Therefore, we bounded the 

scaling factor by the range of 1 ± 0.05 to be more conservative about preserving the activity 

label. The ground truth label for each window recorded by the key fob was converted to a 

one-hot encoded vector (e.g. [1, 0, 0] for class 1) to make the categorical data accessible to a 

neural network.

After temporal down-sampling and data augmentation, the sensor data were normalized 

to the range [−1,1] to accelerate training and reduce the likelihood of the neural network 

converging unfavorably on local minima. To mitigate the effects of atypical channels 

in otherwise typical examples in the training data, we used quantile normalization. We 

calculated the median, absolute minimum, and absolute maximum values from each window 

on a per channel basis. Next, the 2nd, 50th, and 98th percentiles of the median, absolute 

minimum, and absolute maximum values were calculated based on the training data 

only. Windows in the training and testing data were normalized on a per channel basis 

by subtracting the 50th percentile and dividing by the range between the 2nd and 98th 
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percentiles. Extreme values were clipped above and below the 98th and 2nd percentiles, 

respectively.

To mitigate the effects of class imbalance, we performed random resampling with 

replacement of the minority classes such that the number of instances of each minority 

class was at least half the number of instances of the majority class. Classes were not 

fully rebalanced in order to preserve the notion of a majority class, which we suspected 

would help in training a robust and discriminative classifier. Prior to training, each mode-

specific classifier was required to have at least 10,000 total instances while preserving the 

rebalanced class proportions; otherwise, additional copies were created by applying additive 

zero-centered Gaussian noise (σ = 0.1) after augmenting and resampling the experimental 

data.

D. Implementation

1) Model architecture: The overall architecture is depicted in Figure 3. Autoencoders 

consist of two learnable models, an encoder and a decoder, which we implement with deep 

convolutional neural networks. In a semi-supervised setting, the encoder also performs the 

auxiliary task of classification. Therefore, we subdivide the encoder into three modules: Enc, 

EncZ, and EncY.

Base encoder (Enc):  The base encoder consists of an input layer for the multivariate time 

series (x), a corruptor layer (C) which applies additive zero-centered Gaussian noise (σ = 

0.1), a sequence of three strided convolution layers, and a flattening layer to convert the 

output of the convolution layers into a fixed length 2720-dimensional hidden feature vector 

(ℎ). We used two-dimensional kernels in order to combine movement-related information 

across sensor channels, and temporal downsampling (by a combined factor of 12) to 

encourage learning condensed, time-invariant latent representations. Enc had 20,896 total 

parameters.

Latent encoder (EncZ):  The latent encoder maps the hidden feature vector (ℎ) to a latent 

code (z) in a 10-dimensional subspace. First, there is a linear layer with 32 units and L1 

weight regularization (λ = 10−8) to encourage compression of the learned representation. 

Next, we apply the “reparameterization trick” used in traditional variational autoencoders 

[26] to backpropagate gradients through a Gaussian sampling layer. We sample ϵ ~ N(0, I) 
where I is the 10-dimensional identity matrix and then compute z = μ (ℎ) + σ (ℎ) × ϵ. μ and 

σ are linear layers with 10 units each representing the reparameterized mean and standard 

deviation of the stochastic latent code, respectively. For numerical stability, we actually learn 

the log variance of the latent code and compute σ by exponentiating. The mean and log 

variance layers have L2 activity regularization (λ = 10−8) to bias the latent code towards the 

standard multivariate normal distribution. EncZ had 87,732 total parameters.

Classifier (EncY ):  The classifier maps the hidden feature vector (ℎ) to a class prediction 

(y). EncY has a linear layer with 32 units and L1 weight regularization (λ = 10−8) 

to encourage compression of the learned representation. We use the softmax activation 
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function to convert the predictions into class probabilities. EncY had 87,138 or 87,171 total 

parameters for two or three predicted classes, respectively.

The decoder (Dec) uses the latent code (z) conditioned on the class probabilities (y) for 

its reconstruction (x). In order to equalize the contribution of the latent representation (z)
and class information (y), we added a linear layer with 10 units before concatenation. 

Next, there was a linear layer with 32 units followed by a sequence of three strided 

transposed convolution layers which undo the convolution operations of the encoder in order 

to generate samples with the same dimensionality as the input. The last convolution layer 

has a hyperbolic tangent activation to constrain outputs to the range [−1, 1]. To maximize the 

capacity of the decoder, we did not include weight or activity regularization in any layers. To 

generate synthetic samples, we provide Dec with an arbitrary number of latent code samples 

from the prior distribution and corresponding class labels. Dec had 111,327 and 111,337 

total parameters for two or three predicted classes, respectively.

Adversarial regularization was implemented with two discriminators: DZ and DY.

Latent space discriminator (DZ):  The latent space discriminator learns to differentiate 

between latent codes from the latent encoder (z) and samples from the prior distribution (z). 
The input layer is followed by a layer which applies additive zero-centered Gaussian noise 

(σ = 0.1) as a form of instance noise [27] to prevent overfitting. DZ consists of a sequence 

of three linear layers (128, 64, and 32 units) and L2 weight regularization (λ = 10−8) to 

prevent overfitting. The output layer has 1 unit without an activation function. There is a 

dropout layer [28] with dropout rate of 0.2 following the 64-unit hidden layer. When trained 

to convergence, DZ assigns equal likelihood to latent codes from the encoder and from 

the prior distribution (i.e. the distribution of z should approximate a multivariate standard 

normal distribution). DZ had 11,777 total parameters.

Label discriminator (DY):  The label discriminator learns to differentiate between classifier 

predictions (y) and samples from a categorical distribution (y). This model has similar 

architecture to the latent space discriminator. When trained to convergence, DY assigns 

equal likelihood to predictions by the encoder and a categorical distribution (i.e. the 

classifier should make high confidence predictions in a single class). DY had 10,753 or 

10,881 total parameters for two or three predicted classes, respectively.

2) Hyperparameters: All networks were trained using the stochastic gradient descent 

solver Adam [29] (α = 0.0001, β1 = 0.5) with a mini-batch size of 128. We used leaky 

ReLU activations [30] (α = 0.2) as our default activation function in all cases (except the last 

convolution layer in Dec) because it can accelerate the convergence of stochastic gradient 

descent. The weights of all dense and convolution layers except the last convolution layer in 

Dec were initialized with He uniform variance scaling [31] because they preceded a leaky 

ReLU activation. The weights of the last convolution layer in Dec were initialized using 

Xavier uniform distribution [32] because they preceded a hyperbolic tangent activation. To 

provide smooth, non-saturating gradients for the discriminators, we used the least-squares 

generative adversarial network (LSGAN) loss function [33] formulation.

Hu et al. Page 9

IEEE Trans Med Robot Bionics. Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3) Training: We used stratified sampling to form mini-batches of training data where 

the class proportions matched the overall class distribution after resampling. Next, training 

progressed iteratively in three phases:

Reconstruction:  Enc, EncZ, EncY and Dec were trained to minimize the reconstruction loss 

[equation (1)].

argmin
θEncθEncZ, θEncY , θDec

λrecon  x − x
2

2
(1)

Regularization:  DZ and DY were trained to discriminate between samples from the prior 

and categorical distributions (“real) and samples from the encoder (“fake”). To encourage 

diversity in the generated samples, we also used one-sided label smoothing [34] to prevent 

the discriminators from being overconfident in their predictions of whether samples were 

“real” or “fake.” Target values for “real” samples were smoothed to a uniform distribution 

between 0.9 and 1.1 and target values for “fake” samples were smoothed to a uniform 

distribution between −0.1 and 0.1. DZ and DY were trained to minimize the LSGAN loss 

according to equations (2) and (3). Next, DZ and DY were made untrainable and the encoder 

modules were trained to fool the discriminator (i.e. the target values for “fake” samples from 

the encoder were flipped and set to 1). Enc, EncZ, and EncY were then trained to minimize 

the adversarial LSGAN loss according to equation (4).

argmin
θDZ

1
2Ez N(0, 1) DZ(z) − U(0.9, 1.1) 2 +

1
2Ez EncZ DZ(z) − U( − 0.1, 0.1) 2

(2)

argmin
θDY

1
2Ey Cat DY (y) − U(0.9, 1.1) 2 + 1

2Ey EncY DY (y) − U( − 0.1, 0.1) 2
(3)

argmin
θEncθEncZ, θEncY

λadv
2 Ez EncZ DZ(z) − 1 2 + λadv 

2 Ey EncY DY (y) − 1 2
(4)

argmin
θEnc, θEncY

− λclass ∑c = 1
ydim yobs, clog pobs, c (5)

Semi-supervised classification:  Enc and EncY were trained to predict the class by 

passing in the multivariate time series input (x) and its corresponding ground truth one-hot 

encodings (y) to minimize categorical cross entropy loss [equation (5)].
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The loss weights (λrecon, λadv, and λclass) reflect the relative importance of the different 

functions of the denoising semi-supervised adversarial autoencoder and were determined 

by experimenting with different values. We found setting λrecon = 1, λadv = 0.01, and 

λclass = 0.01 enabled the model to strike a desirable compromise between high quality 

generated samples, accurate predictions, and a dense latent space approximating a standard 

multivariate Gaussian distribution. Experimentally, we found that losses began stabilizing 

after training for 10–20 epochs; therefore, we trained all models for 30 epochs to increase 

the likelihood of converging on a desirable solution for the generative model. Models were 

implemented in Keras using the Tensorflow backend on a laptop computer (Intel Core 

i7–7700, 2.80 GHz, 16 GB RAM) with GPU (4GB Nvidia GeForce GTX 1050) running 

Windows. Mode-specific generative models could be trained on the order of minutes to 

hours depending on the number of empirical training examples.

E. Evaluation

Our primary goal was to identify methods that could improve the long-term stability and 

generalizability of intent recognition-based classifiers while minimizing the training burden. 

We calculated offline classification error rates in the presence of covariate shift in the 

sensor signals across days and across users. Our secondary goal was to determine whether 

more advanced techniques using deep generative models were practical to implement and 

provided benefits that would out-weigh the cost of added computational complexity.

Data from the Day 3 protocol, which most closely resembled community ambulation, 

were used to test the control system. Error rates were calculated by dividing the number 

of incorrect decisions by the total number of decisions. We performed analyses for both 

individual (i.e. the training data came from the same user for the testing data) and pooled 

(i.e. the training data did not include any data from the user for the testing data) user 

configurations. Requiring only one visit to the ambulation laboratory to collect training data 

is preferable from a practical standpoint so we used data from our Day 1 protocol (“one-day 

baseline”) as a benchmark. To determine the expected lower bound on the error rate when 

testing on Day 3, we performed leave-one-out (LOO) cross-validation on the Day 3 data. In 

other words, we iterated through each example from Day 3, training a classifier using all the 

data except for one example and predicting the label of the excluded example.

For comparison, we evaluated error rates for several strategies designed to improve 

robustness to covariate shift:

Additional experimental training data (“two-day baseline”)—Training data 

collected on Day 2 were combined with Day 1.

Global augmentation (generative model not required)—Twenty-fold global 

augmentation (2 shifted, 8 scaled, and 10 shifted-scaled copies) was applied to the one-

day and two-day baselines (data quantity equivalent to 21 and 42 training sessions after 

augmentation, respectively).

Specific augmentation by reconstruction and by sampling—After applying global 

augmentation to the one-day baseline, we constructed three additional sets of training 
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data by applying specific augmentation by reconstruction (data quantity equivalent to 42 

training sessions), by sampling (data quantity equivalent to 42 training sessions), and by 

both reconstruction and sampling (data quantity equivalent to 63 training sessions). To 

augment by reconstruction, we passed the globally augmented one-day baseline through the 

trained autoencoder (x). To augment by sampling, we passed latent codes sampled from a 

10-dimensional standard normal distribution (z) and corresponding desired class labels (y)
(with quantity and class proportions matching the globally augmented one-day baseline) 

through the decoder.

Manifold alignment using the latent space—We use the trained encoder to align 

training and testing data in the latent space, which we expected to represent movement 

intention robustly despite noise and variability in the measured sensor signals. Testing 

data is aligned by the trained autoencoder using its latent code (ztesting) and pseudo-label 

prediction ytesting . We suspected this strategy would be most beneficial when covariate 

shift fell outside the range found in the training data and could not be mitigated simply 

by bolstering the training data with augmented samples that resembled the experimental 

training data.

Classification using a deep convolutional neural network—For the above 

strategies, we used an a priori linear discriminant classifier with heuristic features (mean, 

standard deviation, maximum, minimum, initial value, final value) [5] extracted from the 

experimental, globally augmented, specifically augmented, or aligned event windows. We 

used principal components analysis to reduce the feature set to 50 dimensions when the 

number of original number of features (102) exceeded the number of training examples. 

As an alternative, we used Enc-EncY (referred to as convolutional neural network, CNN) 

directly on the input time series for classification.

Given the stochastic nature of training neural networks (e.g. weight initialization, sampling, 

dropout), we trained each mode-specific classification model five times for both user 

configurations (i.e. individual and pooled) for each subject. We report the lowest error rate 

achieved (from epoch 15 and afterwards) from the top three out of the five runs for each 

of the strategies above, representing a form of early stopping to avoid suboptimal solutions 

due to model overfitting. The overall error rate was computed by aggregating across the 

five mode-specific classifiers (HCLW, HCRD, HCSD, MST, and MSW from Table 3). 

Qualitatively, we inspected generated sensor signals for a variety of sensor types for both 

individual and pooled configurations across all subjects.

F. Analyses

Statistical analyses were performed using Minitab (Minitab, Inc., version 19.1.1) to compare 

the effect of different data augmentation strategies on overall error rate. To determine 

statistical significance, we used a linear mixed-effects model with error rate as the 

continuous response variable, subject as a random factor, strategy as a categorical fixed 

factor, and user configuration as a categorical fixed factor. Data were normalized using a 

Box-Cox log transformation. The interaction term between strategy and user configuration 
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was not found to be significant (F2,12 = 0.43, p = 0.660); thus, the term was removed from 

the model.

Practically, we were primarily interested in evaluating how well generative model-based 

strategies trained on only one session (totaling about 3–4 hours) of experimental training 

data performed compared to the lowest achievable error rates when using one session or 

two sessions (totaling about 6–8 hours) of experimental training data without training a deep 

neural network. Therefore, we performed two-tailed multiple comparisons (p- value adjusted 

by Bonferroni correction for 3 pairwise comparisons) between global augmentation of the 

one-day baseline, global augmentation of the two-day baseline, and the best performing 

generative model-based strategy using only one experimental session (specific augmentation 

by reconstruction of the globally augmented one-day baseline).

III. RESULTS

We compared different strategies for mitigating the adverse effects of covariate shift across 

days and across users on a state-of-the-art intent recognition paradigm. We hypothesized that 

applying global augmentation techniques (i.e. shifting, scaling, additive Gaussian noise) to 

just one day of empirical training data would enable us to train a deep generative model 

which learns robust, low-dimensional representations of movement intention that improve 

model generalizability. First, we evaluated data augmentation strategies that did not require 

training a deep generative model. Second, we determined the extent to which our generative 

modeling approach was adaptable to synthesize realistic sensor data for different modalities, 

activities, and individuals. Lastly, we evaluated the potential benefit of methods relying on 

the trained generative model for both individual and pooled user configurations.

A. Additional experimental data and global augmentation improve generalizability 
without training a generative model

To quantify the performance of techniques that do not require training a generative model, 

we evaluated including a second day of experimental data and adding copies of the empirical 

data which have been shifted, scaled, and jittered. Adding a second day of empirical 

data to the baseline training dataset generally reduced error rates. Adding the second day 

reduced overall error rates (mean ± standard deviation) from 4.42 ± 2.19% to 3.40 ± 1.21% 

(24% reduction) and from 9.14 ± 4.02% to 7.94 ± 3.89% (13% reduction) for individual 

and pooled configurations, respectively (Figure 4A and Figure 4B, left). However, the 

mid-stance and mid-swing classifiers (not shown separately) did not benefit as much from 

the additional training session. Global augmentation of one-day and two-day baseline data 

generally reduced error rates further without drastically affecting its standard deviation for 

both user configurations. Also, the overall error rates for global augmentation of the one-day 

baseline (7.96 ± 3.82%) and including a second day of empirical data (7.94 ± 3.89%) 

were approximately equal for the pooled user configuration (Figure 4B, left). However, the 

difference between global augmentation of the one-day and two-day baseline data was not 

statistically significant (t(7) = −2.52, adjusted p-value = 0.066). Error rates for the pooled 

user configuration were significantly higher than the individual user configuration (t(11) = 

7.63, adjusted p-value < 10−6).
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B. Proposed generative model produces realistic multivariate sensor data without 
customization

To determine the capacity of our generative model to synthesize high-quality sensor data for 

all channels, activities, and individuals without fundamentally modifying its architecture or 

hyperparameters, we examined the generated sensor data for each mode-specific classifier. 

After a few epochs of training, reconstructed samples began to be centered around the mean 

channel values as a result of the relatively high importance placed on the reconstruction 

loss; however, the generated data lacked diversity. As training progressed, the distribution 

of the latent space converged upon the multivariate standard normal distribution and 

synthetic samples became more diverse as a consequence. After training converged, the 

generative model could produce realistic synthetic sensor signals for both monotonic and 

non-monotonic channels with different signal-to-noise ratios and various waveform shapes 

(Figure 5).

As an example of the effectiveness of the manifold alignment strategy, the baseline shift 

in the ankle position and timing variability in the knee velocity at testing were mitigated 

(Figure 5, rows 1–2, column 4). Matching the latent space to a multivariate standard normal 

distribution also enabled the model to generate realistic samples for the load cell which were 

representative of test signals but not found in the empirical or globally augmented training 

data (Figure 5, row 3, column 3). Upon inspection, we found that the trained generative 

model could successfully synthesize realistic-looking sensor data for all mode-specific 

classifiers and for all sensor channels for all subjects without the need for additional tuning.

C. Generative model-based strategies functionally replace a second day of empirical 
training data

To compare generative model-based strategies, we computed error rates for specific 

augmentation by reconstruction and by sampling, manifold alignment, and classification 

with the encoder. Specific augmentation consistently reduced error rates for all classifiers 

compared to the globally augmented one-day baseline for both user configurations (Figure 

4A and Figure 4B, right). However, specific augmentation by reconstruction was generally 

more effective than specific augmentation by sampling. Overall error rates for specific 

augmentation by reconstruction were reduced to 3.03 ± 2.54% (from 4.33 ± 2.76%, 30% 

reduction from globally augmented one-day baseline) and to 5.98 ± 3.19% (from 7.96 

± 3.82%, 25% reduction from globally augmented one-day baseline) for individual and 

pooled configurations, respectively. There was a statistically significant improvement when 

using specific augmentation by reconstruction (t(7) = −2.93, adjusted p-value = 0.028). 

In most cases, training datasets created using specific augmentation also resulted in lower 

error rates than the two-day baseline. However, variability in the error rates for specific 

augmentation was still higher than the two-day baseline for the individual configuration 

(Figure 4A, right). Manifold alignment and classification using the encoder achieved overall 

error rates similar to the other generative model-based strategies and were at or below the 

two-day baseline. However, these two strategies still had higher error rates than the globally 

augmented one-day baseline for the mid-stance and mid-swing classifiers in the individual 

user configuration (not shown separately). There was no statistically significant difference 
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between overall error rates for global augmentation of the two-day baseline and the best 

performing generative model-based strategy (t(7) = −0.41, adjusted p-value = 1.00).

IV. Discussion

Our overall objective was to develop and evaluate novel strategies to mitigate the adverse 

effects of covariate shift across days and across users on intent recognition without 

increasing the training burden. Previous work had shown that bolstering the training data 

by collecting additional experimental data can improve generalizability [12] but the quantity 

and quality of data needed for improvement remained unclear. We hypothesized that training 

a deep generative model would enable learning more robust representations of movement 

intention and provide an alternative strategy for improving generalizability of a state-of-the-

art intent recognition model. There had been few previous attempts to train deep neural 

networks using sensor data from wearable assistive devices for impaired populations. The 

limited amount of training data had been considered a major bottleneck to learning robust 

models which do not collapse to merely overfitting a small training dataset. Altogether, 

our findings suggest that applying techniques in deep learning to the control of wearable 

assistive device robotics is not only attainable but also advantageous.

We first amplified empirical prosthesis sensor data using prior knowledge by applying 

shifting, scaling, and additive random noise to embed invariance to slight differences 

in event detection timing, small shifts in the channel baselines, and random sensor 

noise, respectively. These label-preserving transformations provided small but consistent 

reductions in the error rates, suggesting that they are a beneficial offline pre-processing step 

even when applied globally. Our findings also suggest that collecting additional empirical 

data and applying global augmentation are complementary approaches that can improve 

model performance without necessarily training a deep neural network or generative model. 

Perhaps more importantly, we found that data augmentation was required to train our deep 

generative model because the number of trainable model parameters (in the hundreds of 

thousands) exceeded the number of empirical examples for some mode-specific models (in 

the tens and hundreds) by several orders of magnitude.

We developed methods for training a semi-supervised denoising adversarial autoencoder 

(a deep generative model) using relatively small empirical training datasets each collected 

from one visit lasting up to 3–4 hours. The generative model was highly expressive and 

synthesized realistic prosthesis sensor data for all channels, activities, and individuals using 

the same architecture and hyperparameters, suggesting that our novel approach has broad 

scope. In some cases, the mid-stance and mid-swing classifiers did not benefit as much 

from our data augmentation strategies. These two classifiers predicted the transition from 

stair descent or stair ascent to level-ground walking, respectively, for staircases with an odd 

number of steps and tended to have not only the most severe class imbalance but also the 

fewest examples of transitions. The poorer performance of these classifiers suggests there 

may be a critical lower bound on the number of experimental repetitions of a movement 

needed to train a robust model, especially because transitions are inherently more variable 

movements.
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We found that generative model-based strategies including specific augmentation, manifold 

alignment, and classification with a neural network performed better than the one-day 

baseline, even with global augmentation. Overall error rates for the generative model-based 

strategies were generally as low or lower than adding a second day of empirical training 

data, effectively precluding the need for a second visit to the ambulation laboratory. In the 

laboratory, clinicians can instruct subjects to vary repetitions of a movement in order to 

embed meaningful task variability into the training data. However, this type of instruction 

can be mentally fatiguing for subjects. Our findings showed that generative-model based 

strategies may not only provide substantial and clinically meaningful reductions in the 

offline error rate but also potentially simplify the training protocol. By exploiting the 

generative model to implicitly identify plausible patterns of variability offline, we could 

generate rich and realistic synthetic sensor data that would be more challenging to collect 

experimentally.

In contrast to multilayer perceptron neural networks used for intent recognition [35], [36], 

we implemented classification using a convolutional neural network. Convolutional neural 

networks have become more prevalent for activity recognition based on wearable sensor 

data because they can learn robust representations of movement intention directly from the 

multivariate time series without feature engineering [37]. However, we found that when 

the deep generative model was first used to perform specific augmentation or manifold 

alignment offline, error rates using a simpler a priori linear discriminant classifier with 

heuristic features were not substantially different from the convolutional neural network 

classifier. We show that a state-of-the-art intent recognition model can be improved by 

simply performing offline data augmentation without fundamentally modifying the existing 

training or prediction pipeline or incurring additional online computational costs on an 

embedded system.

Limitations and future work

The findings of our study are limited by a few factors. First, there were only four amputee 

subjects, which led to large between-subject variability in the error rates in some cases. 

Therefore, due to our small sample size the results of our statistical analyses should be 

interpreted cautiously. However, we expect both error rates and their variability to decrease 

as the training data becomes richer with more training sessions and subjects. We did not 

consider training on or performing specific augmentation on the two-day baseline but expect 

error rates to decrease further because even global augmentation of the two-day baseline was 

generally beneficial. Nonetheless, generative model-based strategies consistently reduced 

error rates for the pooled subject configuration despite differences in height, weight, 

prescribed device, and walking style.

We also did not report online error rates, which would likely be higher than our reported 

offline error rates. However, previous online results have shown a strong correlation with 

offline error rates for lower limb powered prosthesis controllers [3]. Our findings are 

limited by only using the a priori linear discriminant classifier with heuristic features; 

however, our previous work using this feature-classifier combination has shown comparable 

performance with other methods including a support vector machine and a multilayer 
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perceptron with single hidden layer [35]. Online evaluation with more individuals in more 

diverse ambulation environments including at-home and across longer durations will be 

necessary to determine the true benefit provided by our proposed approach.

The best approach to collecting training data for a powered leg intent recognition system 

remains unclear despite a precedence for using an in-lab protocol for which the majority 

of the training data are collected in the form of circuits [10]. The number of activities 

completed is generally limited by practicality because the protocol can be mentally and 

physically fatiguing. There were some differences between the Day 1, Day 2, and Day 3 

protocols and the number of repetitions and types of task and environmental variability 

were chosen arbitrarily. However, further analyses beyond our comparison are necessary 

to determine the optimal quantity, type, and quality of empirical training data (e.g. 

disproportionate collection of transitions, shorter sessions spanning more days).

Although we developed a working pipeline to successfully train our chosen deep generative 

model, the design space consisting of pre-processing steps, architectural choices, and 

hyperparameters is still very large. We attempted to identify the most important design 

decisions but did not truly optimize them by performing a sensitivity analysis. We found 

class rebalancing critically affected overall model convergence because training the classifier 

updated the encoder parameters. However, the amount of global augmentation and the 

minimum total number of training samples were less critical and should be minimized to 

reduce pre-processing and training times. We also found that forcing the autoencoder to 

denoise led to more robust latent representations and reconstructions; however, the amount 

of corruption was not tuned. We found that prioritizing the reconstruction loss over the 

adversarial and classification losses was important for overall model performance but did 

not perform a sensitivity analysis on the non-reconstruction losses. We also did not optimize 

the dimensionality of the latent space but observed that using a low-dimensional space 

was sufficient for providing expressivity to the generative model. Less than 10-dimensional 

latent spaces performed poorly but much higher-dimensional latent spaces led to latent 

discriminator overfitting, which deteriorated overall model performance.

Generative adversarial networks are notoriously difficult to train because they pose a 

minimax problem which makes them more prone to non-convergence, mode collapse, 

and vanishing gradients when the discriminator overpowers the generator. Initially, we 

encountered similar challenges but incorporating several key regularization methods greatly 

improved the stability and performance of our model. We found that using the least-squares 

loss provided non-vanishing gradients (compared to the traditional generative adversarial 

network loss function [38]). Adding instance noise to the latent code samples for the 

latent discriminator and incorporating one-sided label smoothing effectively regularized 

the discriminator and prevented mode collapse. With time-series data, using networks 

which explicitly handle sequential information such as recurrent neural networks was a 

natural choice; however, we found that convolutional neural networks provided sufficient 

performance and required much less computation time.

In this study, we applied deep generative modeling to a specific intent recognition paradigm 

for controlling a powered leg prosthesis. Recently, several preliminary studies have used 
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deep generative models in other domains to synthesize data for health applications including 

medical monitoring [39], electroencephalography [40], accelerometry [41], and movement 

kinematics [42] for classification problems. We believe our proposed framework is generic 

enough to solve many problems for which the desired output is a synthetic multivariate 

time-series (even heterogeneous modalities) and empirical training data are limited. For 

instance, the decoder could be conditioned on any supplementary information (e.g. height, 

weight, home prosthesis, side of amputation, etc.) in addition to the activity mode. Without 

any fundamental changes, we could also use our approach to synthesize the EMG envelope 

for controlling an upper limb prosthesis with pattern recognition. We could also selectively 

generate less prevalent samples by decoding from the tails of a multivariate normal prior 

distribution or even use the model to generate examples of mislabeled steps (which are 

invaluable for training a system for online adaptation but uncomfortable for subjects).

V. Conclusion

We developed and validated techniques for applying data augmentation and deep generative 

models to prosthesis sensor data to learn representations of movement intention which are 

more robust to covariate shift across days and across users. In an offline analysis of data 

collected from four amputee subjects with different characteristics across several weeks 

to months, using the generative model provided clinical benefit by functionally replacing 

a second session of training data collection in the laboratory. Our approach to generative 

modeling also successfully synthesized rich sensor data for all channels, activities, and 

individuals using the same architecture and hyperparameters. We expect our promising 

results to impact how training data for controlling wearable assistive devices are collected 

and to catalyze the further expansion of deep learning techniques into rehabilitation robotics.
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Fig. 1. Training data collection.
(Left) Collecting ramp descent training data from a subject in the ambulation laboratory with 

a circuit-based protocol. (Right) Collecting stair descent training data from another subject 

in a therapy gym which more closely resembles community ambulation.
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Fig. 2. Global data augmentation using transformations based on prior knowledge.
(Top left) Jitter by additive zero-centered Gaussian noise (σ = 0.1) for training the denoising 

autoencoder. (Top right) Two shifted copies at ± 10 ms relative to the original window 

account for variation in event detection timing. (Bottom left) Eight scaled copies multiplied 

by a uniformly sampled scaling factor account for baseline shift. (Bottom right) Ten 

combined shifted-scaled copies.
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Fig. 3. Proposed deep generative model, a semi-supervised denoising adversarial autoencoder.
(A) Individual modules with output dimensions listed in parentheses above each layer. N 

is the number of convolution kernels, K is the kernel size, S is the stride length, LReLU 

represents the leaky ReLU activation, and tanh represents the hyperbolic tangent activation. 

The latent space dimensionality (zdim) was set to 10. “Real” samples for the latent space 

and label discriminators were sampled from a multivariate standard normal distribution and 

a categorical distribution (Cat), respectively. (B) Overall schematic of network connectivity.
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Fig. 4. Overall offline error rates (mean ± standard error) for individual and pooled user 
configurations.
(A) Individual user configuration. (B) Pooled user configuration. Data from one or two 

experimental sessions were globally augmented (GA) (left panels). Globally augmented 

one-day basline data were combined with synthetic examples from specific augmentation 

by reconstruction (Recon) and/or by sampling (Gen) using the trained autoencoder (right 

panels). Other generative model-based strategies included manifold alignment (Aligned) and 

classification using the encoder (CNN). Dashed lines represent the globally augmented one-

day and two-day baselines and the Day 3 leave-one-out (LOO) cross-validation benchmark.
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Fig. 5. Representative signals (normalized) using different generative model-based strategies.
(Top to bottom) Knee velocity from TF3 (individual user) in level-ground mode for HCLW, 

ankle position from TF2 (individual user) in ramp descent mode for HCRD, load from 

TF1 (pooled users) in stair descent mode for HCSD, Gz for TF4 (pooled users) in stair 

ascent for MSW, Ay for TF2 (individual user) for level-ground mode for HCRD, knee 

reference torque for TF1 (individual user) for level-ground mode for MSW. In columns 

1–4, colored traces represent samples from the corresponding training data. In column 5, 

colored traces represent the corresponding test data. Black traces in columns 2–4 represent 

artificial sensor data generated using specific augmentation by reconstruction (Recon), 

specific augmentation by sampling (Gen), or manifold alignment (Align). The dashed pink 
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lines represent the mean of the training data for columns 1–3 and the mean of the testing 

data for columns 4–5.
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TABLE I:

Subject Characteristics

TF1 TF2 TF3 TF4

Sex Male Male Female Female

Age 61 years 69 years 51 years 32 years

Time post-amputation 48 years 42 years 29 years 18 years

Height 180 cm 175 cm 165 cm 172 cm

Weight 84 kg 86 kg 66 kg 70 kg

Etiology Trauma (Left) Trauma (Right) Trauma (Right) Cancer (Right)

Prescribed knee Ossur Mauch Ottobock C-Leg Ossur Rheo XC Ottobock C-Leg

Day 1-Day 2 3 weeks 10 weeks 2 weeks 16 weeks

Day 1-Day 3 18 weeks 20 weeks 7 weeks 21 weeks
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TABLE II:

Prosthesis Sensor Channels

1. Knee angle (deg) 10. Shank Gx (deg/s)

2. Knee velocity (deg/s) 11. Shank Gy (deg/s)

3. Knee motor current (Nm) 12. Shank Gz (deg/s)

4. Ankle angle (deg) 13. Shank inclination angle (deg)

5. Ankle velocity (deg/s) 14. Thigh inclination angle (deg)

6. Ankle motor current (Nm) 15. Knee reference torque (Nm)

7. Shank Ax (g) 16. Ankle reference torque (Nm)

8. Shank Ay (g) 17. Axial load (normalized by body weight)

9. Shank Az (g)
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